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We study the stationary Navier–Stokes equations in the region between two rotating
concentric cylinders. We first prove that, for a small Reynolds number, if the fluid flow is
axisymmetric and if its velocity is sufficiently small in the L∞-norm, then it is necessarily
the Taylor–Couette–Poiseuille flow. If, in addition, the associated pressure is bounded or
periodic in the z axis, then it coincides with the well-known canonical Taylor–Couette flow.
We discuss the relation between uniqueness and stability of such a flow in terms of the
Taylor number in the case of narrow gap of two cylinders. The investigation in comparison
with two Reynolds numbers based on inner and outer cylinder rotational velocities is also
conducted. Next, we give a certain bound of the Reynolds number and the L∞-norm of the
velocity such that the fluid is, indeed, necessarily axisymmetric. As a result, it is clarified
that smallness of Reynolds number of the fluid in the two rotating concentric cylinders
governs both axisymmetry and the Taylor–Couette–Poiseuille flow with the exact form of
the pressure.
Key words: Taylor–Couette flow, Navier–Stokes equations

1. Introduction
This paper concerns the three-dimensional stationary incompressible Navier–Stokes
equations

v · ∇v + p = νΔv,

∇ · v = 0,

}
(1.1)
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where v = v(x) = (v1(x), v2(x), v3(x)) is the velocity vector, p = p(x) denotes the scalar
pressure and ν > 0 is the viscosity constant. For the Navier–Stokes equations (1.1) in the
whole space R

3, it has been an open problem whether v ≡ 0 is the only solution under
the conditions that v has finite Dirichlet integral and vanishes at spatial infinity (see Galdi
2011, remark X.9.4). Seregin (2018) reformulated the problem in such a way that any
bounded solution v must be constant. There are many partial answers to this problem and,
for instance, we refer readers to Carrillo, Pan & Zhang (2020), Chae (2014), Chae & Wolf
(2016), Chamorro, Jarrín & Lemarié-Rieusset (2021), Koch et al. (2009) and Kozono,
Terasawa & Wakasugi (2017) and references therein.

Recently, the Liouville-type theorems in non-compact domains in R
3 have also been

studied. Carrillo et al. (2020) showed that a smooth solution with the finite Dirichlet
integral to the Navier–Stokes equations (1.1) in a slab domain R

2 × [0, 1] with the no-slip
boundary condition must be zero. Among other results, they also treated the axially
symmetric case with the periodic boundary condition and proved the Liouville-type result
under the finite Dirichlet integral. The assumption of the finite Dirichlet integral was
relaxed by Tsai (2021) and Bang et al. (2023). In particular, Bang et al. (2023) obtained
the Liouville-type theorem on the Poiseuille flow of the Navier–Stokes equations (1.1)
in a slab domain R

2 × [0, 1] with no-slip boundary condition. Indeed, they showed that
if (v, p) is a smooth solution satisfying ‖v‖L∞ < π, then v must be the Poiseuille flow
like v = (ax3(1 − x3), bx3(1 − x3), 0) with some constants a, b ∈ R. Their result may be
regarded as the generalized Liouville-type theorem on non-trivial flow.

Motivated by these results, we have reached a natural question as to whether
Liouville-type theorems hold for other non-trivial exact solutions of the Navier–Stokes
equations. In this paper, we study the Liouville-type theorem on the Taylor–Couette–
Poiseuille flow in a region between two rotating concentric cylinders. We also compare our
mathematical uniqueness result with stability in the fluid mechanics in terms of Reynolds
number and Taylor number in the case when the ratio of the radii of the two cylinders is
sufficiently close to one.

1.1. Axially symmetric case

Let 0 < R1 < R2 be constants and letΩ = {(x1, x2, x3) ∈ R
3; R1 <

√
x2

1 + x2
2 < R2}, that

is, a region between two concentric cylinders. In Ω , we consider the axially symmetric
incompressible stationary Navier–Stokes equations in cylindrical coordinates:

(vr∂r + vz∂z)v
r − (vθ )2

r
+ ∂rp = ν

(
∂2

r + 1
r
∂r + ∂2

z − 1
r2

)
vr,

(vr∂r + vz∂z)v
θ + vrvθ

r
= ν

(
∂2

r + 1
r
∂r + ∂2

z − 1
r2

)
vθ ,

(vr∂r + vz∂z)v
z + ∂zp = ν

(
∂2

r + 1
r
∂r + ∂2

z

)
vz,

1
r
∂r(rvr)+ ∂zv

z = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.2)

where r ∈ (R1,R2), z ∈ R, v = v(r, z) = vrer + vθeθ + vzez with er = (cos θ, sin θ, 0),
eθ = (− sin θ, cos θ, 0), ez = (0, 0, 1) denoting the basis of the cylindrical coordinate and
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p = p(r, z). Moreover, we impose on v the boundary conditions

vr(Rj, z) = vz(Rj, z) = 0 ( j = 1, 2),
vθ (R1, z) = R1ω1, vθ (R2, z) = R2ω2,

}
(1.3)

with some ω1, ω2 ∈ R, that is, the inner and outer cylinders rotate with angular velocities
ω1 and ω2, respectively.

It is well known that there exists an exact solution to (1.2) called the Taylor–Couette
flow:

v = (0, vθ , 0) with vθ = Ar + B
1
r
, (1.4)

where

A =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
μ− η2

1 − η2 ω1, ω1 /= 0,

1
1 − η2ω2, ω1 = 0,

B =

⎧⎪⎪⎨
⎪⎪⎩

1 − μ

1 − η2ω1R2
1, ω1 /= 0,

− 1
1 − η2ω2R2

1, ω1 = 0,
(1.5a,b)

with non-dimensional quantities μ and η given by

μ = ω2

ω1
for ω1 /= 0, η = R1

R2
. (1.6a,b)

It is also known that the Taylor–Couette flow is stable if ω1 is sufficiently small. However,
if ω1 exceeds a certain critical value, then the Taylor–Couette flow becomes unstable and
a fluid motion called the Taylor vortex appears (see e.g. Kirchgässner & Sorger 1969;
Chossat & Iooss 1994). For a recent result on the compressible fluid motion, we refer to
Kagei & Teramoto (2020).

In this paper, we show a Liouville-type theorem on the more generalized
Taylor–Couette–Poiseuille flow including (1.4), provided that the velocity is not too large.
Although the Taylor–Couette–Poiseuille flow below (equation (1.9)) is not altogether new
(see e.g. Ma & Wang 2009; Guy Raguin & Georgiadis 2024), our derivation itself seems
to be new, because it is obtained from the fact that ∂zv ≡ 0. The first main theorem reads
as follows.

THEOREM 1.1. Let (v, p) be an axially symmetric smooth solution of (1.2) in Ω with the
boundary conditions (1.3). There exists a constant C1(ν,R1,R2) > 0 such that if ω1, ω2
and ‖v‖L∞ satisfy

max{R1|ω1|,R2|ω2|} < C1(ν,R1,R2) (1.7)

and
‖v‖L∞(Ω) < C1(ν,R1,R2), (1.8)

respectively, then (v, p) must be the generalized Taylor–Couette–Poiseuille flow:

vr ≡ 0,

vθ = Ar + B
1
r
,

vz = a
4ν

R2
1

[(
r

R1

)2

− 1 + 1 − η2

η2 log η
log

(
r

R1

)]
,

p = az + b + A2

2
r2 + 2AB log r − B2

2
1
r2 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.9)
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with some constants a, b ∈ R, where the constants A and B are the same as in (1.5a,b). In
particular, if the pressure p is bounded or periodic in z, then the constant a in (1.9) must
be zero, and hence we have vz ≡ 0, which means that v coincides with the well-known
canonical Taylor–Couette flow given by (1.4).

Remark 1.1. (i) Since the boundary condition (1.3) implies max{R1|ω1|,R2|ω2|} ≤
‖v‖L∞ , the condition (1.7) is necessary for (1.8).

(ii) From the proof of theorem 1.1, we may take C1(ν,R1,R2) as

C1(ν,R1,R2) = ν

2
√

CP
, (1.10)

where CP := R2(R2 − R1)
2/R1π

2 is related to the Poincaré inequality. This implies
that if the viscosity ν is large in comparison with the radii R1 and R2, then the fluid
motion remains as laminar flow, i.e. the generalized Taylor–Couette–Poiseuille flow
(1.9). It should be noted that our assumptions (1.7) and (1.8) do not need to impose
any smallness on the pressure p of (1.2).

(iii) Taylor (1923) introduced a Taylor number Ta in a thin gap η ≈ 1 defined by

Ta ≡ −2Aω1R4
2

ν2 (1 − η)4(1 + μ). (1.11)

There is a critical value Tac such that if Ta < Tac, then the Taylor–Couette flow (1.4)
is stable. For simplicity, we consider the case when ω2 = 0, i.e. μ = 0. Then it holds
that

Ta = 2
ν2ω

2
1R4

2
η2

1 + η
(1 − η)3 = 2

ν2 R2
2(R1ω1)

2 1
1 + η

(1 − η)3. (1.12)

By (1.7) and (1.10) we have

Ta <
π2

2
η

1 + η
(1 − η). (1.13)

Hence it follows from theorem 1.1 that under hypotheses of (1.13) and (1.8), the
Taylor–Couette–Poiseuille flow (1.9) is the unique solution of (1.2) with (1.3). On the
other hand, Taylor (1923) showed that Tac = 1708, from which the Taylor–Couette
flow (1.4) is stable under the condition that

Ta < 1708. (1.14)

In comparison with (1.13) and (1.14), our uniqueness result seems to be quite
restrictive from the viewpoint of the Taylor number Ta. However, we should
emphasize that uniqueness of solutions necessarily requires more restrictive
conditions than those of stability.

(iv) In the non-dimensional form of the (1.2), the Reynolds numbers Rej are defined by

Rej = Rjωj(R2 − R1)

ν
( j = 1, 2). (1.15)

Then, (1.10) implies that the assumption (1.7) is written as

max{Re1,Re2} < R2 − R1

ν
C1(ν,R1,R2) = π

√
R1

2
√

R2
= π

2
√
η. (1.16)

Namely, theorem 1.1 implies that if the Reynolds numbers of the inner and outer
cylinders and the velocity are bounded by a certain constant determined only
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by means of radii R1 and R2, then the axisymmetric flow must be necessarily
the generalized Taylor–Couette–Poiseuille flow (1.9). Matsukawa & Tsukahara
(2022) performed direct numerical simulation for η = 0.833, and showed that in
the set (Re1,Re2) = (400,−1000), the Taylor–Couette–Poiseuille flow becomes
turbulent. For such an η, we have π

2
√
η = 1.476 and, hence, under the hypothesis

max{Re1,Re2} < 1.476 with (1.8) the Taylor–Couette–Poiseuille flow (1.9) is the
unique solution of (1.2) with (1.3). Since our result is on uniqueness of solutions, it
may be reasonable that the Reynolds numbers are by far the smaller in comparison
with occurrence of instability.

(v) Kagei & Nishida (2015) and Kagei & Nishida (2019) investigated the plane
Poiseuille flow for the compressible Navier–Stokes equations, and gave a
mathematical proof of its instability for Reynolds numbers much less than the critical
Reynolds number when the Mach number is suitably large.

(vi) The assumption that the pressure p is bounded or periodic in z seems physically
reasonable, and hence in a possible physical situation, the laminar axially symmetric
flow v in the two rotating concentric cylinder is necessarily the canonical
Taylor–Couette flow (1.4).

(vii) Temam (1977, ch. II, § 4) studied the uniqueness and the non-uniqueness of the
problem (1.2) in the case of ω2 = 0 provided that the flow v of (1.2) is periodic in z.
Introducing the disturbance u = (ur, uθ , uz) such that v has the form v = v0 + u
with v0 denoting the Taylor–Couette flow (1.4), he reduced such a question on
uniqueness as to whether u ≡ 0 in Ω . It was proved in Temam (1977, ch. II,
proposition 4.2) that, under smallness hypotheses of the Reynolds number, u ≡ 0
provided that (ur, uz) is written by the stream function ψ in the coordinate (r, z)
satisfying ∂rψ(r1, z) = ∂rψ(r2, z) = 0. In comparison with Temam’s result, we
remove the assumption of periodicity in z and avoid making use of such a stream
function, although we impose on v the smallness condition (1.8).

1.2. General case
Next, we treat the general case in which axial symmetry is not necessarily assumed.
Consider the same region Ω as in § 1.1, and the incompressible stationary Navier–Stokes
equations in cylindrical coordinates in Ω:

(v · ∇)vr − (vθ )2

r
+ ∂rp = ν

(
Δ − 1

r2

)
vr − ν

2
r2 ∂θv

θ ,

(v · ∇)vθ + vrvθ

r
+ 1

r
∂θp = ν

(
Δ − 1

r2

)
vθ + ν

2
r2 ∂θv

r,

(v · ∇)vz + ∂zp = νΔvz,

1
r
∂r(rvr)+ 1

r
∂θv

θ + ∂zv
z = 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.17)

where we have used the notations

(v · ∇) = vr∂r + vθ

r
∂θ + vz∂z, (1.18)

Δ = ∂2
r + 1

r
∂r + 1

r2 ∂
2
θ + ∂2

z . (1.19)
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Moreover, we also impose on v the same boundary conditions as (1.3), that is,

vr(Rj, θ, z) = vz(Rj, θ, z) = 0 ( j = 1, 2),
vθ (R1, θ, z) = R1ω1, vθ (R2, θ, z) = R2ω2,

}
(1.20)

with some ω1, ω2 ∈ R.
For the general case, under similar assumptions to (1.7) and (1.8), we have the following

Liouville-type theorem for (∂θv, ∂θp) which shows axial symmetry of the solutions to
(1.17).

THEOREM 1.2. Let (v, p) be a smooth solution of (1.17) inΩ with the boundary conditions
(1.20). There exists a constant C2(ν,R1,R2) > 0 such that if ω1, ω2 and ‖v‖L∞ satisfy

max{R1|ω1|,R2|ω2|} < C2(ν,R1,R2) (1.21)

and
‖v‖L∞(Ω) < C2(ν,R1,R2), (1.22)

respectively, then it holds that ∂θv ≡ 0 and ∂θp ≡ 0 in Ω , that is, (v, p) is axially
symmetric.

Remark 1.2. From the proof of theorem 1.2, we may take the constant C2(ν,R1,R2) as

C2(ν,R1,R2) = ν

(√
CP

(
2 + CP

R2
1

)
+ 3CP

2R1

)−1

, (1.23)

where CP := R2(R2 − R1)
2/R1π

2. We should emphasize that any assumption on
smallness of the pressure p of (1.17) is redundant.

Combining theorems 1.1 and 1.2, we immediately reach the following Liouville-type
theorem for the general case.

COROLLARY 1.3. Let (v, p) be a smooth solution of (1.17) in Ω with the
boundary conditions (1.20). Let C1(ν,R1,R2) and C2(ν,R1,R2) be the same
constants as in theorems 1.1 and 1.2, respectively. We set C∗(ν,R1,R2) ≡
min{C1(ν,R1,R2),C2(ν,R1,R2)}. Suppose that (v, p) is a smooth solution of (1.17) in
Ω with the boundary conditions (1.20). If ω1, ω2 and v satisfy

max{R1|ω1|,R2|ω2|} < C∗(ν,R1,R2) (1.24)

and
‖v‖L∞(Ω) < C∗(ν,R1,R2), (1.25)

respectively, then (v, p) is axially symmetric and coincides with the generalized
Taylor–Couette–Poiseuille flow given by (1.9). In particular, if p is bounded or periodic in
z, then v is necessarily the canonical Taylor–Couette flow (1.4).

Remark 1.3. It is easy to see that the generalized Taylor–Couette–Poiseuille flow (1.9) is
also a solution of the Stokes equations inΩ with the same boundary condition (1.3). Hence
without any assumption on smallness of ‖v‖L∞(Ω) as in (1.7) it holds that any bounded
smooth solution v of the Stokes equations uniquely coincides with the generalized
Taylor–Couette–Poiseuille flow (1.9) . In particular, if the pressure p is bounded or periodic
in z, then v is necessarily the canonical Taylor–Couette flow (1.4). This may be regarded
as the Liouville-type theorem on the Stokes equations.
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2. Preliminaries

In what follows, C denotes generic constants which may change from line to line. Also,
the operators ∇r,z and ∇r,θ,z stand for ∇r,z f (r, z) = (∂r f , ∂z f )(r, z) and ∇r,θ,z f (r, θ, z) =
(∂rf , ∂θ f , ∂z f )(r, θ, z), respectively.

We first state the boundedness of derivatives of solutions. This can be proved in the
same way as in Bang et al. (2023, lemma 2.3) in which the three-dimensional slab domain
is treated, since all estimates in the proof are local and do not depend on the shape of Ω .

LEMMA 2.1. Let (v, p) be a smooth solution of the Navier–Stokes equations (1.1) in Ω
with the boundary conditions (1.3). Assume that v is bounded. Then, ∇r,θ,zv,∇2

r,θ,zv and
∇r,θ,zp are also bounded.

Next, we prepare the test function used in this paper. Let L > 1 and define

ϕL(z) =

⎧⎪⎨
⎪⎩

1 (|z| < L − 1),
L − |z| (L − 1 ≤ |z| ≤ L),
0 (|z| > L).

(2.1)

Also, we put
ΣL = {x ∈ Ω | L − 1 ≤ |z| ≤ L}. (2.2)

Note that supp∂zϕL ⊂ ΣL.
Finally, we prove a Poincaré-type inequality for the r direction in Ω and ΣL, which will

be used for ∂zv and ∂θv.

LEMMA 2.2. Let f = f (r, θ, z) be a smooth function on Ω̄ satisfying the boundary
condition f (Rj, θ, z) = 0 ( j = 1, 2). Let L > 1. Then, we have

‖ f
√
ϕL‖L2(D) ≤

√
CP‖∂rf

√
ϕL‖L2(D), (2.3)

where D denotes Ω or ΣL and

CP = R2(R2 − R1)
2

R1π2 . (2.4)

Proof . When D = Ω , using cylindrical coordinates and applying the Poincaré inequality
in the r direction, we calculate

‖ f
√
ϕL‖2

L2(Ω)
=
∫

R

∫ 2π

0
‖ f

√
r‖2

L2(R1,R2)
ϕL(z) dθ dz

≤ R2

∫
R

∫ 2π

0
‖ f ‖2

L2(R1,R2)
ϕL(z) dθ dz

≤ R2
(R2 − R1)

2

π2

∫
R

∫ 2π

0
‖∂rf ‖2

L2(R1,R2)
ϕL(z) dθ dz

≤ R2(R2 − R1)
2

R1π2

∫
R

∫ 2π

0
‖∂rf

√
r‖2

L2(R1,R2)
ϕL(z) dθ dz

= CP‖∂rf
√
ϕL‖2

L2(Ω)
. (2.5)

The case D = ΣL can be proved in completely the same way.
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3. Proof of theorem 1.1

Let us prove theorem 1.1. Assume that (v, p) is an axially symmetric smooth solution of
(1.2) in Ω . Following the argument of Bang et al. (2023), we first show

∂zv ≡ 0. (3.1)

To this end, we differentiate (1.2) with respect to z and obtain

(∂zv
r∂r + ∂zv

z∂z)v
r + (vr∂r + vz∂z)∂zv

r − 2vθ∂zv
θ

r
+ ∂z∂rp

= ν

(
∂2

r + 1
r
∂r + ∂2

z − 1
r2

)
∂zv

r,

(∂zv
r∂r + ∂zv

z∂z)v
θ + (vr∂r + vz∂z)∂zv

θ + vθ∂zv
r + vr∂zv

θ

r

= ν

(
∂2

r + 1
r
∂r + ∂2

z − 1
r2

)
∂zv

θ ,

(∂zv
r∂r + ∂zv

z∂z)v
z + (vr∂r + vz∂z)∂zv

z + ∂2
z p = ν

(
∂2

r + 1
r
∂r + ∂2

z

)
∂zv

z,

∂z∂rv
r + ∂zv

r

r
+ ∂2

z v
z = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.2)

Moreover, we have the boundary conditions for ∂zv:

∂zv(Rj, z) = 0 ( j = 1, 2). (3.3)

Let L > 1 and take the test function ϕL and the region ΣL defined by (2.1) and (2.2),
respectively. We multiply the equations of vr, vθ , vz in (3.2) by ∂zv

rϕL(z), ∂zv
θϕL(z),

∂zv
zϕL(z), respectively, and sum them and integrate them over Ω . Then, we have the

integral identity

I = II + III + IV + V. (3.4)

Here, I = Ir + Iθ + Iz is the sum related to the viscous terms of the right-hand side of
(3.2) defined by

Iλ = ν

∫
Ω

(
∂2

r + 1
r
∂r + ∂2

z − 1
r2

)
∂zv
λ∂zv

λϕL(z) dx (λ = r, θ), (3.5)

Iz = ν

∫
Ω

(
∂2

r + 1
r
∂r + ∂2

z

)
∂zv

z∂zv
zϕL(z) dx. (3.6)
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Liouville-type theorems for Taylor–Couette–Poiseuille flow

Terms II, III and IV are related to the nonlinear terms of the left-hand side of (3.2) defined
by

II =
∑
λ=r,θ,z

IIλ =
∑
λ=r,θ,z

∫
Ω

(
∂zv

r∂r + ∂zv
z∂z
)
vλ∂zv

λϕL(z) dx, (3.7)

III =
∑
λ=r,θ,z

IIIλ =
∑
λ=r,θ,z

∫
Ω

(
vr∂r + vz∂z

)
∂zv
λ∂zv

λϕL(z) dx, (3.8)

IV = −2
∫
Ω

vθ∂zv
θ

r
∂zv

rϕL(z) dx +
∫
Ω

vθ∂zv
r + vr∂zv

θ

r
∂zv

θϕL(z) dx

=
∫
Ω

1
r

(
vr∂zv

θ − vθ∂zv
r) ∂zv

θϕL(z) dx, (3.9)

respectively. Finally, term V is the sum related to the pressure terms of (3.2) defined by

V =
∫
Ω

(∂z∂rp∂zv
r + ∂2

z p∂zv
z)ϕL(z) dx. (3.10)

First, we compute the viscous terms I. For λ = r, θ , integration by parts with noting that
r(∂2

r + (1/r)∂r) = ∂r(r∂r) implies

Iλ = ν

∫
Ω

(
∂2

r + 1
r
∂r + ∂2

z − 1
r2

)
∂zv
λ∂zv

λϕL(z) dx

= −2πν

∫
R

∫ R2

R1

(
|∂r∂zv

λ|2 + |∂2
z v
λ|2 + |∂zv

λ|2
r2

)
ϕL(z)r dr dz

− 2πν

∫
R

∫ R2

R1

∂2
z v
λ∂zv

λ∂zϕL(z)r dr dz

=: Iλ1 + Iλ2 . (3.11)

In the same way, for Iz, we have

Iz = ν

∫
Ω

(
∂2

r + 1
r
∂r + ∂2

z

)
∂zv

z∂zv
zϕL(z) dx

= −2πν

∫
R

∫ R2

R1

(|∂r∂zv
z|2 + |∂2

z v
z|2)ϕL(z)r dr dz

− 2πν

∫
R

∫ R2

R1

∂2
z v

z∂zv
z∂zϕL(z)r dr dz

=: Iz
1 + Iz

2. (3.12)

Now, for a later purpose, we express the sum of good terms by Y(L):

Y(L) := −(Ir
1 + Iθ1 + Iz

1)

= ν

⎛
⎝‖∂r∂zv

√
ϕL‖2

L2(Ω)
+ ‖∂2

z v
√
ϕL‖2

L2(Ω)
+
∑
λ=r,θ

‖r−1∂zv
λ√ϕL‖2

L2(Ω)

⎞
⎠ . (3.13)
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H. Kozono, Y. Terasawa and Y. Wakasugi

We remark that the definition of ϕL(z) (see (2.1)) implies

Y ′(L) = ν

⎛
⎝‖∂r∂zv‖2

L2(ΣL)
+ ‖∂2

z v‖2
L2(ΣL)

+
∑
λ=r,θ

‖r−1∂zv
λ‖2

L2(ΣL)

⎞
⎠ . (3.14)

By using this Y(L), term I can be written as

I = −Y(L)+
∑
λ=r,θ,z

Iλ2 . (3.15)

Let us estimate the remainder terms Iλ2 for λ = r, θ, z. Since ∂zv
λ ∈ L∞(Ω) by lemma 2.1

and |ΣL| ≤ C with some constant C independent of L, we estimate

|Iλ2 | ≤ C‖∂2
z v
λ‖L2(ΣL)

‖∂zv
λ‖L2(ΣL)

≤ C‖∂2
z v‖L2(ΣL)

≤ C
√

Y ′(L), (3.16)

where the constant C is independent of L.
Next, we consider the nonlinear term II. By integration by parts and the divergence-free

condition ∂r(r∂zv
r)+ ∂z(r∂zv

z) = 0, terms IIλ for λ = r, θ, z are written as

IIλ = −2π

∫
R

∫ R2

R1

(∂zv
r∂r + ∂zv

z∂z)∂zv
λvλϕL(z)r dr dz

− 2π

∫
R

∫ R2

R1

∂zv
zvλ∂zv

λ∂zϕL(z)r dr dz

=: IIλ1 + IIλ2 . (3.17)

The Hölder inequality implies

|IIλ1 | ≤ ‖∂zv
r√ϕL‖L2(Ω)‖∂r∂zv

λ√ϕL‖L2(Ω)‖v‖L∞(Ω)

+ ‖∂zv
z√ϕL‖L2(Ω)‖∂2

z v
λ√ϕL‖L2(Ω)‖v‖L∞(Ω). (3.18)

Moreover, by noting the boundary condition (3.3) and applying lemma 2.2, we further
estimate

|IIλ1 | ≤ ‖v‖L∞(Ω)
√

CP(‖∂r∂zv
r√ϕL‖L2(Ω)‖∂r∂zv

λ√ϕL‖L2(Ω)

+ ‖∂r∂zv
z√ϕL‖L2(Ω)‖∂2

z v
λ√ϕL‖L2(Ω)). (3.19)

Hence, to term II1 := IIr
1 + IIθ1 + IIz

1, we apply the Schwarz inequality to conclude

|II1| ≤ ‖v‖L∞(Ω)
√

CP

⎛
⎝2‖∂r∂zv

r√ϕL‖2
L2(Ω)

+ 1
2

∑
λ=r,θ,z

‖∂r∂zv
λ√ϕL‖2

L2(Ω)

+ 2‖∂r∂zv
z√ϕL‖2

L2(Ω)
+ 1

2

∑
λ=r,θ,z

‖∂2
z v
λ√ϕL‖2

L2(Ω)

⎞
⎠ . (3.20)

Note that the terms in parentheses are members of Y(L). Similarly to (3.16) we have by
lemma 2.1 that

‖∂zv‖L2(ΣL)
≤ ‖∂zv‖L∞(Ω)|ΣL|1/2 ≤ C, (3.21)

with the constant C independent of L. Hence, applying the Poincáre inequality in ΣL with
the aid of (3.3) to the estimate for term II2 := IIr

2 + IIθ2 + IIz
2, we have by the Hölder
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Liouville-type theorems for Taylor–Couette–Poiseuille flow

inequality that

|II2| ≤ C‖∂zv‖2
L2(ΣL)

‖v‖L∞(Ω) ≤ C‖∂r∂zv‖L2(ΣL)
≤ C

√
Y ′(L). (3.22)

Let us estimate term III. For λ = r, θ, z, we write IIIλ as

IIIλ = 2π

∫
R

∫ R2

R1

(vr∂r + vz∂z)

(
1
2
|∂zv

λ|2
)
ϕL(z)r dr dz. (3.23)

Since the divergence-free condition means that ∂r(rvr)+ ∂z(rvz) = 0, we have by
integration by parts with the aid of (3.3) that

IIIλ = −π

∫
R

∫ R2

R1

vz∂zϕL(z)|∂zv
λ|2r dr dz. (3.24)

Then, in the same way as for term II2, we obtain

|III| ≤ C‖∂r∂zv‖L2(ΣL)
≤ C

√
Y ′(L). (3.25)

The remaining nonlinear term IV can be treated similarly to I. Indeed, using the Hölder
inequality and lemma 2.2, we have

|IV| ≤ ‖r−1∂zv
r√ϕL‖L2(Ω)‖∂zv

θ√ϕL‖L2(Ω)‖v‖L∞(Ω)

+ ‖r−1∂zv
θ√ϕL‖L2(Ω)‖∂zv

θ√ϕL‖L2(Ω)‖v‖L∞(Ω)

≤ ‖v‖L∞(Ω)
√

CP(‖r−1∂zv
r√ϕL‖L2(Ω) + ‖r−1∂zv

θ√ϕL‖L2(Ω))

× ‖∂r∂zv
θ√ϕL‖L2(Ω)

≤ ‖v‖L∞(Ω)
√

CP

×
⎛
⎝1

2

∑
λ=r,θ

‖r−1∂zv
λ√ϕL‖2

L2(Ω)
+ ‖∂r∂zv

θ√ϕL‖2
L2(Ω)

⎞
⎠ . (3.26)

We again note that the terms in parentheses are members of Y(L).
Finally, we estimate the pressure term V . Since the divergence-free condition yields

∂r(r∂zv
r)+ ∂z(r∂zv

z) = 0, we have by integration by parts with (3.3) that

V = 2π

∫
R

∫ R2

R1

(∂z∂rp∂zv
r + ∂2

z p∂zv
z)ϕL(z)r dr dz

= −
∫

R

∫
R1

∂zp∂zv
z∂zϕL(z)r dr dz. (3.27)

By ∂zp ∈ L∞(Ω), which follows from lemma 2.1, |ΣL| ≤ C with some constant C
independent of L and lemma 2.2, we obtain

|V| ≤ C‖∂zp‖L2(ΣL)
‖∂zv‖L2(ΣL)

≤ C‖∂r∂zv‖L2(ΣL)
≤ C

√
Y ′(L). (3.28)

Putting the estimates (3.15)–(3.26) and (3.28) together into the original integral identity
(3.4), we have

Y(L) ≤ 2
√

CP

ν
‖v‖L∞(Ω)Y(L)+ C

√
Y ′(L). (3.29)

Therefore, putting C1(ν,R1,R2) := ν/2
√

CP and using the assumption (1.8) on ‖v‖L∞(Ω),
we see that the first term on the right-hand side can be absorbed to the left-hand side.
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H. Kozono, Y. Terasawa and Y. Wakasugi

Hence, we conclude
Y(L) ≤ C

√
Y ′(L). (3.30)

Note that the constant C on the right-hand side is independent of L.
The differential inequality (3.30) enables us to reach the first goal (3.1). Indeed, by (3.30)

it holds that
Y(L) = 0 for all L > 1. (3.31)

Suppose the contrary. Then there exists some L0 > 1 such that Y(L0) > 0. Since Y(L) is
a non-decreasing function of L, we have Y(L) > 0 for all L ≥ L0. Thus, from (3.30), we
deduce for L > L0 that

1 ≤ C2Y(L)−2Y ′(L) = C2(−Y(L)−1)′. (3.32)

Integrating it over [L0, L] leads to

L − L0 ≤ C2(−Y(L)−1 + Y(L0)
−1) ≤ C2Y(L0)

−1. (3.33)

However, letting L be sufficiently large, we reach a contradiction to conclude that Y(L) = 0
for all L > 1. Now, we have that ∇r,z∂zv ≡ 0, which means that the function ∂zv is a
constant vector. Combining this with the boundary condition (3.3) implies that ∂zv ≡ 0.
Thus, we have (3.1).

Finally, we show that the solution (v, p) has the form described in the statement of the
theorem. First, by ∂zv ≡ 0 and the divergence-free condition, we have

∂rv
r + vr

r
= 1

r
∂r(rvr) = 0, (3.34)

which shows ∂r(rvr) ≡ 0, that is, rvr is a constant. However, the boundary condition
vr = 0 on ∂Ω again implies vr ≡ 0.

Going back to the system (3.2), we have

∂z∂rp = ∂2
z p = 0, (3.35)

which implies that ∂zp = a with some constant a ∈ R. Integrating it gives

p(r, z) = az + h(r), (3.36)

with some smooth function h(r).
We further go back to the original system (1.2) and determine vθ , vz and h(r). First, by

noting that vr = 0 and v is independent of z, the second equation of (1.2) yields that vθ is
subject to the equation (

∂2
r + 1

r
∂r − 1

r2

)
vθ = 0. (3.37)

This is the Euler–Cauchy equation and we find the general solution of the form

vθ = Ar + B
r
. (3.38)

The boundary condition gives

R2ω2 = vθ (R2) = AR2 + B
R2
, (3.39)

R1ω1 = vθ (R1) = AR1 + B
R1
. (3.40)
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Liouville-type theorems for Taylor–Couette–Poiseuille flow

Solving this, we determine the constants A,B and obtain

vθ (r) = R2
2ω2 − R2

1ω1

R2
2 − R2

1
r + R2

1R2
2(−ω2 + ω1)

R2
2 − R2

1

1
r
. (3.41)

Next, from the third equation of (1.2) and the formula (3.36), we have the equation of vz:

ν

(
∂2

r + 1
r
∂r

)
vz = a, (3.42)

that is,
1
r
∂r
(
r∂rv

z) = a
ν
. (3.43)

This implies

r∂rv
z(r) = D + a

2ν
r2, (3.44)

with some constant D. Integrating it over [R1, r] and using the boundary condition
vz(R1) = 0 by (1.3), we have

vz(r) = D log
r

R1
+ a

4ν
(r2 − R2

1). (3.45)

From the boundary condition vz(R2) = 0 by (1.3), the constant D is determined as

D = − a
4ν

R2
2 − R2

1
log R2/R1

. (3.46)

Thus, we conclude that

vz(r) = a
4ν

[
(r2 − R2

1)− R2
2 − R2

1
log(R2/R1)

log
r

R1

]
. (3.47)

Finally, from the first equation of (1.2), we deduce

−(v
θ )2

r
+ ∂rp = 0. (3.48)

This and the formulas (3.36) and (3.41) lead to

h′(r) = 1
r

[
R2

2ω2 − R2
1ω1

R2
2 − R2

1
r + R2

1R2
2(−ω2 + ω1)

R2
2 − R2

1

1
r

]2

=
(

R2
2ω2 − R2

1ω1

R2
2 − R2

1

)2

r + 2R2
1R2

2(−ω2 + ω1)(R2
2ω2 − R1ω1)

(R2
2 − R2

1)
2

1
r

+
(

R2
1R2

2(−ω2 + ω1)

R2
2 − R2

1

)2
1
r3 . (3.49)
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Integrating it, we have

h(r) = b + 1
2

(
R2

2ω2 − R2
1ω1

R2
2 − R2

1

)2

r2 + 2R2
1R2

2(−ω2 + ω1)(R2
2ω2 − R2

1ω1)

(R2
2 − R2

1)
2

log r

− 1
2

(
R2

1R2
2(−ω2 + ω1)

R2
2 − R2

1

)2
1
r2 , (3.50)

with some constant b ∈ R, that is, the pressure is given by

p(r, z) = az + b + 1
2

(
R2

2ω2 − R2
1ω1

R2
2 − R2

1

)2

r2 + 2R2
1R2

2(−ω2 + ω1)(R2
2ω2 − R2

1ω1)

(R2
2 − R2

1)
2

log r

− 1
2

(
R2

1R2
2(−ω2 + ω1)

R2
2 − R2

1

)2
1
r2 . (3.51)

Rewriting (3.41), (3.47) and (3.51) by using μ and η defined by (1.5a,b) completes the
proof of theorem 1.1.

4. Proof of theorem 1.2

Let us prove theorem 1.2. Assume that (v, p) is a smooth solution to (1.17). We differentiate
(1.17) with respect to θ to obtain

(∂θv · ∇)vr + (v · ∇)∂θvr − 2vθ∂θvθ

r
+ ∂θ∂rp

= ν

(
Δ − 1

r2

)
∂θv

r − ν
2
r2 ∂

2
θ v
θ ,

(∂θv · ∇)vθ + (v · ∇)∂θvθ + vr∂θv
θ + vθ∂θv

r

r
+ 1

r
∂2
θ p

= ν

(
Δ − 1

r2

)
∂θv

θ + ν
2
r2 ∂

2
θ v

r,

(∂θv · ∇)vz + (v · ∇)∂θvz + ∂θ∂zp = νΔ∂θv
z,

1
r
∂r(r∂θvr)+ 1

r
∂2
θ v
θ + ∂z∂θv

z = 0.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)

Here, we recall that the operators (v · ∇) and Δ are defined by (1.18) and (1.19),
respectively. We also have the boundary conditions

∂θv(Rj, θ, z) = 0 ( j = 1, 2). (4.2)

Let L > 1 and take the test function ϕL(z) and the region ΣL defined by (2.1) and (2.2),
respectively. Similarly to the previous section, we multiply the equations of vr, vθ , vz in
(4.1) by ∂θvrϕL(z), ∂θvθϕL(z), ∂θvzϕL(z), respectively, and sum up and integrate them
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Liouville-type theorems for Taylor–Couette–Poiseuille flow

over Ω . As a result, we have the integral identity

I = II + III + IV + V. (4.3)

Here, I = Ir + Iθ + Iz is the sum of the viscous term defined by

Ir = ν

∫
Ω

[(
Δ − 1

r2

)
∂θv

r∂θv
r − 2

r2 ∂
2
θ v
θ∂θv

r
]
ϕL(z) dx, (4.4)

Iθ = ν

∫
Ω

[(
Δ − 1

r2

)
∂θv

θ∂θv
θ + 2

r2 ∂
2
θ v

r∂θv
θ

]
ϕL(z) dx, (4.5)

Iz = ν

∫
Ω

Δ∂θv
z∂θv

zϕL(z) dx. (4.6)

Also, II, III and IV are the nonlinear terms defined by

II =
∑
λ=r,θ,z

IIλ =
∑
λ=r,θ,z

∫
Ω

(∂θv · ∇)vλ∂θvλϕL(z) dx, (4.7)

III =
∑
λ=r,θ,z

IIIλ =
∑
λ=r,θ,z

∫
Ω

(v · ∇)∂θvλ∂θvλϕL(z) dx, (4.8)

IV =
∫
Ω

(
−2vθ∂θvθ

r
∂θv

r + vr∂θv
θ + vθ∂θv

r

r
∂θv

θ

)
ϕL(z) dx

=
∫
Ω

1
r
(vr∂θv

θ − vθ∂θv
r)∂θv

θϕL(z) dx. (4.9)

Finally, V is the sum of the pressure terms defined by

V =
∫
Ω

(
∂θ∂rp∂θvr + 1

r
∂2
θ p∂θvθ + ∂θ∂zp∂θvz

)
ϕL(z) dx. (4.10)

First, we consider term I. By integration by parts with the aid of the boundary condition
∂θv(Rj, θ, z) = 0 for j = 1, 2, we infer that

Ir + Iθ = −ν
∫
Ω

[
|∂r∂θv

r|2 + 1
r2 |∂2

θ v
r|2 + |∂z∂θv

r|2 + 1
r2 |∂θvr|2 + 2

r2 ∂
2
θ v
θ∂θv

r

+ |∂r∂θv
θ |2 + 1

r2 |∂2
θ v
θ |2 + |∂z∂θv

θ |2 + 1
r2 |∂θvθ |2 − 2

r2 ∂
2
θ v

r∂θv
θ

]
ϕL(z) dx

− ν

∫
Ω

(∂z∂θv
r∂θv

r + ∂z∂θv
θ∂θv

θ )∂zϕL(z) dx

= −ν
∫
Ω

[
|∂r∂θv

r|2 + |∂z∂θv
r|2 + |∂r∂θv

θ |2 + |∂z∂θv
θ |2

+ 1
r2 |∂2

θ v
θ + ∂θv

r|2 + 1
r2 |∂2

θ v
r − ∂θv

θ |2
]
ϕL(z) dx

− ν

∫
Ω

(∂z∂θv
r∂θv

r + ∂z∂θv
θ∂θv

θ )∂zϕL(z) dx

=: Ir,θ
1 + Ir,θ

2 (4.11)
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and

Iz = ν

∫
Ω

Δ∂θv
z∂θv

zϕL(z) dx

= −ν
∫
Ω

[
|∂r∂θv

z|2 + 1
r2 |∂2

θ v
z|2 + |∂z∂θv

z|2
]
ϕL(z) dx

− ν

∫
Ω

∂z∂θv
z∂θv

z∂zϕL(z) dx

=: Iz
1 + Iz

2. (4.12)

Similarly to the previous section, we define

Y(L) := −(Ir,θ
1 + Iz

1)

= ν

(
‖∂r∂θv

√
ϕL‖2

L2(Ω)
+ ‖∂z∂θv

√
ϕL‖2

L2(Ω)
+
∥∥∥∥1

r
(∂2
θ v
θ + ∂θv

r)
√
ϕL

∥∥∥∥
2

L2(Ω)

+
∥∥∥∥1

r
(∂2
θ v

r − ∂θv
θ )

√
ϕL

∥∥∥∥
2

L2(Ω)

+
∥∥∥∥1

r
∂2
θ v

z√ϕL

∥∥∥∥
2

L2(Ω)

)
. (4.13)

We remark that the definition of ϕL(z) (see (2.1)) implies

Y ′(L) := ν

(
‖∂r∂θv‖2

L2(ΣL)
+ ‖∂z∂θv‖2

L2(ΣL)

+
∥∥∥∥1

r
(∂2
θ v
θ + ∂θv

r)

∥∥∥∥
2

L2(ΣL)

+
∥∥∥∥1

r
(∂2
θ v

r − ∂θv
θ )

∥∥∥∥
2

L2(ΣL)

+
∥∥∥∥1

r
∂2
θ v

z
∥∥∥∥

2

L2(ΣL)

)
.

(4.14)

Using the above Y(L), we have

I = −Y(L)+ Ir,θ
2 + Iz

2. (4.15)

Since |ΣL| = 2π(R2
2 − R2

1) is independent of L, it follows from the the Schwarz inequality
and lemma 2.1 that the remainder term Iz

2 is estimated as
|Iz

2| ≤ ν‖∂z∂θv
z‖L2(ΣL)

‖∂θvz‖L2(ΣL)

≤ ν‖∇v‖L∞(Ω)|ΣL|1/2‖∂z∂θv‖L2(ΣL)

≤ C‖∂z∂θv‖L2(ΣL)

≤ C
√

Y ′(L), (4.16)

with some constant C > 0 independent of L. Similarly, it is easy to see that Ir,θ
2 has the

same bound:
|Ir,θ

2 | ≤ C
√

Y ′(L). (4.17)

We next estimate the nonlinear term II. For λ = r, θ, z, integration by parts and the
divergence-free condition imply

IIλ = −
∫
Ω

(∂θv · ∇)∂θvλvλϕL(z) dx −
∫
Ω

∂θv
zvλ∂θv

λ∂zϕL(z) dx

=: IIλ1 + IIλ2 . (4.18)
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Liouville-type theorems for Taylor–Couette–Poiseuille flow

By the Hölder inequality, term IIλ1 is estimated as

|IIλ1 | ≤ ‖∂θvr√ϕL‖L2(Ω)‖∂r∂θv
λ√ϕL‖L2(Ω)‖v‖L∞(Ω)

+ ‖∂θvθ√ϕL‖L2(Ω)

∥∥∥∥∥∂
2
θ v
λ

r
√
ϕL

∥∥∥∥∥
L2(Ω)

‖v‖L∞(Ω)

+ ‖∂θvz√ϕL‖L2(Ω)‖∂z∂θv
λ√ϕL‖L2(Ω)‖v‖L∞(Ω). (4.19)

Let us further estimate the right-hand side. From lemma 2.2, we obtain for κ = r, θ, z that

‖∂θvκ√ϕL‖L2(Ω) ≤
√

CP‖∂r∂θv
κ√ϕL‖L2(Ω). (4.20)

Moreover, for the term ‖(∂2
θ v
λ/r)

√
ϕL‖L2(Ω), by lemma 2.2, we have, for the case λ = r,∥∥∥∥∥∂

2
θ v

r

r
√
ϕL

∥∥∥∥∥
L2(Ω)

≤
∥∥∥∥1

r
(∂2
θ v

r − ∂θv
θ )

√
ϕL

∥∥∥∥
L2(Ω)

+
∥∥∥∥1

r
∂θv

θ√ϕL

∥∥∥∥
L2(Ω)

=
∥∥∥∥1

r
(∂2
θ v

r − ∂θv
θ )

√
ϕL

∥∥∥∥
L2(Ω)

+
√

CP

R1
‖∂r∂θv

θ√ϕL‖L2(Ω); (4.21)

and for the case λ = θ ,∥∥∥∥∥∂
2
θ v
θ

r
√
ϕL

∥∥∥∥∥
L2(Ω)

≤
∥∥∥∥1

r
(∂2
θ v
θ + ∂θv

r)
√
ϕL

∥∥∥∥
L2(Ω)

+
√

CP

R1
‖∂r∂θv

r√ϕL‖L2(Ω). (4.22)

Therefore, combining (4.19)–(4.22), and applying the Schwarz inequality, we deduce

|IIr
1| ≤ ‖v‖L∞(Ω)

√
CP

2

{
2‖∂r∂θv

r√ϕL‖2
L2(Ω)

+
(

1 + 2CP

R2
1

)
‖∂r∂θv

θ√ϕL‖2
L2(Ω)

+ ‖∂r∂θv
z√ϕL‖2

L2(Ω)
+ 2

∥∥∥∥1
r
(∂2
θ v

r − ∂θv
θ )

√
ϕL

∥∥∥∥
2

L2(Ω)

+ ‖∂z∂θv
r√ϕL‖2

L2(Ω)

}
,

(4.23)

|IIθ1 | ≤ ‖v‖L∞(Ω)
√

CP

2

{(
1 + 2CP

R2
1

)
‖∂r∂θv

r√ϕL‖2
L2(Ω)

+ 2‖∂r∂θv
θ√ϕL‖2

L2(Ω)

+ ‖∂r ∂θv
z√ϕL‖2

L2(Ω)
+ 2

∥∥∥∥1
r
(∂2
θ v
θ + ∂rv

θ )
√
ϕL

∥∥∥∥
2

L2(Ω)

+ ‖∂z∂θv
θ√ϕL‖2

L2(Ω)

}
,

(4.24)

|IIz
1| ≤ ‖v‖L∞(Ω)

√
CP

2

{
‖∂r∂θv

r√ϕL‖2
L2(Ω)

+ ‖∂r∂θv
θ√ϕL‖2

L2(Ω)

+ 2‖∂r∂θv
z√ϕL‖2

L2(Ω)
+
∥∥∥∥1

r
∂2
θ v

z√ϕL

∥∥∥∥
2

L2(Ω)

+ ‖∂z∂θv
z√ϕL‖2

L2(Ω)

}
. (4.25)
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Finally, adding the above estimates, we conclude that term II1 := IIr
1 + IIθ1 + IIz

1 satisfies
the estimate

|II1| ≤ ‖v‖L∞(Ω)
CII

ν
Y(L), (4.26)

with

CII :=
√

CP

(
2 + CP

R2
1

)
. (4.27)

By lemma 2.1 and the Poincáre inequality in ΣL, we see that the remainder term IIλ2 can
be estimated as

|IIλ2 | ≤ ‖∂θv‖2
L2(ΣL)

‖v‖L∞(ΣL)

≤ ‖∂θv‖L∞(Ω)|ΣL|1/2‖v‖L∞(Ω)‖∂θv‖L2(ΣL)

≤ C‖∂r∂θv‖L2(ΣL)

≤ C
√

Y ′(L), (4.28)

for λ = r, θ, z, where C is a constant independent of L.
Thirdly, we consider the nonlinear term III. Integration by parts and the divergence-free

condition lead to

IIIλ =
∫
Ω

(v · ∇)
(

1
2
|∂θvλ|2

)
ϕL(z) dx = −1

2

∫
Ω

vz|∂θvλ|2∂zϕL(z) dx, (4.29)

for λ = r, θ, z. Moreover, similarly to (4.28) we have that

|IIIλ| ≤ C‖∂θv‖2
L2(ΣL)

‖v‖L∞(ΣL) ≤ C
√

Y ′(L), (4.30)

for λ = r, θ, z, where C is a constant independent of L. Next, we treat the remaining
nonlinear term IV . By lemma 2.2 and the Schwarz inequality, we have

|IV| ≤ R−1
1 (‖∂θvr√ϕL‖L2(Ω) + ‖∂θvθ√ϕL‖L2(Ω))

× ‖∂θvθ√ϕL‖L2(Ω)‖v‖L∞(Ω)

≤ ‖v‖L∞(Ω)
CP

R1

(
1
2
‖∂r∂θv

r√ϕL‖2
L2(Ω)

+ 3
2
‖∂r∂θv

θ√ϕL‖2
L2(Ω)

)

≤ ‖v‖L∞(Ω)
CIV

ν
Y(L), (4.31)

where

CIV := 3CP

2R1
. (4.32)

Finally, we estimate the pressure terms V . Integration by parts and the divergence-free
condition lead to

V = −
∫
Ω

∂θp∂θvz∂zϕL(z) dx. (4.33)

Therefore, from lemma 2.1 and the Poincáre inequality in ΣL, we obtain

|V| ≤ C‖∂θp‖L2(ΣL)
‖∂θvz‖L2(ΣL)

≤ C‖∂r∂θv
z‖L2(ΣL)

≤ C
√

Y ′(L). (4.34)
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Liouville-type theorems for Taylor–Couette–Poiseuille flow

Now we put the estimates (4.15), (4.16), (4.17), (4.26), (4.28), (4.30), (4.31) and (4.34)
together into (4.3) and conclude that

Y(L) ≤ ‖v‖L∞(Ω)
CII + CIV

ν
Y(L)+ C

√
Y ′(L). (4.35)

We define

C2(ν,R1,R2) :=
[

CII + CIV

ν

]−1

. (4.36)

Then, by the assumption ‖v‖L∞(Ω) < C2(ν,R1,R2), we reach the differential inequality

Y(L) ≤ C
√

Y ′(L). (4.37)

Therefore, with completely the same argument as in the previous section, we have
Y(L) = 0 for all L > 1. This implies that ∂r∂θv ≡ 0, that is, ∂θv is independent of
r ∈ [R1,R2]. However, the boundary condition requires ∂θv(Rj, θ, z) = 0 ( j = 1, 2) for
any (θ, z) ∈ [0, 2π] × R. Thus, ∂θv must be identically zero. Then, by (4.1), we see that
∂r∂θp = ∂2

θ p = ∂z∂θp = 0, that is, ∂θp ≡ c inΩ with some constant c ∈ R. However, since
p must be periodic in θ , we conclude c = 0, that is, ∂θp ≡ 0. This completes the proof of
theorem 1.2.
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