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We study the stationary Navier—Stokes equations in the region between two rotating
concentric cylinders. We first prove that, for a small Reynolds number, if the fluid flow is
axisymmetric and if its velocity is sufficiently small in the L°>°-norm, then it is necessarily
the Taylor—Couette—Poiseuille flow. If, in addition, the associated pressure is bounded or
periodic in the z axis, then it coincides with the well-known canonical Taylor—Couette flow.
We discuss the relation between uniqueness and stability of such a flow in terms of the
Taylor number in the case of narrow gap of two cylinders. The investigation in comparison
with two Reynolds numbers based on inner and outer cylinder rotational velocities is also
conducted. Next, we give a certain bound of the Reynolds number and the L°°-norm of the
velocity such that the fluid is, indeed, necessarily axisymmetric. As a result, it is clarified
that smallness of Reynolds number of the fluid in the two rotating concentric cylinders
governs both axisymmetry and the Taylor—Couette—Poiseuille flow with the exact form of
the pressure.
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1. Introduction

This paper concerns the three-dimensional stationary incompressible Navier—Stokes
equations

v-Vo +p:vAv,} (L.1)

V.v=0,
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where v = v(x) = (v1(x), va(x), v3(x)) is the velocity vector, p = p(x) denotes the scalar
pressure and v > 0 is the viscosity constant. For the Navier—Stokes equations (1.1) in the
whole space R?, it has been an open problem whether v = 0 is the only solution under
the conditions that v has finite Dirichlet integral and vanishes at spatial infinity (see Galdi
2011, remark X.9.4). Seregin (2018) reformulated the problem in such a way that any
bounded solution v must be constant. There are many partial answers to this problem and,
for instance, we refer readers to Carrillo, Pan & Zhang (2020), Chae (2014), Chae & Wolf
(2016), Chamorro, Jarrin & Lemarié-Rieusset (2021), Koch et al. (2009) and Kozono,
Terasawa & Wakasugi (2017) and references therein.

Recently, the Liouville-type theorems in non-compact domains in R> have also been
studied. Carrillo ef al. (2020) showed that a smooth solution with the finite Dirichlet
integral to the Navier—Stokes equations (1.1) in a slab domain R? x [0, 1] with the no-slip
boundary condition must be zero. Among other results, they also treated the axially
symmetric case with the periodic boundary condition and proved the Liouville-type result
under the finite Dirichlet integral. The assumption of the finite Dirichlet integral was
relaxed by Tsai (2021) and Bang et al. (2023). In particular, Bang et al. (2023) obtained
the Liouville-type theorem on the Poiseuille flow of the Navier—Stokes equations (1.1)
in a slab domain R? x [0, 1] with no-slip boundary condition. Indeed, they showed that
if (v, p) is a smooth solution satisfying ||v||z~ < m, then v must be the Poiseuille flow
like v = (ax3(1 — x3), bx3(1 — x3), 0) with some constants a, b € R. Their result may be
regarded as the generalized Liouville-type theorem on non-trivial flow.

Motivated by these results, we have reached a natural question as to whether
Liouville-type theorems hold for other non-trivial exact solutions of the Navier—Stokes
equations. In this paper, we study the Liouville-type theorem on the Taylor—Couette—
Poiseuille flow in a region between two rotating concentric cylinders. We also compare our
mathematical uniqueness result with stability in the fluid mechanics in terms of Reynolds
number and Taylor number in the case when the ratio of the radii of the two cylinders is
sufficiently close to one.

1.1. Axially symmetric case

Let 0 < R| < Ry be constants and let £2 = {(x1, x2, x3) € R3:R; < ,/x% —i—x% < Ry}, that

is, a region between two concentric cylinders. In 2, we consider the axially symmetric
incompressible stationary Navier—Stokes equations in cylindrical coordinates:

042
(vrar+ vzaz)vr _ (U )

1 1
2 2
+3rp—v(3r+—3r+3z —_)vr,

r,0

viv 1

1
:U(83+;8r+822—ﬁ)1}9,

(W', + v )’ +
;

(1.2)
1
(W0, + V)V + o p =0 (33 + -0+ a}) Ve,

1
—9,(rv") 4+ 0,v* =0,
,

where r € (R1,R2), z€ R, v = v(r,z) = v'e, + v?eg + vie, with e, = (cos@, sin6, 0),
egp = (—sin6, cos b, 0), e; = (0,0, 1) denoting the basis of the cylindrical coordinate and
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p = p(r, z). Moreover, we impose on v the boundary conditions

V'R, 2) =v'(Rj,2) =0 (j=1,2), }

1.
v (Ry,2) = Riw1, v (Ra,2) = Rawy, (13)

with some w1, wy € R, that is, the inner and outer cylinders rotate with angular velocities
w1 and wy, respectively.

It is well known that there exists an exact solution to (1.2) called the Taylor—Couette
flow:

1
v=(0,v",0) withv? =Ar +B-, (1.4)
r
where
w—n? 1—p
1 Fw1, O] +0, ﬁwlRl’ w1 #0,
A= 1’7 B= (1.5a,b)
2 _
- nza)z, w; =0, —msz , w1 =0,

with non-dimensional quantities . and 1 given by

@ Ry
u=— forw; £0, n=— (1.6a,b)

] Ry
It is also known that the Taylor—Couette flow is stable if w; is sufficiently small. However,
if w1 exceeds a certain critical value, then the Taylor—Couette flow becomes unstable and
a fluid motion called the Taylor vortex appears (see e.g. Kirchgédssner & Sorger 1969;
Chossat & Iooss 1994). For a recent result on the compressible fluid motion, we refer to
Kagei & Teramoto (2020).

In this paper, we show a Liouville-type theorem on the more generalized
Taylor—Couette—Poiseuille flow including (1.4), provided that the velocity is not too large.
Although the Taylor—Couette—Poiseuille flow below (equation (1.9)) is not altogether new
(see e.g. Ma & Wang 2009; Guy Raguin & Georgiadis 2024), our derivation itself seems
to be new, because it is obtained from the fact that d,v = 0. The first main theorem reads
as follows.

THEOREM 1.1. Let (v, p) be an axially symmetric smooth solution of (1.2) in §2 with the
boundary conditions (1.3). There exists a constant C1(v, Ry, Ry) > 0 such that if w1, w>
and ||v||pe satisfy

max{Ri|wi|, Ra|wz|} < C1(v, R1, R2) (L7)
and
vlie2) < Ci(v, Ri, Ry), (1.8)
respectively, then (v, p) must be the generalized Taylor—Couette—Poiseuille flow:
V" =0,
9 1
vi =Ar+ B—,
,
2 2
1— ' 1.9
vZ:iR% - -1+ 7 log L , (19)
4v R n*logn Ry
A%, B 1
p=az+b+ —r°+2ABlogr — ——,
2 2 72
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with some constants a, b € R, where the constants A and B are the same as in (1.5a,b). In
particular, if the pressure p is bounded or periodic in z, then the constant a in (1.9) must
be zero, and hence we have v = 0, which means that v coincides with the well-known
canonical Taylor—Couette flow given by (1.4).

Remark 1.1. (1) Since the boundary condition (1.3) implies max{Ri|w1|, R2|w2|} <

(ii)

(iii)

|lv]|zeo, the condition (1.7) is necessary for (1.8).
From the proof of theorem 1.1, we may take C; (v, R, R2) as

Ci(v,R,Ry) =

v
N (1.10)
where Cp := Ra(Ry — R1)? /le'c2 is related to the Poincaré inequality. This implies
that if the viscosity v is large in comparison with the radii Ry and R», then the fluid
motion remains as laminar flow, i.e. the generalized Taylor—Couette—Poiseuille flow
(1.9). It should be noted that our assumptions (1.7) and (1.8) do not need to impose
any smallness on the pressure p of (1.2).

Taylor (1923) introduced a Taylor number 7a in a thin gap n =~ 1 defined by
2Aw1R; 4
Ta = — 2 A=n"14+pw). (1.11)

There is a critical value Ta,. such that if 7a < Ta., then the Taylor—Couette flow (1.4)
is stable. For simplicity, we consider the case when wp = 0, i.e. © = 0. Then it holds
that

Ta= 2 iRy ——— (1 — 1)’ = 3R§(R1w1>zi<1 —n)°. (1.12)
2 2] + v2 147
By (1.7) and (1.10) we have
Ta < “—ZL( n). (1.13)
2 147

Hence it follows from theorem 1.1 that under hypotheses of (1.13) and (1.8), the
Taylor—Couette—Poiseuille flow (1.9) is the unique solution of (1.2) with (1.3). On the
other hand, Taylor (1923) showed that 7a, = 1708, from which the Taylor—Couette
flow (1.4) is stable under the condition that

Ta < 1708. (1.14)

In comparison with (1.13) and (1.14), our uniqueness result seems to be quite
restrictive from the viewpoint of the Taylor number 7a. However, we should
emphasize that uniqueness of solutions necessarily requires more restrictive
conditions than those of stability.

(iv) In the non-dimensional form of the (1.2), the Reynolds numbers Re; are defined by
Riwi(R» — R
Re; = DR Z RO oy ) (1.15)
v
Then, (1.10) implies that the assumption (1.7) is written as
—R 1 TE«/
max{Re;, Rey} < Civ,R|, R = — 1.16
{Re1, Rey} 1(v, R, Ry) = 5 \/— f (1.16)
Namely, theorem 1.1 implies that if the Reynolds numbers of the inner and outer
cylinders and the velocity are bounded by a certain constant determined only
989 A7-4
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by means of radii R; and R», then the axisymmetric flow must be necessarily
the generalized Taylor—Couette—Poiseuille flow (1.9). Matsukawa & Tsukahara
(2022) performed direct numerical simulation for n = 0.833, and showed that in
the set (Rep, Rex) = (400, —1000), the Taylor—Couette—Poiseuille flow becomes
turbulent. For such an 5, we have %ﬁ = 1.476 and, hence, under the hypothesis
max{Rey, Re;} < 1.476 with (1.8) the Taylor—Couette—Poiseuille flow (1.9) is the
unique solution of (1.2) with (1.3). Since our result is on uniqueness of solutions, it
may be reasonable that the Reynolds numbers are by far the smaller in comparison
with occurrence of instability.

(v) Kagei & Nishida (2015) and Kagei & Nishida (2019) investigated the plane
Poiseuille flow for the compressible Navier—Stokes equations, and gave a
mathematical proof of its instability for Reynolds numbers much less than the critical
Reynolds number when the Mach number is suitably large.

(vi) The assumption that the pressure p is bounded or periodic in z seems physically
reasonable, and hence in a possible physical situation, the laminar axially symmetric
flow v in the two rotating concentric cylinder is necessarily the canonical
Taylor—Couette flow (1.4).

(vii) Temam (1977, ch. II, §4) studied the uniqueness and the non-uniqueness of the
problem (1.2) in the case of w> = 0 provided that the flow v of (1.2) is periodic in z.
Introducing the disturbance u = (u", u?, u*) such that v has the form v = vg+ u
with vg denoting the Taylor—Couette flow (1.4), he reduced such a question on
uniqueness as to whether u =0 in £2. It was proved in Temam (1977, ch. II,
proposition 4.2) that, under smallness hypotheses of the Reynolds number, u = 0
provided that («”, u®) is written by the stream function v in the coordinate (r, z)
satisfying 0,v (r1, 7) = 0¥ (r2,z) = 0. In comparison with Temam’s result, we
remove the assumption of periodicity in z and avoid making use of such a stream
function, although we impose on v the smallness condition (1.8).

1.2. General case

Next, we treat the general case in which axial symmetry is not necessarily assumed.
Consider the same region §2 as in § 1.1, and the incompressible stationary Navier—Stokes
equations in cylindrical coordinates in £2:

0\2
1 2
-V — 8 g v(A— —2> v — v,
r I I
( V)9+vrv9+la LA BN
V. v — =V — =] V—o0gV ,
r P 2 2% (1.17)

(v - V)v* + 0,p = vAV®,

1 1
—0-(rv") + —99v? + 9,07 =0,
r r

where we have used the notations

r ve Z

(v V) =0, + —dp + v, (118)
2 1 1 2 2

A= 07+ by + 0 + 07, (1.19)
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Moreover, we also impose on v the same boundary conditions as (1.3), that is,

V'R, 0,2) = vi(R;,0,2) =0 (j=1,2), }

W (R1,0,2) = Riwi, v’ ([R2,0,2) = Rowa, (1.20)

with some w;, wy € R.

For the general case, under similar assumptions to (1.7) and (1.8), we have the following
Liouville-type theorem for (dyv, dgp) which shows axial symmetry of the solutions to
(1.17).

THEOREM 1.2. Let (v, p) be a smooth solution of (1.17) in §2 with the boundary conditions
(1.20). There exists a constant C2(v, Ry, R2) > 0 such that if w1, w> and ||v|| L satisfy

max{Ri|w1], R2|w2[} < C2(v, Ry, R2) (1.21)

and
lvllLe(2) < C2(v, Ry, R2), (1.22)

respectively, then it holds that dpv =0 and dgp =0 in 2, that is, (v,p) is axially
symmetric.

Remark 1.2. From the proof of theorem 1.2, we may take the constant C>(v, R, R>) as

-1
C 3C
C(v,R1,Ry) =v (\/ Cp (2 + R_;)) + —P) , (1.23)
1

2R

where Cp := Ry(Ry — R1)2 /Ry 72, We should emphasize that any assumption on
smallness of the pressure p of (1.17) is redundant.

Combining theorems 1.1 and 1.2, we immediately reach the following Liouville-type
theorem for the general case.

COROLLARY 1.3. Let (v,p) be a smooth solution of (1.17) in £ with the
boundary conditions (1.20). Let Ci(v,Ri,Ry) and Cy(v,R1,Ry) be the same
constants as in theorems 1.1 and 1.2, respectively. We set Cyi(v,Ry,Ry) =
min{C (v, R1, R2), C2(v, Ry, Ry)}. Suppose that (v, p) is a smooth solution of (1.17) in
§2 with the boundary conditions (1.20). If w1, wy and v satisfy

max{Ri|w1], Ra|wz[} < Ci(v, Ry, R2) (1.24)

and
lvllL=@2) < Cx(v, Ry, R2), (1.25)

respectively, then (v,p) is axially symmetric and coincides with the generalized
Taylor—Couette—Poiseuille flow given by (1.9). In particular, if p is bounded or periodic in
z, then v is necessarily the canonical Taylor—Couette flow (1.4).

Remark 1.3. It is easy to see that the generalized Taylor—Couette—Poiseuille flow (1.9) is
also a solution of the Stokes equations in £2 with the same boundary condition (1.3). Hence
without any assumption on smallness of ||v||; () as in (1.7) it holds that any bounded
smooth solution v of the Stokes equations uniquely coincides with the generalized
Taylor—Couette—Poiseuille flow (1.9) . In particular, if the pressure p is bounded or periodic
in z, then v is necessarily the canonical Taylor—Couette flow (1.4). This may be regarded
as the Liouville-type theorem on the Stokes equations.
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2. Preliminaries
In what follows, C denotes generic constants which may change from line to line. Also,
the operators V, ; and V, g ; stand for V, . f(r,z) = (3,f, 0;f)(r,z) and V, ¢ . f(r, 6, 2) =

(0,f, 0af, 0.f)(r, 0, 2), respectively.

We first state the boundedness of derivatives of solutions. This can be proved in the
same way as in Bang et al. (2023, lemma 2.3) in which the three-dimensional slab domain
is treated, since all estimates in the proof are local and do not depend on the shape of 2.

LEMMA 2.1. Let (v, p) be a smooth solution of the Navier-Stokes equations (1.1) in §2

with the boundary conditions (1.3). Assume that v is bounded. Then, V, g ;v, Vi 9.2V and
V0.0 are also bounded.
Next, we prepare the test function used in this paper. Let L > 1 and define
1 (Iz] <L =1,
oL@ = yL—1zl (L—-1=<lz =D, 2.1)
0 (Jz| > L).
Also, we put
Yr={xe|L-1<|z] <L} (2.2)

Note that suppd,¢r C Xp.
Finally, we prove a Poincaré-type inequality for the » direction in £2 and X, which will
be used for d,v and dgv.

LEMMA 22. Let f =f(r,0,z) be a smooth function on 2 satisfying the boundary
conditionf(R;,0,2) =0(j=1,2). Let L > 1. Then, we have

IfVeLlzp < VCrI0f oLl 2y, (2.3)

where D denotes §2 or Xy and

_ Ry(Ry — Ry)?

c
P RlT[z

(2.4)

Proof. When D = 2, using cylindrical coordinates and applying the Poincaré inequality
in the r direction, we calculate

21
Ty = [ [ 1P

21
<k [ [T U (000
i |

(R2 — Ry)? 2 )
5&—77—Rw 19cf 172 g, ) #L(2) 46 dz

Ry(Ry — Ry)? 2 2
5—7ﬁr—éﬂnwﬁmwmm@ww

= Crllf VoLl 2 o) (2.5)
The case D = X can be proved in completely the same way.
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3. Proof of theorem 1.1

Let us prove theorem 1.1. Assume that (v, p) is an axially symmetric smooth solution of
(1.2) in £2. Following the argument of Bang et al. (2023), we first show

0,v =0. 3.1
To this end, we differentiate (1.2) with respect to z and obtain

2 08 0
(0,078, + 0,050 + (V) + v%9.).0" — 020

+ 9;0,p
1 1
=V (334—;8;«4-822— r—2) azvr’

0 r r 0
v’o,v" + v'o,v
(azvrar 3sz3z)v9 + (Urar + Uzaz)azve =+ e S

(3.2)
=v (3,2 + =9, + 07 — —2) 907,
(3,073, + 3,079V + (V79, + v79,) v + 2p = v (a} + }a, - azz) 9,7,
3:0,0" + BZ:r + 8207 = 0.
Moreover, we have the boundary conditions for 0,v:
v(R;,2) =0 (j=1,2). (3.3)

Let L > 1 and take the test function ¢; and the region Xy defined by (2.1) and (2.2),
respectively. We multiply the equations of v, v?, 7 in (3.2) by 9,v"¢r(2), 8Zv9<pL(z),
d,v%¢r.(2), respectively, and sum them and integrate them over §2. Then, we have the
integral identity

I=H+I+1V+V. (3.4)

Here, I = I" + I 4 I¥ is the sum related to the viscous terms of the right-hand side of
(3.2) defined by

1 1
"= v/ (af + 0+ 97 — 72) v vl dx  (A=r,0), (3.5)
2

1
F=v / (arz + 0+ af) 3,079, v%pL(2) dx. (3.6)
2
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Terms 11, III and IV are related to the nonlinear terms of the left-hand side of (3.2) defined
by

n= % =3’ f (3,073, + 3,v°8;) v' 9,01 (2) dx, 3.7)
A=r.0.z A=r.0,77%

m= > =Yy / (079, + v°0,) 00001 () do, 3.8)
A=r.0.z A=r0,27%

0 0 [% r r 0
) 0 )
=2 f VO (@) dx + / COy YOy v (2) dx
2 T Q r

1
= / - (v’azvf’ — vgazvr) 3.0 g1 (2) dx, (3.9)
2

r

respectively. Finally, term V is the sum related to the pressure terms of (3.2) defined by
V= / (8:8,p0,0" + 37pd. 1)L (2) dx. (3.10)
2

First, we compute the viscous terms /. For A = r, 0, integration by parts with noting that
7% 4 (1/r)d,) = 8,(rd,) implies

1 1
"= v/ (arz + =8, 482 — —2) 9,040, v1 01 (z) dx
Q r r
Re 22 2,22 |9, |?
= —2mv 10-0:07|” + [0;v° " + ——5— | ¢r(2)rdrdz
R JR, r
Ry
— 27y / / 9209019, (z)r drdz
R JR
=1} + 1. (3.11)
In the same way, for I?, we have
Z 2 1 2 z z
FrF=v 0, + =0, + 07 | 9;v°0;v L (z) dx
i} r

Ry
= —2m/ (18,001 + 1820 M)er(2)r drdz

R JR;
Ry
— 27y / angaszaz<pL(z)r drdz
R JR;
=1+ (3.12)
Now, for a later purpose, we express the sum of good terms by Y (L):

Y(L) == (] + 1) + I)

= v [ 19:0:0V/@Ll 2 ) + 1970/0L N2y + D IIF 00" Vel fa g | - (313)
A=r,0
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We remark that the definition of ¢z (z) (see (2.1)) implies

Y'(L) = v | 13,0007, + 13701725, + 2 I 90 75, | - (3.14)
A=r,0

By using this Y(L), term / can be written as

I=-Y(h+ Y I (3.15)
A=r0,z

Let us estimate the remainder terms I; for A =r, 6, z. Since 3,v' € L°(£2) by lemma 2.1
and | X7 | < C with some constant C independent of L, we estimate

113 < ClOZv 22 100 1 25,y < CllOZvI2(x,) < CVY'(D), (3.16)

where the constant C is independent of L.
Next, we consider the nonlinear term //. By integration by parts and the divergence-free

condition 9, (rd,v") + 9,(rd,v*) = 0, terms II' for A = r, 0, z are written as

Ry
I = —2x / (0,079, + 0.v°0,)d.v v e (2)rdrdz

R JR,
Ry
—2x / 3.v*v0, 00,01 ()r drdz
R JR

= [ +II3. (3.17)
The Holder inequality implies
| < 100" oLl 2 () 10:0:0 oLl 12 10| 220 (2

+ 10:0° Ll 202 1070 /2Ll 202 10120 (2) - (3.18)

Moreover, by noting the boundary condition (3.3) and applying lemma 2.2, we further
estimate

|Hfl| < vl 2)v Cr119,0:v" oLl ) ||3razv/l\/ oLl
+ 119r0:0° Ll 2 () 1020 VLI 2 2))- (3.19)
Hence, to term /1y := II] + Hf + II%, we apply the Schwarz inequality to conclude

1
] = Iolie@V/Cr | 21000 VBLlB gy + 5 3 18,80 VLl g

A=r0,z
1
+ 20000 oLl 720y + 5 D 1020 VRL g |- (3.20)

A=r,0,z

Note that the terms in parentheses are members of Y (L). Similarly to (3.16) we have by
lemma 2.1 that
19:0l1 225, < 190l Zel? < C, (3.21)

with the constant C independent of L. Hence, applying the Poincare inequality in X7 with
the aid of (3.3) to the estimate for term /I := II; + Ilg + II%, we have by the Holder
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inequality that

| < Cl3.v)172 5 IVlle(2) < ClO-:2l12(5,, < CVY'(L). (3.22)

(XL) |
Let us estimate term III. For 1 = r, 0, z, we write III' as

It =2n Rz(u’a + v%9,) l|a v!? drd 3.23
= r 2\ 1% pL(z)rdrdz. (3.23)
R JR;

Since the divergence-free condition means that 9,(rv") + 9,(rv?) = 0, we have by
integration by parts with the aid of (3.3) that

Ry
't = —xn / / V3301 (2)| 0,0 ?rdrdz. (3.24)
R JR;

Then, in the same way as for term /I, we obtain

[ < Cll9,8: 0125, = CVY(L). (3.25)

The remaining nonlinear term /V can be treated similarly to /. Indeed, using the Holder
inequality and lemma 2.2, we have

V] < 17 00" oLl 2 19207 VerLll 2 o 10 (2
+ 17 00 oLl 2 19:0° VoLl 2 10l (2
< Il Crllr 0.0 VoLl 2@y + I ' 0:0" VoLl )
x 18,9:0° /oLl 12(0)

< Ivllee2)v/ Cp

1 _
|3 Y I 0 oLl ) + 10,00 VoLl o g | - (3.26)
A=r,0

We again note that the terms in parentheses are members of Y (L).
Finally, we estimate the pressure term V. Since the divergence-free condition yields
ar(rozv") + 9;(ro;v*) = 0, we have by integration by parts with (3.3) that

Ry
V=2n / (8,8,p3,0" + 32pd.v9)gr(2)r drdz
R JR;

=—// dep0;v°0. 01 (2)r drdz. (3.27)
R JR,

By 9d,p € L*°(£2), which follows from lemma 2.1, |¥X;| < C with some constant C
independent of L and lemma 2.2, we obtain
VI < Clopllr2s ) 10z01l 25,y < Cllrdzvll2(x,) < CVY'(L). (3.28)

Putting the estimates (3.15)—(3.26) and (3.28) together into the original integral identity
(3.4), we have
vCp
v

2
Y(L) < vllzoe(2) Y (L) + CyY'(L). (3.29)

Therefore, putting C1 (v, Ry, Ry) := v/24/Cp and using the assumption (1.8) on || v]| 1 (),
we see that the first term on the right-hand side can be absorbed to the left-hand side.
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Hence, we conclude
Y(L) < CVY'(L). (3.30)

Note that the constant C on the right-hand side is independent of L.
The differential inequality (3.30) enables us to reach the first goal (3.1). Indeed, by (3.30)
it holds that

Y(L)=0 forallL> I. (3.31)

Suppose the contrary. Then there exists some Ly > 1 such that Y (Lg) > 0. Since Y (L) is
a non-decreasing function of L, we have Y(L) > 0O for all L > Lgy. Thus, from (3.30), we
deduce for L > L that

1 <C?Y(L)7?Y'(L) = C*(=Y(L)7YY. (3.32)
Integrating it over [Lg, L] leads to
L—Ly<CH-YL) '+ YLy < CPrLo)". (3.33)

However, letting L be sufficiently large, we reach a contradiction to conclude that Y(L) = 0
for all L > 1. Now, we have that V, ;d,v = 0, which means that the function d,v is a
constant vector. Combining this with the boundary condition (3.3) implies that d,v = 0.
Thus, we have (3.1).

Finally, we show that the solution (v, p) has the form described in the statement of the
theorem. First, by d,v = 0 and the divergence-free condition, we have

r

r v 1 r
90+ — = =0,(rv") =0, (3.34)
r r

which shows 9,(rv”) = 0, that is, rv” is a constant. However, the boundary condition
v” = 0 on 9£2 again implies v" = 0.
Going back to the system (3.2), we have

3:0,p = 32p =0, (3.35)
which implies that 9,p = a with some constant a € R. Integrating it gives
p(r,z) = az+ h(r), (3.36)

with some smooth function A(r).

We further go back to the original system (1.2) and determine v?, v? and A(r). First, by
noting that v” = 0 and v is independent of z, the second equation of (1.2) yields that v? is
subject to the equation

2 1 1Y s
0y + -0 — = v’ =0. (3.37)
r r
This is the Euler—Cauchy equation and we find the general solution of the form
9 B
v =Ar+ —. (3.38)
r
The boundary condition gives
0 B
Rowy = v’ (Ry) = AR, + 2 (3.39)
2
9 B
R1a)1 =7V (Rl) :ARI + R_ (340)
1
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Solving this, we determine the constants A, B and obtain

_ Koy —Rjo; R (—ox+op) 1

6
R; — R} R; — Ry r

Next, from the third equation of (1.2) and the formula (3.36), we have the equation of v*:

2 1 z
v| o+ ;Br v =a, (3.42)
that is,
1
o, (ropv) = = (3.43)
r Vv
This implies
P (r) = D+ — 12, (3.44)
2v

with some constant D. Integrating it over [R;, r] and using the boundary condition
v¥(R1) = 0 by (1.3), we have

vi(r) = Dlog — + (2 — R). (3.45)
g Ry 4 !

From the boundary condition v?(Ry) = 0 by (1.3), the constant D is determined as

R2 _ R2
— _i#’ (3.46)
4v 10g Rz/Rl
Thus, we conclude that
R: - R?
)= PRy - 2T g T (3.47)
4y log(R2/R1) ~ Ry
Finally, from the first equation of (1.2), we deduce
612
O L p =0, (3.48)
This and the formulas (3.36) and (3.41) lead to
2
) = 1 R%a)z — R%a)] R%R%(—a)z + a)])l
r R% — R% R% — R% r
2

(R%a)z — R%a)l ZR%R%(—CI)Q + a)l)(R%wz —Riwy) 1

= 2 2 r+ 2 22 -

Ry — Ry (R, —RY) r

RZRZ(—a)z + wi) 2 1
+ 25— =. (3.49)
R5 — Rj r
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Integrating it, we have

2
Riwr —Rio1\ 5, 2RIR3(—w) + 0) (R0, — Riw)) |
N\ ) 7t o

1
h(ry=>b+ =
) ( B’ R K2

2
B l (R%R%(—a)z +a)1)> 1

2 R} — R 2’ (3-30)

with some constant b € R, that is, the pressure is given by

2
1 (R%a)g - R%a)l) ,  2RRA(—w) + w1)(Rwy — Riwy)
5 S Db I logr

p(r,2) =az+b+ =
R} — R} (R} — R})?

(3.51)

2
1 (R%Rg(—wz +a)1)) 1

2 R} —R? 2

Rewriting (3.41), (3.47) and (3.51) by using u and 5 defined by (1.5a,b) completes the
proof of theorem 1.1.

4. Proof of theorem 1.2

Let us prove theorem 1.2. Assume that (v, p) is a smooth solution to (1.17). We differentiate
(1.17) with respect to 6 to obtain

207 907

(Bpv - VIV + (v V)dpv" — + 09 0,p

1 2
=V (A - ﬁ) 89Ur - vr—2892v9,

v 3gv? +v%950"

1
6 6 12
(v - V)V" + (v - V)Ipv” + +20p @.1)

1 2
=y (A — ﬁ) dgv? + vr—2892v’,

(9gv « VIV + (v - V)3gv® + 390,p = vAdyVL,

1 1
~3,(rdgv") + —05v7 + 8,89v° = 0.
r r

Here, we recall that the operators (v-V) and A are defined by (1.18) and (1.19),
respectively. We also have the boundary conditions

V(R;,0,2) =0 (j=1,2). 4.2)

Let L > 1 and take the test function ¢y (z) and the region X defined by (2.1) and (2.2),
respectively. Similarly to the previous section, we multiply the equations of v, v?, v* in
(4.1) by 9pv"0r(2), 89v9¢L(z), dpvier (2), respectively, and sum up and integrate them
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over 2. As a result, we have the integral identity

I=10+1I+1V+V. 4.3)
Here, I = I" + I? 4 I¥ is the sum of the viscous term defined by
1 2
I = v/ [(A - —2) dpv"dpv" — = 051" 0 v’] or(2) dx, (4.4)
0 r r
0 1 90 6, 2.2 r0 9
I =v A — = 0gv’ 0gv’ + —28911 dpv” | @r(z) dx, 4.5)
0 r r
I = v/ Adgv*dgvier(z) dx. (4.6)
o}
Also, 11, Il and 1V are the nonlinear terms defined by
n= > 1= > / (3pv + V)v'99v'er(2) dx, 4.7
A=r.0.2 A=r.0.z" %
m= Y mt= Y / (v - V)dgv'dpv'er () dx, (4.8)
A=r,0,z A=r,0,z $2
2 08 0 9 [% 08 r
1V = / (— v oY v + v OpvT v 09 89v9> ¢r(z)dx
0 r r
1
= f — (" 9pv? — v?3pv )31 91 (2) dux. (4.9)
Qr

Finally, V is the sum of the pressure terms defined by
1
V= / (898rp39vr + ;agpa@vg + aeazpang) o1(2) dx. (4.10)
Q2

First, we consider term /. By integration by parts with the aid of the boundary condition
dgv(R;, 0,z) = 0 forj =1, 2, we infer that

1 1 2
r+1° = —v/ [|3ragv’|2 + 1050712 + 10:090" > + — 090" + S 0507 890"
Q r r r
1 1 2
+ 10,990 1 + = 1050712 + 10:090° > + — 19907 > — —23921;’39129} oL(2) dx
I T I
— l)/ (0,09v"3gv" + 9,09 veagvg)azﬁoL(Z) dx
2
= —v/ [|a,aev*|2 + 1:0pv"1* + 19,0007 |* + 0:090° |2
2

1 1
+ 51050 + v + 970" - aevﬂ ¢L(2) dx

- v/ (3:99v"Bpv" + 8,09v” 39v”) 3,1, (2) dx
2

=1’ + 1’ (4.11)
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and

IF = v/ Adgv*dgver(z) dx
2
= —V/ |:|8 dv°|? + |39U 12 + 19,09 v°] :|¢L(Z)dx
2

— vf 0,09 v 0pv°0,¢r (z) dx
2

— F+ L. (4.12)
Similarly to the previous section, we define
. .0
Y(L) = -7 + 1)
2

L2(2)

) . (4.13)
L2(£2)

1
=v <||araev\/_m|§z(m + 1192000 /9L1 72 ) + H ;(aév‘) + V") /oL

| 2
+ ”;(8§vr — 3pv") /oL + H —32v /oL

L2(2)
We remark that the definition of ¢ (z) (see (2.1)) implies

Y'(L) = v (uaraevuiz(m + 1192000175, 5,

1 2 1 2 1 2
+ H-@gv@ + dpv") — (330" — 3g0?) —32v° .
r 12(%)) r L2(Zy) r L2(Z1)
4.14)
Using the above Y (L), we have
=YW+ 1" + L (4.15)

Since | X | =27 (R% - R%) is independent of L, it follows from the the Schwarz inequality
and lemma 2.1 that the remainder term /5 is estimated as

151 = vl19:00v° (1125, 190"l 25

A

< VIVl | 2212 119:80 01l 25,

A

C||8189v||L2(2L)

< CVY'(L), (4.16)

with some constant C > 0 independent of L. Similarly, it is easy to see that I;*G has the

same bound:
157 < cVY' (). @.17)

We next estimate the nonlinear term /I. For A = r, 6, z, integration by parts and the
divergence-free condition imply

I =— / (8pv - V)dgv*vter (z) dx — / dpvvtdgva, oL (z) dx
2 2
=: I + 113, (4.18)
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By the Holder inequality, term /1 f is estimated as

| < 1196v" /oLl 2 () 19-00v VoLl 2 1V 12 (2

921
+ 1000 VorLlae) | =L o]l )
L2(2)
+ [[9pv*y/ <PL||L2(Q) 119296 U/l«/ (PL||L2(_Q) v]lzoo(2)- (4.19)
Let us further estimate the right-hand side. From lemma 2.2, we obtain for « = r, 9, z that
196V oLl 2(2) < vV CPI3-39v" /oLl 12(2)- (4.20)

Moreover, for the term || (892v’1/r) ) /(pL”LZ(Q)a by lemma 2.2, we have, for the case 4 = r,

92v" 1
N Jv" — dpv?) /oL + H—BOUQWPL
12(2) L2(82) r [2(£2)
1 Cp
= H —(95v" — 9v”) oL + 10,000 oLl 2 () (4.21)
r LZ(Q) Rl

and for the case 4 = 0,

920

YL + _”a a@v Q/@L”LZ(Q)- (422)

LZ(Q) R]

1
;(agv‘) + 99v") oL

L2(2)

Therefore, combining (4.19)—(4.22), and applying the Schwarz inequality, we deduce

| < ”v”LOO(_Q)\/CP{
r| < DAEE@VEP
2

2Cp
2||8r89vr\/ QOLH%Z(_Q) + (1 + ) ”8 891) vV (/)L”Lz(g)
1

1 2
+ 118,00 v° /0Ll 2 ) +2 H —(05v" = a0 ) Ve 4 ||azaev&/_m||iz(m} :

L2(£2)
4.23)
0]l (2)v/Cp
| = ==t (1 R— 10,96V /FLI22 ) + 201-060° VPLI 2 )
1
2 1 2 ? 2
+ ||3r 39UZ\/ @L”LZ(Q) + 2 H ;(80 v9 + arve)\/ L 5 + ”azaeve\/ @L”L2(Q) ,
L2(2)
4.24)
lv]loe(2)v/ Cp
| < == 10,06V DLl 2 ) + 18:06v” VLI g
1 2
+ 208,00 v° /oL 72 ) + H RN e 2 VLl - (425)
L=(£2)
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Finally, adding the above estimates, we conclude that term 111 := II] + Hf + I satisfies
the estimate

Cn
L] < ||v||L°°(.Q)TY(L)a (4.26)
with

Cuy:=+/Cp (2 + %) . (4.27)

1

By lemma 2.1 and the Poincdre inequality in X7, we see that the remainder term II; can
be estimated as

5] < 1900172, 5, 10112 (5,
< 1990l | ZLl 2 vllz2) 106125,
< Cl19r9p vl 125,
= CVY'(D), (4.28)

for A =r, 6, z, where C is a constant independent of L.
Thirdly, we consider the nonlinear term //I. Integration by parts and the divergence-free
condition lead to

1 1
' = f - V) (510" ) (@) dx = — / vdev!Popr () dy,  (429)
o 2 2Je

for A = r, 6, z. Moreover, similarly to (4.28) we have that

1] < Cllagols 5, vz, < CVY(D), (4.30)

for A =r,0,z where C is a constant independent of L. Next, we treat the remaining
nonlinear term /V. By lemma 2.2 and the Schwarz inequality, we have

1IV] < Ry 180V oLl 20y + 1060 VLl 2(2))

x [180v° orll 2 () VIl (2)
Cp 1 r 2 3 0 2
< ||'J||L°<>(:2>I.‘,—1 EHaraGU VoLl o)+ Ellaraev VoLl g

Crv
< ||v||L°°(.(2)TY(L), (4.31)

where
3Cp
Cy = —. 4.32
W= o (4.32)
Finally, we estimate the pressure terms V. Integration by parts and the divergence-free
condition lead to

V= —/ 09p0Ogv° 0,01 (z) dx. (4.33)
2
Therefore, from lemma 2.1 and the Poincére inequality in X, we obtain
VI < Clldapli 2z, 196v°ll 125,y < CllO-0pv7NI12(5,) < CVY'(L). (4.34)
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Now we put the estimates (4.15), (4.16), (4.17), (4.26), (4.28), (4.30), (4.31) and (4.34)
together into (4.3) and conclude that

Cy+C
Y(L) < ||v| mm%nm + VY (L). (4.35)
We define
cy+cyl!
C2(v.R1, Ry) := [M} . (4.36)
V

Then, by the assumption ||v||z~(2) < C2(v, R1, R2), we reach the differential inequality

Y(L) < CVY'(L). (4.37)

Therefore, with completely the same argument as in the previous section, we have
Y(L) =0 for all L > 1. This implies that 9,dpv = 0, that is, dypv is independent of
r € [Ry, Rz]. However, the boundary condition requires dyv(R;, 0,2) =0 (j =1, 2) for
any (0, z) € [0, 2w] x R. Thus, d9v must be identically zero. Then, by (4.1), we see that
0r-0pp = agp = d;09p = 0, thatis, dgp = c in §2 with some constant ¢ € R. However, since
p must be periodic in 6, we conclude ¢ = 0, that is, dgp = 0. This completes the proof of
theorem 1.2.
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