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PROPAGATION OF STRESS WAVES IN ALPINE SNOW 

By R. L. BROWN * 
(U.S. Army Cold Regions Research and Engineering Laboratory, Hanover, New 

Hampshire 03755, U.S.A.) 

ABSTRACT. The propagation of pressure waves in low-density snow is investigated analytically to determine 
the variation of wave pressure and wave speed with density and frequency. The results show that, for pressure 
waves that produce finite volumetric deformations, both pressure jump across the wave and wave-speed 
increase with initial density and final density. The pressure jump was also found to increase with the wave 
frequency if other parameters were held constant, although the dependence on frequency is not as strong as 
the dependence on the initial and final densities. The relationship between pressure jump and frequency 
implies that high-frequency waves would tend to dissipate more quickly than lower-frequency waves, 
although like pressure, the attenuation rate would not be strongly frequency dependent. 

REsuME. Propagation des ondes de pressiolZ dans la neige alpine. On a inventorie analytiquement la propagation 
des ondes de pression dans une neige de faible densite afin de determiner la variation de I'onde de pression 
et de I'onde de vitesse selon la densite et la frequence. Les resultats montrent que, pour les ondes de pression 
qui produisent des deformations volumetriques finies, aussi bien le saut de pression au passage de I'onde que 
la vitesse de I'onde elle-meme augmentent avec la densite initiale et la densite finale. On a aussi trouve que 
le saut de press ion augmentait avec la frequence de I'onde si les autres parametres sont maintenus constants 
bien que la dependance de la frequence ne soit pas aussi stricte que la dependance des densites initiales et 
finales. La relation entre le saut de pression et la frequence implique que les ondes de haute frequence 
devraient avoir ten dance a se dissiper plus vite que les on des a frequence plus basse, bien que, comme la 
pression, la vitesse d'attenuation ne serait pas aussi strictement dependante de la frequence. 

ZUSAMMENFASSUNG. Fortpjlanzullg von Druckwellell in alpillem Schnee. Zur Bestimmung der Anderung des 
Wellendruckes und der Wellengeschwindigkeit in Abhangigkeit von der Dichte und Frequenz wird die 
Fortpflanzung von Druckwellen in lockerem Schnee analytisch untersucht. Es zeigt sich, dass bei Druck­
wellen, die finite Deformationen des Volumens hervorrufen, sowohl der Druckanstieg quer zur Welle wie die 
Wellengeschwindigkeit mit anfanglicher und endgultiger Dichte zunehmen. Eine Zunahme des Druckan­
stiegs ergab sich auch mit der Wellcnfrequenz bei Konstanthaltung anderer Parameter, obwohl die Frequenz­
abhangigkeit nicht so stark ist als die von der Anfangs- und Ausgangsdichte. Die Beziehung zwischen 
Druckanstieg und Frequenz lasst annehmen, dass hochfrequente Wellen zu einer schnelleren Zerstreuung 
neigen als niederfrequente, obwohl ahnlich wie der Druck auch die Abschwachungsrate nicht stark von der 
Frequenz abhangig sein durfte. 

INTRODUCTION 

In both Europe and the North American continent, recreational, residential, and industrial 
use of alpine areas is increasing. Therefore, the problem of snow avalanches is also expected 
to increase as more people move into mountainous areas during the winter months. On the 
American continent, relatively few deaths can yet be attributed to avalanches, but the annual 
death rate can be expected to increase in the future. Also, the annual cost of damage to 
forested areas and of avalanche control is significant. In view of these problems, a better 
means of artificially initiating avalanches could somewhat alleviate the avalanche problem. 

Explosives are the most commonly used method of releasing snow slopes to avalanche. 
This is accomplished by means of hand-thrown charges, recoilless rifles, or howitzers. 
Generally the discharges take place in the snow-pack and below the snow-pack surface. These 
discharges produce a highly transient load, which in turn sends a shock wave propagating 
through the snow-pack. In the immediate vicinity of the explosion, much energy is dissipated 
through inelastic deformation of the snow. As the pressure pulse propagates away from the 
discharge, it rapidly attenuates due to geometric spreading, energy dissipation, and boundary 
interaction. 

At a sufficient distance from the discharge, the wave amplitude is reduced to a level such 
that inelastic deformation of the snow becomes insignificant, but considerable attenuation can 
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still occur due to geometric spreading, scattering effects of the porous structure of snow, and 
boundary interaction. The arrival of the pressure wave at the boundaries (snow-pack-air or 
snow-pack-ground surfaces) causes other types of stress waves to form. In particular, Love 
waves and Rayleigh waves may form and propagate until they either reach the snow-slope 
boundaries or attenuate to negligible levels . Even at stress levels that do not cause significant 
inelastic deformation, attenuation still occurs, as J ohnston (unpublished) has shown, since 
the air phase within the snow causes a scattering effect which results in stress-wave attenuation. 
Apparently this form of attenuation is frequency dependent, since high-frequency waves seem 
to attenuate more quickly than low-frequency waves (Lang, 1976). 

In the region close to an explosive discharge, the pressure wave is a large-amplitude plastic 
shock wave. For this type of wave, the primary causes of wave attenuation are geometric 
spreading and plastic deformation of the matrix material, ice. Brown ( I980[a], [b] ) has 
already studied the propagation of plastic waves in snow with densities greater than 0.3 
Mg m- 3 • Brown's studies have shown that snow rapidly attenuates pressure waves due to the 
large inelastic volumetric deformations that the material undergoes. He found wave speed 
to be highly pressure dependent, and attenuation was not found to be strongly frequency 
dependent, which is contrary to the case of low-intensity waves. 

Both steady and non-steady waves were considered hy Brown ( Ig8o[a], [h]). A steady 
wave is a shock wave in which the wave amplitude and profile do not change as the wave 
propagates through the material. This idealization simplifies the mathematics of the problem 
while still allowing the evaluation of many properties of stress waves. However, one cannot 
determine stress-wave attenuation or alteration of the profile for this type of wave. 

The work reported here is concerned with plastic waves in low-density snow. A volumetric 
constitutive law for low-density snow (Brown, Ig80[c] ) is used with the equations of motion 
and the continuity equation to evaluate the propagation of steady shock waves in low-density 
snow. This work supplements Brown's ( I98o[a], [b] ) work for higher-density snow. Since 
much avalanche control work involves snow with densities less than 0. 3 Mg m-3, the work 
reported here is considered to he particularly relevant. 

VOLUMETRIC CONSTITUTIVE LAW FOR LOW-DENSITY SNOW 

The volumetric constitutive law (Brown, Ig80[c]) was formulated by considering the 
deformation of the ice grains and grain necks constituting the porous material. The ice 
making up the matrix material was assumed to be a rate-sensitive viscoplastic material. The 
equation of motion and equation of continuity were solved to describe the deformation of 
both the ice grains and the intergranular necks. The result then was used to express the rate 
of change of density in terms of the hydrostatic pressure p applied to the snow. The resulting 
constitutive equation relates the pressure p to the density ratio ex, where 

ex = Pm! p, (I) 
and pm and p are the mass density of the matrix material (ice) and snow, respectively. 

Figure I illustrates the geometry of the model used to develop the volumetric constitutive 
law. In this figure, the matrix material, ice, was divided into three different regions: (I) the 
necks that connect the grains, (2) region I in the grain that has no contact area with other 
grains on its lateral surface, and (3) region 2 which has one or more grain bonds bearing on its 
lateral surface. The neck was chosen to he that portion of the ice that has a surface with 
radius of curvature directed outward from the solid phase. This radius is denoted by R'. 
The grain body is the main part of the grain that has a surface with a radius directed inward 
toward the center of the grain body. R is taken to be the grain radius. Figure I (h) shows the 
idealized geometry that was used to determine the deformation of the ice grain during 
deformation. The necks were idealized by a cylindrical shape with a constant cross-sectional 
radius !1. 
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O. TYPICAL GRAIN AND NECK GEOMETRY b. IDEALIZED GRAIN GEOMETRY 

Fig. I . Geometry of granular structure of snow and idealized model. 

The deformations of the three regions were individually determined by use of the equation 
of continuity and equation of motion. The calculated deformation of the necks and grains 
were then related to the volumetric deformation of the porous material, snow, to obtain the 
resulting volumetric constitutive law. This equation (Brown, Ig80[c] ), which relates the 
deformation to the pressure p, has the form 

eX = AI exp ( f3dfF ) + Az exp ( f3zp /F), (2) 
where the superposed dot implies differentiation with respect to time. In the above 

AI = (2~/3A)[ -2~/(Rz-~z)i+BI] exp (-So/C), (3) 

Az = (R/3A)[2R/( RZ - ~z)!+Bz] exp (- So/C), (4) 

f31 = (2rx/3C)(R/ ~)Z, (5) 
f3z = (C1./C)(R/~)z(f-I), (6) 

F = Cpo(rx/rxO)C2 +C3PO , (7) 

BI = (2/N£Z)(4-iN) RZ+N(2Rz+ ~Z) /3), (8) 

Bz = - (2 /N£Z) [N~L+2NR~/3-(2Rz+~z) ~Nf(3R) ], (9) 

N = 4[r +(p-o.30)/0.50], (10) 

f= t(I+I / rx), ( 11) 

R and ~ are, respectively, the grain and neck radii , and L is the neck length. A, C, and So 
are all material constants for ice. N is the average number of bonds per grain. 

The second expression on the right-hand side of Equation (2) reflects the contribution of 
deformation of the ice grain, whereas, the first expression on the right-hand side gives the 
effect of the neck deformation. Brown ( I g80[ c]) found that for a wide range of densities 
(generally greater than o. I Mg m-3) the second term was negligible compared with the first 
term. Consequently, the simplified equation, 

a = AI exp (f3IP /F), (12) 
is used. The rates of change of the neck radius and neck length are given by the expressions 

A = (2~/3A) exp [(3rxP/2C) (R/~)Z-So/C], (13) 

i = BIA+BJl. (14) 
In Equation ( 14) the term Bzf? can be neglected in comparison with the first part, BIA. 
The constitutive equation has been shown to represent adequately the response of snow for 
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densities ranging from o. I Mg m-' to 0.75 Mg m-' and for density-ratio rates ranging from 
-10-5 S-I to as high as -100 S-I . Figure 2 shows the comparison of Equation (12) with 
averaged experimental data (Abele and Gow, 1975, 1976) for compaction of snow. As can 
be seen, Equation (12) appears to work well. 
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--Theory 
ci = -20 5-1 
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o 2 4 6 8 loxI02 

Density (kg m-5 ) 

Fig. 2. Comparison of volumetric constitutive law with experimental data. 

In the case of large strain-rates which produce significant inertial effects, intergranular 
dynamical effects must be taken into account. This can be done by rewriting Equation (12) 
to include an intergranular acceleration term in much the same way as was done earlier 
(Brown, 1980[a]) for medium-density snow. This gives 

F 7 2 

P = -(3 In (eX/A 1)+- Q(IX, eX, eX), (15) 
I IX 

where 

Q = -eX[(IX-I)-!-CX-!]+teX2[(IX-I)-4/3_ 1X- 4/3], 

7
2 = Pmao2/[3 (lXo- 1)1], 

ao is the initial average void radius in the material. 

ANALYSIS 

We consider here the propagation of plane plastic waves. The equation of motion is 

( 19) 

where To is the Piola stress tensor, Po is the initial density, ho is the body force, X is the position 
of a par~icle in the undeformed configuration and x is the particle position in the deformed 
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position. If the wave is propagating in the X direction, and if body forces are negligible, 
Equation (19) reduces to 

(}P av 
- (}x = Po at ' 

where v is the particle velocity in the X direction. 
The continuity condition, which places a mass-conservation restriction on the deformation 

has the Lagrangian form 
d 
dt (pJ) = 0, 

where J is the Jacobian of the deformation and is expressible as the determinant of the 
deformation gradient. Expanding this equation results in the following form for the continuity 
equation 

(}lJ I acx 
(}X=~at· 

Assume the pressure wave to be steady. Then the governing differential equations may 
be expressed in terms of the variable 7], 

7] = X- Vt, 

where V is the stress-wave speed. Then using this, Equations (20) and (22) can be expressed 
in the following forms: 

dp dv 
d7] = PoV d7]' 

dv V dcx 
d7] -~ d7] . 

These last two equations may be integrated to find the jumps in p and v across the wave forms. 
Therefore the changes in p and v as the wave passes a fixed point in the snow are 

(p-Po) = PoV(v-vo), (26) 

V 
(v-vo) = -- (cx-cxo). (27) 

CXo 

Eliminating v-vo between Equation (26) and (27) gives 

Assume the material is initially unloaded and undeformed, and use the star to denote the 
steady value of the pressure, density ratio, and particle velocity behind the wave. Then 
P- Po, cx-cxo, and v-vo become p*, cx*-cxo, and v*, respectively. Therefore 

p* = PoVv*, (29) 

These last three equations are the familiar jump equations for stress waves, although usually 
they are expressed in terms of the density P rather than the density ratio cx. 

Now consider Equation (28) . Substitute Equation ( IS) into it to obtain the equation 

Po VZ 1 . T
Z d ... 

--- (cx-cxo) = f3 FIn (ex/A J)+- d- q(cx, ex, ex), (3 2 ) 
CXo I ~ ex et: 

https://doi.org/10.3189/S0022143000010777 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000010777


JOURNAL OF GLACIOLOGY 

where the last expression in Equation (32) is a reorganization of the intergranular dynamical 
portion of the constitutive equation. Integrating this equation results in 

"0 
Since the pressure wave is a steady wave, q is zero both before and behind the wave. There­
fore, if ex is set equal to ex* in Equation (33), and if Equation (28) is substituted into the above, 

,,* 

"0 
To solve these equations, a parametric solution method can be used. Assume a pressure 

wave produces a pressure p* and a final density ratio ex*. Equation (3 I) can then be used to 
find the wave speed V. Then proceed to use a numerical technique to solve the remaining 
portion of the problem. If /::"ex is an incremental change in ex, Equation (28) in incremental 
form can be used to calculate p at a+ /::"ex. Then Equation (33) is used to find eX at ex+ /::"ex. 
From this /::"t can be calculated from the constitutive equation. By continuing to step forward 
in increments of /::"a until ex* is reached, the ex profile and t* can be found. This then charac­
terizes the wave frequency and rate of loading. 

DISCUSSION OF RESULTS 

Figures 3-5 illustrate the results of this study. Unfortunately only a small amount of 
experimental data is available for a comparison with these results. To date the most compre­
hensive experimental study is that of Napadensky (1964). However, Napadensky's experi­
ments were conducted with snow with densities of 0.5 Mg m- 3 or higher, so a direct comparison 
with the calculated results here is not possible for low-density snow. 
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Fig. 3. Variation of pressure jump across a shock wave with density jump. 
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Figure 3 illustrates the variation of pressure jump with density jump for several different 
initial densities, including 0.5 Mg m - " which is compared with Napadensky's data. As can 
be seen, the results agree with the data for that initial density. In addition, the calculated 
curves ;~l Figure 3 compare well with the theoretical calculations reported by Brown ( Ig80[a]) 
for densities larger than 0.3 Mg m- 3 • In Figures 3 and 4, the dominant frequency of the wave 
was 200 kHz, which approximately equals the frequencies reported in Brown ( Ig80[a]) . 
This frequency would correspond to what is produced by high-speed explosives. 

Figure 4 shows the manner in which the wave speed varies with the wave intensity as 
determined by the pressure jump. These results also agree with the results of Brown ( Ig80[a]). 
In particular, for each initial density the wave speed has a local minimum at low values of 
wave pressure. This is attributable to the work-hardening properties of snow under volumetric 
deformations. As the snow is compacted, the necks rapidly thicken, which in part enhances 
the material strength. In addition, the large deformations which occurs in these necks also 
work-harden the neck material, thereby further increasing the snow strength. This resulting 
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Fig. 4. Effect of pressure jump on shock-wave velocity. 
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Fig. 5. Effect of shock-wave frequency on pressure jump. 
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increase in material strength results in an increased wave speed, since the wave speed is 
determined by the ratio ofp*J(cx*-rxo), as indicated by Equation (31). 

Figure 5 illustrates the effect of wave frequency on the pressure jump for pressure waves 
which produce a density jump of 0.2 Mg m - 3 • Curves are presented for initial densities of 
o. I, 0.2, and 0.3 Mg m- 3 • As can be seen, the pressure jump increases with wave frequency, 
although the dependence of pressure jump on frequency is not as significant as the dependence 
on density. 

CONCLUSIONS 

The stress-wave analysis reported here has been shown to agree well with the only experi­
mental data the author is aware of. Unfortunately the data are available only for snow with 
an initial density of about 0.5 Mg m-3 • Consequently, no definite conclusions can be made 
about the validity of the theoretical results for snow with initial densities below 0.5 Mg m- 3 • 

However, the volumetric equation upon which this study is based has been shown to represent 
accurately the response of snow under quasi-static load conditions for densities as low as 
o. I Mg m-3 • Consequently, the low-density stress-wave results shown here should at least be 
qualitatively correct. 

The wave speed was found to be strongly dependent on initial density and the pressure 
jump across the wave front. Since the pressure is only moderately affected by frequency, the 
wave speed is also only moderately frequency dependent. 

The dependence of wave speed and pressure jump on density is not as straightforward as 
it is for pressure waves which produce infinitesimal strains. In the case of pressure waves that 
produce large density changes, pressure jump and wave speed depend on both the initial 
density Po and the final density p*. The complicated relationship can readily be observed in 
Figure 4. 

The type of pressure wave described in this paper is not commonly found in Nature. 
However, it does play a central role in determining the effectiveness of explosives in initiating 
avalanches, since a good portion of the explosive energy that is transmitted to the snow-pack is 
absorbed in the crater zone through inelastic compaction of the snow. This type of deforma­
tion also is largely responsible for the attenuation of the pressure wave as it propagates away 
from the crater formed by the explosive. All of this decreases the energy that is delivered to the 
snow-pack for the purpose of starting avalanches. 

The result that the wave pressure-jump increases with wave frequency would imply that 
the energy absorbed irreversibly by the snow also increases with frequency, assuming that Po 
and p* are held constant. This in turn would imply that the attenuation rate would increase 
with frequency, since larger amounts of energy are dissipated in the snow as frequency 
increases. However, since this is weakly frequency dependent, the effect of frequency on 
attenuation rate is probably not as important as p* and Po for plastic waves. 
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