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WATER FLOW IN GLACIERS: JOKULHLAUPS, TUNNELS 
AND VEINS 
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ABSTRACT. The physics of water flow within and under glacier ice is examined with special reference to 
the periodic catastrophic outbursts of water (jiikulhlaups) from the subglacial lake Grimsvotn, Vatnajiikull, 
Iceland. The lake is sealed until it reaches a critical level which enables it to lift the glacier, helped by a 
hydrostatic cantilever effect. The differential equations for non-steady water flow in a subglacial tunnel 
are derived and applied to the 1972 Grimsviitn outburst. The discharge: time relation observed during the 
growth stage, and the abrupt ending of the flood, are both very well accounted for by a theory which is 
insensitive to the details of the subglacial tunnel system. The steady state, in which an intergranular vein 
or tunnel is simultaneously melted open by frictional heat and closed by plastic deformation, may be stable 
or unstable according to the conditions imposed at the ends. This explains why the flow of water in a vein 
does not normally increase unstably as in a jiikulhlaup. An ice-dammed lake does not drain away through 
the vein system because the driving force on the vein-water is towards the lake rather than away from it. 

REsuME. Ecoulements liquides dans les glaciers: jokulhlaups, tunnels et canalicules intergranulaires. On examine 
la physique des ecoulements d'eau a I'interieur et sous les glaciers avec une attention speciale pour les 
debacles catastrophiques periodiques d'eau (jiikulhlaups) dues aux vidanges du lac sous-glaciaire de 
Grim'svotn, VatnajiikuU en Islande. Le lac est obstrue jusqu'a ce qu'il atteigne un niveau critique qui le 
rende capable de soulever le glacier a I'aide d'un effet hydrostatique en encorbellement. Les equations 
differentieUes pour I'ecoulement de I'eau non-permanent par un chenal sous-glaciaire sont etablies et 
appliquees a la vidange du Grimsvotn en 1972. Le debit : sa variation en fonction du temps pendant la 
periode de crue, I'arret brusque du flot, sont deux phenomenes dont la theorie rend tres bien compte, bien 
qu'eUe soit insensible au detail du reseau hydrologique sous-glaciaire. L'etat d'equilibre dans lequel une 
canalicule intergranulaire ou un tunnel sous-glaciaire est a la fois ouvert par la fusion nee de la chaleur de 
frottement et ferme par la deformation plastique de la glace peut etre stable ou instable selon les conditions 
imposees aux extremites. Ceci explique pourquoi I'ecoulement d'eau dans une canalicule ne croit normale­
ment pas corn me dans un jokulhlaup. Un lac ferme par de la glace ne se vide pas a travers le reseau de 
canalicules intergranulaires parce que la force predominante s'exerc;:ant sur I'eau des canalicules la pousse 
vers le lac plutot que vers I'exterieur. 

ZUSAMMENFASSUNG. Wasseifiihrung in Gletschern : Gletscherliiufe, Tunnels und Adern. Die Physik der Wasser­
fuhrung in und unter Gletschereis wird besonders im Hinblick auf die periodischen, katastrophalen Wasser­
ausbruche (Gletscherlaufe) des subglazialen Grimsvotn-Sees am Vatnajokull in Island untersucht. Der 
See ist abgedammt, bis er einen kritischen Stand erreicht, bei dem er den Gletscher mit Unterstlitzung eines 
hydrostatischen Ausleger-Effektes heben kann. Die Differentialgleichungen fur eine nicht-stationare 
Wasserstromung in einem subglazialen Tunnel werden hergeleitet und auf den Grimsvotn-Ausbruch von 
1972 angewandt. Das Verhaltnis von Ausfluss und Zeit, das wahrend der Zunahmephase zu beobachten 
war, und das abrupte Ende der Flut lassen sich sehr gut mit einer Theorie erfassen, die unabhangig von der 
Detailstruktur des subglazialen Tunnelsystems ist. Der stationare Zustand, bei dem eine intergranulare 
Ader od er Offnung zugleich durch Reibungswarme aufgeschmolzen und durch plastische Verformung 
geschlossen wird, kann je nach den an den Enden herrschenden Bedingungen stabil oder instabil sein. Dies 
erklart, warum die Wasserfuhrung in einer Ader gewohnlich nicht so instabil zunimmt wie bei einem 
Gletscherlauf. Ein eisgedammter See fliesst durch das Adersystem deshalb nicht aus, weil die Druckkraft 
auf das Aderwasser eher gegen den See hin gerichtet ist als von ihm weg. 

I. INTRODUCTION 

The physics of the flow of water in glaciers contains a rich variety of interesting problems. 
The mechanics and the thermodynamics of water flow through the intercrystalline vein 
system (Nye and Frank, 1973), through a thin sheet at the bed of the glacier, and through a 
tunnel at the bottom of the glacier or elsewhere within the glacier, have Uluch in common. 
At the same time these different flows can present apparent contradictions and delicate 
questions. For example, water flow through a subglacial tunnel can generate enough heat 
by friction to enlarge the tunnel in a catastrophic way; but water flow through the vein 
system, if it occurs, evidently does not normally do this. Why should this be so? During a 
catastrophic outburst from an ice-dammed lake does the water necessarily flow beneath the 
glacier within discrete channels or can it flood out into a basal sheet? When a catastrophic 
outburst is in full spate how can it end prematurely, before it has exhausted the supply of 
water? These are some of the questions we wish to discuss. 
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Fig. I. Vatnajokull ice cap , showing Grimsvotn, the subglacial ice-dammed lake, and the presumed route (broken line) of the 
ice tunnel system, 50 km long, under the glacier Skeioartirjokull . The road recently constructed across the outwash plain, 
Skeioartirsandur, in the path of the outbursts is shown by the broken line between the glacier and the coast. Contour heights in 
metres. From Bjornsson ([1975]). . 
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General mathematical treatments of the flow of water in glaciers have been given, in 
particular, by Rbthlisberger (1972), Shreve (1972), and Weertman ( 1972) . This paper has a 
different emphasis because, although much of the treatment tries to be general, we shall 
continually refer to a special and unusual phenomenon: the periodic draining of Grimsvbtn, 
the subglacial ice-dammed lake in the centre of the ice cap Vatnajbkull in Iceland; see 
Bjbrnsson ([1975] ), T6masson ([1975]) and the recent book by Thorarinsson (1974). 
The draining of the lake, which used to happen about every 10 years and now happens about 
every 5 years, is accompanied by an enormous outburst of water (ajokulhlaup) from beneath 
the ice edge to the sea, the outburst place being 50 km from the lake itself (Fig. I) . For 
example, the outburst of 1934 (Thorarinsson, 1953, 1957), which was a normal one for that 
period, carried at its climax 4 to 5 X 104 m 3 S- I of muddy water (about a quarter of the flow 
of the River Amazon, and more than that of the River Congo) bringing with it " icebergs as 
big as three-storeyed houses" . Almost the whole of the sandur, or outwash plain, some 
I 000 km2 in area , was flooded. But by the next morning the flow of the main outlet river, 
SkeiC\ara, had returned to normal. Any road along the south coast ofIceland had to cross the 
outwash plain and so it is not surprising that for many years none was built. Nevertheless, 
the construction of a road and bridges has been undertaken since the last outburst in 1972 
(when the maximum flow was 8 X 103 m 3 S- I ) in spite of the confident expectation of the next 
one in about 1977 or 1978. It is therefore practically important as well as scientifically 
interesting to understand the Grimsvotn phenomenon fully. 

There are many other examples of catastrophic outbursts from ice-dammed lakes and 
various different types are recognized; we may mention especially the accounts by 
Thorarinsson (1939) and Liestol (1956) and the useful short sumr,nary in the book by Embleton 
and King (1968) ; for other references see the paper by Whalley (1971 ) . W e do not attempt 
a full treatment of the whole subject here, rather we try to analyse in some detail various 
aspects and puzzles of glacier hydraulics which are thrown into prominence by the jokulhlaup 
phenomenon. 

Section 2 outlines our interpretation of the Grimsvbtn phenomenon and Section 3 deals 
with the physics of the lake seal in more detail. Section 4 sets up the general differential 
equations for non-steady flow in tunnels, and these are applied specifically to the 1972 
Grimsvbtn flood in Section 5 to e xplain the observed discharge hydrograph and the abrupt 
ending of the flood. Section 6 discusses the essential difference which can make a waterway 
behave stably, as in drainage through a vein, or unstably, as in a flood in a subglacial tunnel. 
Finally, we consider why Grimsvbtn does not drain out through the vein system (Section 7) 
and under what conditions glacial lakes in general will drain in this way (Section 8) . 

2 . AN O UTLINE INTERPRETATION OF THE GRIMsvbTN PHENOMENON 

The essentials of the Grimsvotn phenomenon as interpreted by Helgi Bjornsson and the 
author , building on the work of many previous writers, can be modelled as follows. In his 
separate paper, which is complementary to the present one, Bjornsson ([1975] ) has compiled 
the necessary detailed topographical information and has made numerical calculations based 
on the most accurate surveys. 

A geothermal area at the base of the ice cap, shown schematically in Figure 2, causes 
melting and thereby creates a depression in the upper surface. Thus the run-off from the top 
surface generated by the ordinary processes of ablation no longer flows entirely towards the 
edges of the ice cap, as it would normally do, but part of it flows into the depression. Water 
accumulates in a lake (shown shaded), generated both by the surface run-off and by geo­
thermal melting. In Grimsvotn roughly 25 % comes from run-off and 75 % from geothermal 
melting. Grimsvotn is almost completely covered by a floating plug of ice some 220 m thick, 
which is essentially an ice shelf. 
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It is commonly supposed that the floods from ice-dammed lakes start by the lifting of the 
ice dam by flotation (Stmm, 1938; Thorarinsson, 1939), and Thorarinsson ( 1953, 1957) 
suggested that this was the case with Grimsvotn- although, later on, incomplete topographic 
information led him to doubt whether flotation was possible in this instance (Thorarinsson, 
1965). Let us examine the flotation hypothesis. Suppose the water level in the lake at a given 
time while it is filling is L (Fig. 2). We can construct the broken curves B, obtained by reflecting 
the ice-cap surface in L and magnifying its vertical scale by a factor P1/( Pw-PI), where pi 
and pw are the densities of ice and water; the factor is about 10. To see the meaning of curves 
B, keep the top surface of the ice cap fixed and imagine the whole ice cap immersed in an 
ocean whose surface level is L. Curves B represent the bottom surface the ice mass would 
then need to have if it simply floated, like an iceberg, in isostatic balance in the water (the 
"iceberg" would need to have negative thickness outside points M and N) . 

We see that along DE and FG the ice is "grounded"; if water existed outside 0 and G in 
hydrostatic communication with the lake its pressure would be more than enough to lift the 
ice. Thus the absence of any such hydrostatic connexion is vital to preserving the lake. 
In plan view the grounding takes place over an annulus, an-d it is this that seals the lake. 

Figure 3 shows the critical part of the seal FG in magnified form and to scale, but with 
vertical exaggeration. The lake level now rises from L and so curve B also rises ( I I times faster). 
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Fig. 3. The critical part of the seal, to scale with "ertica/ exaggeralioll . 20. Fulllillts arc Iht .glacier bed and surface_ Topo­
graphyfrom Bjiirnsson ([[975] ). 
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The critical condition is reached when Breaches B' so that it just touches the bed curve at K; 
at this point the seal breaks . In three dimensions one has to visualize the inverted and 
magnified top surface moving upwards and eventually touching the bed surface; the point of 
contact of the two surfaces is the critical point K, where the width of the sealing annulus is 
reduced to zero. (To visualize the topology consider the intersection of a horizontal plane 
with a curved surface near a saddle point, and then tilt both surfaces together. ) 

In fact the flood occurs with the lake level still some 20 m below the level that this model 
would predict. According to Bjornsson ([1975] ) this discrepancy is unlikely to be due to 
errors in the survey, and in the next section we suggest an explanation based on the 
fact that the ice exerts slightly less pressure on the bed than would be given by the 
weight of a free column . (We may remark here that Glen 's mechanism (1954) would 
require a lake level 20 m above rather than 20 m below the prediction of the simple floating 
modeL) 

As soon as water penetrates the seal one possibility would be simply a slow subglacial 
overflow from the lake. There would be no jokulhlaup; a steady outflow through the seal 
would just balance the inflow to the lake. But we shall see (Section 6) that such a condition, 
although a steady state, is inherently unstable. This is the essential instability th~t is res­
ponsible for the jokulhlaup. 

Accordingly, a subglacial channel system is opened up unstably by the flowing water , 
which moves towards the edge of the ice cap, the preferred route (Fig. I), 50 km long, running 
beneath one of the outlet glaciers, Skeioanhjokull. Does the water flow under the glacier in 
one or more confined channels or tunnels , or does it possibly fl ow in the form of a continuous 
sheet at the glacier bed? The water is seen to emerge from beneath the ice front ofSkeioanir­
jokull in two major and several minor channels, and collapsed "cauldrons" visible in satellite 
photographs (Bjornsson , [1975] ) suggest that for 10- 15 km below the seal the water is in a 
channel ; but from an observational point of view the water could be equa lly well in a fairly 
wide shee t or in a tunnel for the greater part of its course. Of course, the fac t that the glacier 
itself does not surge forwa rd during the flood sets some limits to the type and extent of the 
water shee t ·that one could contemplate. Detailed calculation shows tha t the hypothesis of 
one or several tunnels gives excellent agreement with the observations, and therefore we 
favour this model. 

In a tunnel the water pressure p is less than the pressure Pi that would be given simply 
by the weight of the overlying glacier and so it tends to close by plastic deformation of the ice, 
but at the same time the frictional heat from the turbulent flowing water tends to enlarge the 
tunnel by melting (Rothlisberger, (972 ). The melting rate dominates and the flood grows 
catastrophically in the way envisaged by Lieswl (1956). 

Now we have to ask what stops it. It might be expected to continue at least until the level 
L of the lake fell to the rim J (Fig. 3). In fac t the flood stops after the water level in the lake 
has fall en only 100 m and is still 230 m above J (Bjornsson, [1975] ). The seal reforms- in 
spite of frictional melting by the torrential flow of water- and the suggested explanation, 
which differs slightly from Bjornsson 's ([1975] ), is this. As the lake level falls , so does the 
pressure in the tunnel. Although this causes faster plastic closing, it is overwhelmed at first 
by the melting rate. Later on, however, when the flood is very great, the lake level is falling 
very rapidly and so is the pressure in the tunnel. We show later that, if 7 m easures the time 
remaining before asymptotic catastrophe, the pressure difference tending to close the tunnel 
increases at least as fast as 1+ (70/7)3, 70 being a constant , and the associated strain-rate at 
least as fast as {I + (70/7) 3p, which is an extremely strong time dependence, approaching 
7 - 9 . Thus, quite suddenly, the plastic closure rate catches up with the melting ra te and the 
flood rapidly abates . The seal is reformed. 

This completes our qualitative outline of how the jokulhlaup starts and how it ends. We 
now examine the various assertions in more detail. 
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3. HYDROSTATIC THEORY. FILLING OF THE LAKE 

The hydrostatics of the seal can be presented in several different ways. It is instructive 
to look at it now from a slightly different point of view. 

Let Zb be the height of the glacier bottom (Fig. 4) and Zs be the height of the glacier 
surface, taking as datum the level of the eventual water exit at the snout of the glacier. The 
thickness of the glacier is given by h = Z.s - Zb. Let us consider the situation between 
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Fig. 4. Schematic section to illustrate the hydrostatics of the seal. 

jokulhlaups, while the lake is filling. At the glacier bed we may suppose there is a thin film 
of water at a pressure p, say. If s is a coordinate measured down-glacier parallel to the bed , 
the effective negative pressure gradient driving the water towards the snout is 

where the potential 4> is given by 

r/> = pwgZb + P· 

If we take p to be the ice overburden pressure Pigh, 

4> = pwg ( Zb + :~ h) . 

say, 

Figure 4 shows schematically a graph of r/> (s) obtained essentially by drawing the bottom 
profile Zb of the glacier and adding to it o.g I of the glacier thickness (it is similar to Rothlis­
berger's "water-equivalent line"). Point F on the bed is the uppermost point of the water 
film, where the glacier goes afloat. Here the pressure in the water sheet must equal the 
hydrostatic pressure from the lake. Thus the lake surface, at height zo, passes through v , the 
point on the curve of r/> vertically above F. The lake is now,sealed (with 4> > Pwgzo) between 
F and G. If we assumed that as the lake level rose the glacier ice did not move vertically at all, 
the curves to the right of F would all remain fixed, the intersection point v would move to the 
right and the seal at K would be broken when v reached M, the maximum of the r/> curve 
vertically above K. This would correspond to the hydrostatic argument of the last section. 
But it needs correction because the ice between F and K, if not melted sufficiently by the 
advancing lake water, will be subject to a buoyancy force which will bend it upwards and thus 
reduce the pressure at the bottom of the still-grounded ice. The reduction of pressure occurs 
because the submerged ice does not immediately attain isostatic balance and so acts on the 
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grounded ice as a buoyant inverted cantilever. The result is that p in Equation (2) will be a 
little less than Pigh, 4> will be correspondingly less and M will be lower. 

The magnitude of this effect may be crudely estimated by assuming the ice to be perfectly 
plastic with yield stress k. The maximum vertical shear traction the cantilever can exert on 
the grounded ice is k. Suppose the vertical shear stress thus set up drops to zero over a length 
L' of the grounded ice. Then, considering unit width, the force exerted on the bed from the 
weight of the ice in the length L', which is pighL', is diminished by kh, and thus the pressure 
on the bed will be Pigh-k (h/L') . If the transition length L' = !h, which is quite reasonable, 
this provides a reduction in pressure of 2k, which with a yield stress of I bar is just equivalent 
to the required 20 m of water. ( I bar is an appropriate value for k because the lake takes 
several years to fill a~d so the rate of deformation is correspondingly small.) So the effect of 
the buoyant cantilever in prising open the seal gives a good reason why the flood starts when 
the lake level is still 20 m below the level the simple lifting model would predict. Note that 
by the construction K lies, in plan view, between the summit N of the ice surface and the 
summit J of the bed, as we saw in Section 2 (these points are of course not necessarily true 
summits but only maxima in the profile drawn). The condition at the critical point is evidently 
d4>/ds = o. Ignoring the correction and using Equation (3), with h = Zs-Zb, this gives 

i {(; _~) Zb + Pi zs} = 0, 
ds pw pw 

or, in terms of the slopes of the upper surface IX and the lower surface {3, roughly 

IX = -nr{3. 

That is to say, above K the backward slope of the upper surface is one-tenth of the forward 
slope of the bed, a relationship that is already evident by inspection of Figure 3. 

Before the seal is broken, the thin water sheet at the bed of the glacier has a divide at K. 

Up-stream from K it flows uphill to the lake ; down-stream from K it flows towards the snout. 
We return to this point when discussing the role of the intergranular veins in Section 7. 

4. DIFFERENTIAL EQUATIONS FOR TIME-DEPENDENT WATER FLOW IN TUNNELS IN GLACIERS 

In this section we derive the general differential equations which govern. the non-steady 
flow of water in a conduit within a glacier, the conduit being simultaneously melted by the 
heat of friction and contracted by plastic deformation in the way discussed by Rothlisberger 
(1972). The conduit, which is assumed to be completely filled with water, can be thought dt 
as a normal internal glacier water-course or as a large tunnel associated with a jokulhlaup. 
The change of specific volume on melting, the work associated with the change of diameter by 
melting and plastic deformation , the dependence of melting point on pressure, and the 
matter of temperature gradients across and along the tunnel all make it necessary to be careful 
with the thermodynamics. Readers who prefer to skip the details may like to go straight to 
the final equations ( 16)-(20). Related treatments have been given by Rothlisberger (1972), 
who was primarily concerned with steady flow, Shreve (1972), Mathews (1973), and 
Weertman (1972). 

Fig. 5. The therll/ody"alllic J) ·J/elll . 
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Consider an inclined water-filled conduit (Fig. 5) of cross-sectional area S, which is a 
function of position s and time t. 2S/et is made up of two parts, one due to melting and one 
due to plastic deformation which we denote (2S/ 2t)PI . Thus 

is = v.m+(as) (4) 
2t 1 at PI ' 

where m(s, t) is the mass melted per unit length per unit time, and Vi = Pi - 1 is the specific 
volume of ice. IfQ (s, t ) denotes the volume of water flowing through a cross-section per unit 
time, the discharge, we may write the continuity equation for the water flow as 

cQ as 
--::;- +~ = vwm, (5) 
cs ct 

where Vw = pw - 1 is the specific volume of water. Eliminating '(S/2t between Equations (4) 
and (5) gives 

~ = -~+ mtlv, ( ~S) ~Q 

et pI cs 
(6) 

where tlv = Vw - Vi is the change in specific volume on melting. 
For the rate of plastic deformation we shall write 

Here Pi is the ice overburden pressure, p is the pressure in the water and Ko is a constant 
depending on the shape of the cross-section. If the cross-section were circular and we used 
the Glen flow law for ice, this equation would be exact and n would be about 3 (Nye, 1953) ' 
It is plausible to assume that even with a non-circular section the rate will be proportional to a 
high power of the pressure difference. 

To apply the first law of thermodynamics we consider the system consisting of a short 
length I of the conduit, the end boundaries to the system moving with the water; thus I is a 
function of sand t. As the conduit contracts by plastic deformation, work is done by the 
external pressure. In time St some ice will be melted and it is therefore convenient to place 
the cylindrical (or, more strictly, conical) boundary of the system so that it just includes the 
ice whieh is about to be melted . Thus the cylindrical boundary is fixed relative to the solid, 
but it moves because of plastic deformation. The mass within the system is fixed. The rate of 
work done on the system at the cylindrical boundary is then 

- pi (as) . ct pi 

The rate of work by the water pressure on the up-stream boundary is pQ and the total 
rate of work by both up-stream and down-stream boundaries together is 

- '( (~Q) l. 
(S 

The rate of work done by gravity is Qpwgsl, where gs is the s-component of gravity. 
total rate of work done on the system per unit length is 

c(pQ) ( 2S) - - ",- - p ~t + Qpwgs. 
IS C pI 

Thus the 

(8) 

We wish to know the rate of increase in internal energy of the system. The flow being 
turbulent , nearly all the water will be well mixed and at a tempera I ure liw (s, t), say, but at the 
ice wall there will be a thin boundary layer across which the tempt>.rature falls to lIi (s, t ) the 
melting point of ice appropriate to the water pressure. During time St the water within the 
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system consists of two parts: the water already present at time t and the new water being 
formed by melting. The total change of internal energy 8U is thus the sum of two terms: 

dOw 
8U = SipwcrTt 8t + ml8t{~u+ cr ( Ow-81)}. (9) 

Here cr is the specific heat capacity of water, d /dt is the derivative following the element, ~u 
is the difference of internal energy per unit mass between water and ice at the melting point, 
and the water is taken to be incompressible. The first term is the internal energy needed to 
raise the temperature of the already existing water; the second term is the internal energy 
needed to melt the new water and raise it to temperature Ow (the boundary layer is assumed 
to remain the same, gaining water on one side and losing it on the other). Note that in the 
first term the volume Si is left outside the differentiation because this part of the water remains 
fixed in volume. We are neglecting any contribution from kinetic energy. 

Ifwe neglect conduction of heat across the ends of our moving system, the heat input to the 
system is zero; so the first law of thermodynamics enables us to equate the rate of work given 
by Equation (8) with the rate of increase of internal energy given by Equation (9). In doing 
so we make use of the general thermodynamical relation 

~u = L-p~v, 

L being the latent heat per unit mass. Hence 

2(pQ) ( OS) dOw --,,--P ~ + QPwgs = Spwcr -d + m{L-p~v+ cr ( Ow-el ) } , 
cs et pi t 

and substitution for (as/ct) pi from Equation (6) reduces this to 

Q (PWgS- ~)- pwcrS d:tw = mL + mcr(Ow- Oi). 

( 10) 

Equation ( I I) has the physical interpretation that if the system is taken to be only the 
entering water volume Q without the addition made by melting, QPwgs is the work done by 
gravity, -Q op/ os is the work done by the water pressure at the ends, pwcrS (dew /dt) is the 
heat output used to raise the temperature of the water and the right-hand side is the heat 
output used in melting. However, to derive Equation (I I) on these lines raises questions 
about the work done against the lateral pressure and the shear forces- questions which are 
avoided by the slightly longer, but we hope clearer, treatment we have given. 

There is a f\jrther relation between the pressure gradient, the flow Q and the cross-section 
S of the conduit. Following Rothlisberger (1972) and Mathews (1973) we use the empirical 
Gauckler-Manning formula (Williams, 1970) for the mean velocity ii = Q/S for turbulent 
flow, thus 

_ _ R~ {_I ( _ (JP)}! 
u -, Pwgs Cl , 

n Pwg uS 

where R is the hydraulic radius (cross-section divided by perimeter) and n' IS Manning's 
roughness coefficient. This may be rewritten in the form 

with N = (S/R2)!pwgn'z. Since S/Rz depends only on shape and not on size, Equation (12) 
holds, with N constant, for any shape of cross-section, provided it remains geometrically similar 
(for example, a semi-circle) and of constant roughness as it changes in size. For the special 
case of a circular section N = (41T) l pwgn'2. 

Now consider the heat-transfer problem (Mathews, 1973). When water at temperature Ow 
flows turbulently down a tube of circular section whose walls are at temperature 81 the rate of 
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heat flow to the walls is given by an empirical relation (M cAdams, 195 I , p . 168) between three 
dimensionless numbers, the Nussel t number (Nu), the R eynolds number (Re) and the Prandtl 
number (Pr ) : 

H ere 

(Nu) = hDIK, (Re) = ilDpw I'YJ , (Pr ) = YJcr lK, 

where h is a heat transfer coefficient , D is the diameter of the tube, K is the thermal conduc tivity 
of the fluid , il is the m ean velocity of fl ow, and YJ is the viscosity of the fluid . Equation ( 13) 
fits observations for (Re ) between 104 and 1.2 X 105 and (Pr ) between 0.7 and lOO, with 
LolD > 60, Lo being the length of the tube. The rate of heat flow to the walls per unit length 
of tube is , in terms of h, 

and in our case this is also 

The Prandtl number is a ma terial constant which for water is 13.5. H ence we find 

with 

(Re) 

The equations for non-steady flow in a conduit may now be collec ted together : 
Geometry and flow of ice : . 

cS 2i = vim - KoS(pi - p )n, 

Continuity : 

( 17) 

Flow of water: 

Energy: 

Heat transfer: 

(20 ) 

In the five equations ( 16) to (20) the course of the conduit, . \ ', and the ice overburden pressure 
Pi (S) (or Pi (S, t )), are taken as given , and so there are five unknowns Q, S, p , m and Ow , which 
are all functions of sand t. (Oi is a known function of p. ) Note that only the heat-transfer 
equation depends upon the assum ption of a circular cross-section. 
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5. ApPLICATION OF THE EQUATIONS TO THE GRIMSVOTN J O K ULHLA UP 

(a) The main part of the flood 

We make the hypothesis that the water in the Grimsvotn jokulhlaup flows in a tunnel or 
tunnels "rather than as a sheet, and we look for a self-consistent solution of the equations 
corresponding to this case. If a tunnel is at the bed of the glacier, and we are not compelled 
to assume that it is, a crucial question will be whether in the putative solution P < Pi every­
where . For if this condition were violated the solution would not be valid; the water would 
flood outwards from the tunnel, lifting the ice and forming a sheet. 

First we simplify the general differential equations. It is found , not surprisingly, that the 
temperature difference 8w - ei is a few d egrees at most and so we neglect mcr ( ew - 81) in 
comparison with mL in Equations ( [g) and (20). 

The role of advection in the problem can be confusing; the following explanation is based 
on calculations with Equations ( [g) and (20). If the tunnel were simply a pipe with perfectly 
insulating walls, the rise in temperature of the water as it lost potentia l energy in falling a 
distance Zo from the lake to the exit would be gzo/cr = 3.0 deg. On the other hand, if we 
allow cooling by the ice walls, assume no generation of heat within the tunnel, and imagine the 
tunnel to be fed with hot water at the top end, the water temperature will fa ll exponentially . 
At the high Reynolds numbers during the flood the distance for the temperature excess to 
decrease by a factor e is rather large: [4 km a t the start of the flood and go km at the end 
(the total tunnel length is 50 km ). From this point of view the transverse h eat transfer is quite 
inefficient . But , of course, there is generation of heat within the tunnel, by friction, and it 
would be possible, in principle, for the water to get either hotter or colder as it travelled , or to 
remain at the same temperature. To take this last case, if the tunnel were fed with water at 
o.gOe at the start of the flood (when (Re) = 1.4 X [0 7 ) or at 5.4°e at the peak (when 
(Re) = 1.5 X 108) , there would be no gradient dew/dt; the friction heat would just supply the 
amount of hea t that can be transferred to the walls and used for melting, with none left over to 
heat the water any further. Of course, the water temperature ew has to exceed 81 for the 
necessary heat transfer to the walls to take place, but o.gOe to 5'4°C is eno ugh for the purpose 
(from this point of view the heat transfer is quite effi cient ). The outflow temperature during 
the [954 flood was measured by Rist ( [ 955) as 0.05°e, but there is no information about the 
lake temperature. Thus it is not unrea sonable to try taking dew/dt = 0 in Equation ( [g) . 
W e shall do so because it leads to excellent agreement with the other observations . dew /dt = 0 
means there is no advection term in Equation ([9), but it would be wrong to interpret it to 
mean that frictional heat generated at a given place is deposited locally , for we have seen 
that the characteristic travel distance is [4 to 90 km. (Mathews' ( [973) theoretical trea tment 
of the advection effec t, discussed qualitatively by Liest01 ( [ 956), is the sam e as ours, but with 
the difference that in his case the water enters at ooe and heats up by friction tl)wards an 
asymptotic value. He points out that this case presents a problem because near the tunnel 
entrance there is then no thermal gradient to transfer hea t to melt the walls . Gilbert' s fuller 
solution ( [97[ ) allows the water to enter above ooe. ) 

The four equations ( [6) to ( [g ) now reduce to : 
Geometry and flow of ice: 

(p < PI ), 

Continuiw: 
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Flow of water : 

Energy: 

for the four unknowns Q, S, P and m. Equation (20) merely serves to calculate 8w-8t, if 
required. We recall that the heat-transfer formula ( 13) has only been tested up to Reynolds 
numbers of about IOS, while the Reynolds number during the flood is in the range 107 to 108 ; 

moreover, the formula is only for a circular section. Thus it is fortunate that Equation (20) is 
essentially independent of the other equations; it means that our results do not depend on the 
detailed applicability of Equation (13) to our problem. 

The quantity (Pwgs- op/os) that appears in both Equations (23) and (24) is - 01>/05, 
namely the negative gradient of a potential 1> defined as 

where <:t is the height of the tunnel at given 5 and I. If the tunnel is at the bed of the glacier 
this is the same definition as Equation (2). 

To obtain the solution appropriate to the growth of the jokulhlaup we now make the 
crucial assumption that melting of the tunnel is so fast that the rate of plastic closing is negli­
gible in comparison, the justification being that this assumption leads to excellent agreement 
with the observed Q : I relation. Thus we neglect the last term in Equation (21). It follows 
from Equations (2 I) and (22) that 

This means that, if there were no change of volume on melting, Q would be uniform down the 
tunnel at any given time; the melt water would not add anything to the flow because its 
volume would be needed to fill up the extra space made in the tunnel. In fact we see that the 
contraction associated with melting leads to a slight decrease in Q with 5 (later results show 
that this is less than I % down the length of the tunnel). 

Eliminating m and Q between Equations (2 I), (23) and (24) we have 

where 

as - = K S4/ J 
cl " 

In the expression for K, both N , which depends on tunnel roughness and shape, and the 
potential gradient 01> /'05 are functions of 5 and t. But the space average value of - o4> /os, being 
simply the difference of potential 1> between the two ends of the tunnel, is pwgzo/lo, where <:0 

is the height of the lake level above the tunnel outlet and 10 is the length of the tunnel. Zo 

changes by only 8 % during the flood and so we shall treat K, as a constant, constructed from 
average values of N and -o4>/ (1s. Then Equation (27) integrates to give 

where I = 0 is chosen as the time when S becomes infinite. S here is to be regarded as the 
average cross-section down the length of the tunnel. 
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The corresponding differential equation for the time development of Q is obtained from 
Equation (27 ) by using the Q : S relation in Equation (23 ), as follows: 

~; = K 2 Qs /4, (30) 

.where 

_ ~ ( Oc/»" /8 
K2 - 3LN 3/8 - os . 

Again , we have treated }( and oc/> /os as constants and we are treating Q as uniform with J . 

Equation (30) integrates to give 

Q = (_--±-)4. 
K2t 

The most accurate discharge hydrograph (Q : t relation) made for a jokulhlaup from 
Grimsvotn is the one by Sigurjon Rist for the 1972 jokulhlaup (Rist, [1974], p. 57 ) which is 
reproduce-d here as Figure 6. I t shows the separate discharges from the three main outlet 

I I I I I I I 
CU METERS/ SEC 

I I 
6000 

5000 

4000 

3000 

2000 

I 
1000 

o 

CII K/LOMETERS 

3,2 

SKEHJARA ! 
,1\ ~ I 
: I YWW SUMMATION CURVE 
I' 
1\\ 20 

I 1\ 
/ 1 \ 

I / \ 
I \ 
I \ 

I 
HYOROGRAPHS~I-7 I/ 

1.5 

\ 

\ /.0 

5 

~- r- o 
I 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 282930 31 I 2 3 4 5 6 

I' MARCH 1972 APRil ----1 
Fig. 6. Hydrographfor the 1972 jokulhlaup . The discharges of the three lIIaill outlet rit·u s Skeioara, Gigja a1/d Sula are shown 

separately by the broken curves. Measurements by Sigurjon Rist (reproduced fro III fig. 3 of Risl (l 1.9741 ) by permission 
of the editors of Jokull). 
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rivers. The three discharges are summed . in Figure 7 to give observed values of In Q : 1 
which are compared with the predictions of Equation (32) with the parameters chosen to 
give the best fit (Kz = 7.45 X 10- 7 m - 3/ 4 s - 3/4 with the asymptote 1 = 0 at I 1.00 h on 30 March). 
The flood falls abruptly 6.5 d before Q would be theoretically infinite . . 
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Fig. 7. The sum of measured discharges ill Figure 6" (open circles alld broken curve) plotted logarithmically and compared with 
Equation (32) (full curve ). The close fit of the rising limb with theory is remarkable. 

The excellence of the fit between observation and theory up to the flood peak is rather 
astonishing. Although Rist's estimated error in the observations of Q is ±20% they fit the 
theoretical curve to within about 4%. The plotted points were obtained (by Bjornsson) from 
his summation of Rist's graphs and they show no observable systematic deviation from the 
theoretical curve-only random deviations. I suggest that, while the method of observation 
(from a helicopter, sighting the water level in the rivers against fixed marks and measuring the 
geometries of the channels after the flood was over) may have given a 20 % systematic error, 
the random errors are much smaller. In any case the agreement with the predicted analytical 
form gives confidence in the various simplifications that have been made in the theory. Since 
the index 5/4 in Equation (30) is close to I the Q : 1 relation is not far from exponential, but 
nevertheless very distinguishably different, as can be seen by the departure from a straight 
line in Figure 7. In fact a plot of In Q : In (- I) gives an exponent in Equation (32) of 
-4.00±0.06. The constant N calculated from Equation (3 1) is 709 m - S/3 kg, which for a 
single tunnel of circular section corresponds to a Manning roughness coefficient n' = 0.12 
m-I ll s. According to Rothlisberger (1972, p. 181) n' could be expected to range from about 
0.01 m-Ill s for a straight smooth pipe to o. I m- Ill s for a meandering boulder-strewn torrent 
at the bed. Our calculated n' lies at the rough end of the range; this is to be expected if there 
are several tunnels operating at once (as is observed at the outlet), and if their sections are 
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non-circular. Moreover we have ignored the effect of the transport of the large amount of 
sediment and boulders. 

After the main peak on 23/24 March there is a subsidiary peak which is associated with 
water having a different deuterium content. This suggests that , after the main outburst from 
Grimsv6tn , some water was released from a different storage place (Bj6rnsson , personal 
communication). W e note that , provided this water used the same tunnels as the main flood 
from Grimsvotn , it makes no difference to the potential gradient or to N, and so the rising 
part of the Q : t curve is quite unaffected by it. The discharge up to the fl ood peak is deter­
mined by the potential gradient and by the growing tunnels , not by intermediate storage 
reservOIrs. 

K, can be es timated from Equation (28) as 4.91 X 10- 7 m- Z/ 3 s- ' , and 
gives the plot of In S : I shown 111 Figurt' 8. 
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W e have seen that Q during the growth stage is very nearly uniform with s, and if N were 
uniform we could d educe that Sand d</> /ds were also uniform. </> would be linear in s. But 
non-uniformity in N, which is affected both by roughness and by the shape of the cross-section, 
means that we cannot treat </> as exac tly linear in s. (This is a pity, because if </> were strictly 
linear in s we could go on to d educe all the d etails of p(s, t ).) Figure 9 (to scale) shows a 
possible curve, labelled </>" for </> (s) near the start of the flood ' (but after the melting rate has 
dominated plastic contraction ) . The top end is fixed by. the lake level L, above the position 
K of the seal. Curve B in Figure 9 represents PwgZb (S) and may be thought of as the bed of the 
glacier with the height scale translated into a scale of water pressure, If we assume that the 
tunnel, at any rate near the top end , is at the bed of the glacier ( Zt = Zb), the water pressure 
p(s) is simply the difference between curves </>, and B. We want to compare it with the ice 
overburden pressure Pi (S), which we shall assume is Plgh. Accordingly we plot Pigh upwards 
from the bed curve B as a base, to give curve G' (Rothlisberger 's "water-equivalent line"), the 
actual glacier surface being G. (Before the seal was broken the po tential </> followed curve G', ) 
If G' is above </> " the ice pressure PI exceeds the water pressure p and the tunnel tends to close 
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plastically (although of course it is enlarging very much faster by melting). But if G' chanced 
to be below <p, the water pressure would exceed the ice pressure, the ice would lift from the 
bed, the water would spread out into a sheet and the tunnel model would have broken down. 
At the other extreme, if the bed curve B happened to lie above <p, at some place, the water 
pressure would be negative relative to atmospheric pressure. At a negative pressure of about 
1 bar cavities of water vapour would form. 
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Fig. 9. LongitudillQ/ section of Skeidardrjokull during the jokulhlaup, to scale with vertical exaggeration X 20. The vertical 
scale is height translated into water pressure. B, glacier bed; G, glacier surface; G' , water equivalent line; r/>" r/>2 potentials 

. at start and end of flood ; L" L2 lake levels' at start and end of flood. T opography from Bjornsson (r 1975] ) . 

We have drawn <p, as shown in Figure 9 bearing in mind that, with uniform N, <p, would 
be linear with s and that the end points are known. <p, cannot lie too far below G'; for example, 
if 4>, were drawn 20 bars below G' in the lower part of the glacier, Pi - p would be unacceptably 
high; the melting rate would not be enough to overcome plastic closing. 

As the lake level falls curves G' and B remain fixed, by definition , but <p (s) must fall. <P2 
shows a possible curve for <p (s) at the end of the flood. The top end is fixed by the new lake 
level L2 and we have simply pivoted the curve about the end point D . The construction in 
Figure 9 shows that the value obtained for Pi - P is very insensitive to the position of the bed. 
Or, put in another way, the value obtained for Pi - p depends very little on whether the 
tunnel is assumed to be at the bed of the glacier or at some higher position. 

(b) How does the jokulhlaup stoP? 

According to Bjornsson's calculations the flood abates when the lake level L2 is still some 
230 m above the level of the saddle point J (Figs 3 and 9). At first sight this is surprising. 
Once the flood has started why does the lake not drain out as far as the height of its rim will 
allow it ? Bj6rnsson notes that the end of the flood corresponds roughly to the moment when 
the lower surface of the plug of ice , 220 m thick, that floats on the lake falls to the level of J. 
I believe that this is a coincidence and that the flood would stop punctually as observed even 
if there were no ice plug on the lake. The reason is as follows . 

Although in, our approximate calculation we have neglected the plastic contraction of the 
tunnel in comparison with the enlargement by melting, we can now estimate Pi - p, for this is 
the difference between the fixed G' curve and the changing curve for 4> in Figure 9. During 
the flood the lake level falls 100 m. If we accept the lines drawn for 4>, and <P2 in ·Figure 9 the 
resulting increase in (pi - p) near the top of the tunnel would be of the order of 20 bars. This 
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would represent an increase by a factor of about five. W e cannot be precise about the magni­
tude of this factor because there are several possible complications that affec t the course of 
the 4> curves; therefore we do not insist on the fine details of Figure 9; the essen tia l point is 
that the drop in lake level causes a very significant increase in the pressure difference that 
tends to close the tunnel. The effect is especially marked near the top of the tunnel, and it is 
worth noting that the collapsed cauldrons, reported by Bjornsson as occurring 10- 15 km 
below the seal, are in just this region. 

Ifwe make the very conservative assumption that the pressure difference trebles, the plastic 
contraction, which is proportional to the cube of the stress, increases by a factor of 27 and is 
now more than enough to overcome the enlargement by melting. When the two effects just 
balance, the flood is at its maximum. Then the tunnel contracts plastically and the flood 
comes to an end. 

It is crucially important to notice that the effect of plastic contraction d oes not simply 
increase gradually with time as the lake level fall s; on the cont ra ry it grows extremely suddenly 
at the peak of the flood . There are two reasons for this. First, the fall in lake level is fa r from 
steady. If we write T = - t, so that T is the time remaining before the asymptote where 
Q = 00 would be reached, we have seen that Q ex. T-4. This means that, even if the lake had 
vertical sides so that the rate of fall of its level was proportional to Q, its level would be given by 

Zo = zoo-EoT - 3 , 

where Eo is a constant and Zoo is the starting value of Zo at T = 00. Second, because PI - P 
varies linearly with the lake level (Figure 9), it must be of the form 

Pi - P = P oo{ 1 +(TO/ T)3}, (33) 

where P 00 and TO are constants. (It is preferable to keep a cons tant term in this expression, 
rather than having PI - P ex trapolate to zero as T -+ 00, because, of course, the relation does 
not hold during the earlies t part of the flood when plastic contraction may sti ll be comparable 
with the m elting rate.) Therefore the plastic deformation rate is proportiona l to 

This time d ependence means that the plastic deformation rate remains fairly constant and 
then increases very fast around T = To, becoming effectively like T - 9. The fact that the lake 
has sloping sides makes the increase even faster. 

This very abrupt growth in the rate of plastic con traction has two consequences. On the 
one hand it makes it legitimate to neglect plastic contraction during the fl ood and still get 
excellent agreement with the observed Q : t relation . On the other hand , it explains the 
sudden termination of the Q rx T - 4 relation without an observable transition period. 

Figure 10, which is partly calculated and partly schematic, shows strain-rate S- l IdS/dtl 
versus time. M is the opening rate due to melting, while P is the contrac tion rate due to 
plastic deformation. During the main part of the flood , plastic contraction being small, M 
may be calculated from Equation (29); this gives the surprisingly simple relation 
S-l IdS/dtl = 3T- 1, independent of K" shown by the full-drawn part of M. C urve P is calcu­
lated from Equation (34) by making it intersec t the calculated M at the observed time of flood 
maximum, because here the t~o rates must very nearly balance . The further assumption that 
(pi - p) trebles during the flood fixes curve P completely. If we had assumed, instead, a five­
fold or even greater increase in (pl - P) and had taken into account the slope of the lake sides, 
curve P would start at a lower level, would remain low for longer and would turn upwards 
even more suddenly to cut M at the same point. 

The remaining broken parts of curves M and p are diagrammatic on ly. W e may imagine 
an ordinary sub-glacial drainage tunnel existing up to point w, with M and P in ba lance. At 
this time the lake rises to the critical level and M begins to exceed P. A plausible extrapolation 
of the calculated part of M places w on I March, which is the day the local people sensed a 
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sulphurous smell at the outlet. On 13 March they were in no doubt that a j okulhlaup had 
started. M was now much larger than P, and it remained so until very shortly before the fl ood 
maximum a t midnight on 23/24 March . The details of the curves of M and P near their 
intersection are not certain, because we have no solution when P is comparable with M, and 
we must remember the spatial variation s, but we could argue as follows. At the intersec tion 
point where M = P , dS/dt = 0 and S is a maximum. d4> /ds is decreasing and so Equation 
(23) suggests that Q. is also d ecreasing. Equation (24) then implies that m is d ecreasing. T hus 
the maximum of the curve M in Figure 10 occurs before the intersection point, as indicated 
by the broken line (the full part being calculated on the assumption that P ~ M). Eventually 
both M and P fall back to their original values . 
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Fig. la. The difference between the rate oJ opening by melting, M, and the rate oJ closing ky plastic deformation , P , during the 
1972 jokulhlaup. Full Cl/rves are calculated 011 the assumption that P ~ M ; broken curves are diagrammatic O/l ly. 

To summarize, our theoretical derivation of the Q ; t relation in Figure 7 during the growth 
of the flood has depended essentially on the conservation of energy, and on the Gauckler­
Manning formula in the form of Equation ( 12 ) with N constant. Thus the argument has no t 
depended on assuming any particular shape of cross-section or on whether the water is in one 
or in several different tunnels, but it has assumed that the cross-section or cross-sec tions 
remain geometrically similar as they grow. It does not d epend on there being other storage 
places besides Grimsvo tn, provided they drain through the same tunnel system. The argument 
for the sharp cut-off of the flood by plastic contraction of the tunnel is equally independent 
of the cross-sectional shape, or of whether there is just one tunnel or several ; for it simply 
uses the fact that the plastic contraction rate is proportional to a high power of (pi - P). This 
insensitivity to details makes the close agreem ent of theory w ith observation , which is startling 
at first sight, rather less surprising. 
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6. INTERGRAN ULAR VEINS AND JOKULHLAUPS 

If the intergranular vein system in a glacier is a connected network as proposed by Nye 
and Frank (1973), water, being the denser medium, will flow downwards. Viscous resistance 
to the flow will generate heat which will melt and tend to enlarge the veins. The realization 
of this led Lliboutry ( 1971 ) to ask why, in that case, the whole glacier does not melt itself 
away in a rather short time. He suggested that the answer is that the vein system is blocked. 
Another answer could be that it is the limited supply of water to the vein system that prevents 
catastrophe. Vein flow, assuming that it does occur, and jokulhlaup flow clearly have some­
thing in common. But what is the essential difference? 

As Rothlisberger has shown (1972), when water flows through a tunnel, the rate of opening 
by frictional melting can be balanced by the rate of closing by plastic deformation. I t is also 
possible that this is essentially what happens with the vein system in a glacier (Shreve, 1972), 
so let us trace the consequences of such a supposition . When the "tunnel" is a vein, its 
cross-section has three corners of molecular sharpness; it might be held (Nye and Frank, 1973) 
that these wou ld produce virtually infinite stress concentrations and thus make plastic con­
traction possible with merely an infinitesimal underpressure. This is incorrect . Dr R. G. 
Oakberg (to be published) has now calculated the stress distribution that would be produced 
at a vein if the ice were isotropic and obeyed the Glen flow law. The stress near the vein corners 
is biaxially hydrostatic with no infinity, as conjectured by ye and Mae (1972, p. 98). This 
means that, for its response to externally applied stress, the triangular vein may be replaced 
by an equivalent tube of circular cross-section. 

The differential equations for the time-dependent water flow in a vein may be written 
down in close analogy with those for a tunnel, Equations (16)-(20). We neglect the small 
pressure difference across the curved vein surface and also the effect of surface energy. We 
assume PoiseuiJle flow (with the same equivalent circular cross-section) and perfect heat 
transfer so that Bw = Bj • Using the pressure: melting-point relation dBi/dp = - C, where C 
is a p ositive constant, means that the convective term in the energy Equation (19) IS 

dBw ( OBj aBi) ( ap OP) 
pwcrSTt = pw cr S at +Q Ts = -pwcrC sa;+Q os . 

T hus Equations ( 16)-( 19) are replaced by: 
Geometry and flow of ice: 

- = v'm - 2S --cS (Pi - P)1I 
et I nA. ' 

Continuity: 

as cQ 
?t = vwm-Ts' 

PoiseuiJle flow of water: 

Energy: 

{ 
cp} ep 

Q Pwgs- ( I -y) cs = mL - yS 2i' 

y = PwcrC = 0.3 I 3 is a dimension less constant whose appearance in the energy equation 
represents an effect noted by Rothlisberger (1972) in connexion with flow in ice tunnels. 
In Equation (35) we have used the form from Nye ( 1953) appropriate to a circular cross­
section, A. being a constant in the Glen flow law. 
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With this model we can first ask how much underpressure in the vein is needed to provide 
enough plastic contraction to compensate for th e fri ctional melting. Putting 0/ at = 0 in 
Equation (35), substi tuting from Equation (38) for m and from Equation (37) for Q gives 

( Pi - p) n Vi { OP}( ap) 
nA". = Ifm'Y]L pwgs -( I - y ) as pwgs -as s. 

W e choose a ve rtical vein (gs = g ) and estimate ep / cs ~ Pig; then 

(
ftl - p) n = gZ(Pw - PI + ypt) pw - PI S 
nA..,. 167r'Y]L· Pi . . 

For a vein of circular section 20 fLm in diameter this gives a pressure difference between ice 
and water (Pi - p) of 0.6 bar (6 m head of water) . Thus the underpressure in a vein relative 
to the surrounding ice is not large and for many purposes we can neglect it. But if we neglect 
it altogether t.here is nothing to prevent the vein enlarging by melting and, if it had access to 
a n unlimited supply of water, growing indefinitely large. 

So plasti c contraction of a vein to balance the frictional melting makes possible a steady 
state of the R othlisberger type . But is the steady state stable against perturbations? The 
answer is yes and no. If the pressure difference be tween the ends of the vein is kept fixed , the 
steady state is unstable (as plausibly asserted by Whalley (197 I , p . 172) for Rothlisberger 
cha nnels). But if the vein is fed from a reservoir it may be stable, as we shall see in a moment. 

First we show the instability for fixed pressure by considering the thought-experiment of 
Figure I la . A reservoir A, supplied with water from an inlet pipe c, is connected by a short 
length of ice tunnel with circular cross-section (the model vein) to another reservoir B, the 
tunnel being subjected to a fixed ice overburden pressure Pi . The slope of the tunnel is 
arbitrary. The object is to set up a R othlisberger-type steady state . We do this by providing 
both A and B with very large capacity · overflows at fixed heights, and we always maintain 
sufficient flow through c to ensure that the water levels remain at three heights. Thus the 
pressures PA and PE at the two ends of the tunnel are fixed . There will now be only one cross­
sectional area S of the tunnel that will give steady conditions (pressure differences and 
gradients being fixed , the balance Equation (35) decides m/S, the energy Equation (38) 
d ecides Q/S, and then the Poiseuille flow Equation (37) decides S). Let the cross-section be 
chosen accordingly, and call it So. The state is now steady. 

In the general non-steady state, when pressures and conduit gradients are held fixed, 
Equation (37) implies Q oc SZ and hence, by Equation (38), m oc S ' . Thus in Equation (35) 
the contribution to as/at from m elting is proportional to Sl while the negative contribution to 
os/ at from plastic closing is proportional to S. The steady state occurs at the intersection 

A A 

o b 

Fig. 11. Thought-experiments to test stability of a tunnel or vein which is simultaneousry opening by melting and closing by 
plastic diformation . At the outflow end the pressure is fixed. Arrangement (a) with the inflow pressure fixed is unstable; 
arrangement (b) with the inflow rate fixed is stable, provided r~servoir A has an area less than a critical value. 
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point R (Fig. 12) where the contributions balance. If S > So, the melting rate exceeds the 
plastic closing ra te and so the' cross-section of the tunnel increases unstably (less water over­
flowing from A). Similarly if S < So the cross-section diminishes unstably to zero (more water 
overflowing from A). 

W e can achieve stability by changing the system to F igure I I b. T his arrangement is 
identical to that in Figure I la except that there is no overflow pipe for reservoir A. We start 
with the tunnel having cross-section So and with the levels exa ctly as befor~-but in order to 
maintain these levels we have to reduce the inflow from c by the amount that formerly over­
flowed from A when we had the steady sta te . We keep this inflow fixed. Then we have set up 
exactly the same steady state in the tunnel as before. 

When the steady state is perturbed the level of water in A can change, and so to examine 
stability we must consider the combined system of reservoir and tunnel together. It is shown 
in Appendix A that for sm a ll disturbances the stability d epends on the surface area of the 
reservoir A: below a certain critical area the system is stable; above this area it is unstable. 
(H. Rothlisberger had already surmised this behaviour and his letter to m e on the question 
led to the calculation given in Appendix A.) The system illustrated in Figure I la, which we 
have already seen to be unstable, is equivalent to having an infinite reservoir. The stability 
condition does not depend on there being a fixed inflow into reservoir A. The inflow represents 
a forcing term which m erely serves to determine what steady state one has. 

I~ ;I 
mczl t ing ra t cz 

0(5 2 ~ 

plastic c losing 
ratcz 0(5 

50 5 

Fig . 1 2 . IdS/dtl versus S Jor the unstable arrangement oJ Figure Il a. 

The differential equation for small perturbations of cross-section of the tunnel is second­
order and linear. Mathem a tically , instability arises because the damping coefficient can be 
negative. At the critical reservoir area the damping is zero, and so at and around this area 
the system oscillates, stably or unstably. For small reservoir areas the system is over-damped 
and there is no oscillation . Similarly for large areas a disturbance grows unstably without 
oscillation. The critical area of the reservoir is very much greater than the cross-section of 
the tunnel or vein in all practical cases. 

The analysis described is for a length of tunnel that is short enough for us to be able to 
regard the pressure gradient, discharge, cross-section, and the other variables as changing 
only in time and not in space. A study of the behaviour of spatial variations would be interest­
ing but will not be attempted.in this paper ; Nye and Frank (1973) suggest that kinematic 
waves will travel along a vein. However, the present analysis goes far enough to show that the 
stability of a tunnel or a vein in a Rothlisberger-type balance d epends on the end conditions . 
The pressure being held fixed at the outflow end, the system is unstable when the inflow is held 
at fixed pressure, but stable when fed from a reservoir of small area. The latter combination 
is normally appropriate to a vein in a glacier. I suggest that the stabili ty of this combined 
system of vein and small reservoir explains not only why veins do not normally grow catastro­
phically in size, but also why they generate just the right underpressure to balance melting by 
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plastic contraction. This ceases to be remarkable as soon as one realizes that it is merely a 
consequence of the tendency to seek a stable steady state. On the other hand, feeding a tunnel 
from a reservoir at fixed pressure is an appropriate model for draining a large lake and the 
instability of this configuration is responsible for jokulhlaups. If it were not for this instability, 
the lake level in Grimsvotn would remain at the critical level for lifting, and the lake would 
simply overflow gently through a subglacial drainage system, .its outflow being balanced by 
its inflow. 

When a tunnel is growing unstably (Fig. 10) there are two stages: at first the melting rate 
is still comparable in magnitude with the plastic closure rate, although of course it is faster. 
In the second stage the melting rate is considerably faster. In Section 5a it was the second 
stage that we analysed in detail, because we treated the plastic closure rate as negligibly 
small. We have not given a detailed mathematical analysis of the first stage (which would 
include all the details of the variations with s), but we have identified in this section the 
essential feature that causes instability. 

7. VEINS AND GRiMSVOTN 

In view of the argument just given why does Grimsvotn not drain out through the inter­
granular veins long before the critical level for floating is reached? After all, it is essentially a 
reservoir at fixed pressure. 

We have already noted (Section 3) that before the seal at K (Fig. 3) is broken a thin water 
sheet at the bed of the glacier up-stream from K is driven uphill towards the lake, not away 
from it. It is simple to extend this argument to include the intergranular vein water as follows. 

Following Shreve ( 1972) define the potential ,p(x, z) by 

where p is the pressure in the veins and Zo is the height of the top surface of the lake. The 
effective pressure gradient driving the water is then - grad,p . This definition of,p is the same 
as Equation (2), except that it now applies to veins in the interior of the glacier rather than 
only to the bed, and the zero level for potential has been changed. 

Neglecting the underpressure in the veins, take p as the overburden pressure of the ice at 
the point (x, z) in question, plg(zs-z) . Then 

,p = ( pw-Pl)gZ - pwgzo+ Pigzs, 

The equipotential ,p = 0 is 

Zs = zs (x ). 

Pi 
Z = Zo---- (Zs-zo) = Zo- IO (Zs -Zo)· 

pw-Pi 

This is the curve ANC in Figure 13a, obtained by reflecting the surface of the glacier in the lake 
level and exaggerating the scale by a factor of 10; it is the same as curve B in Figures 2 and 3 
and represents the bottom surface the ice would need to have to float in isostatic equilibrium. 
AF is the hypothetical bottom surface of the ice in contact with the lake. The other equi­
potentials in Figure 13a are obtained by simply translating the curve ,p = 0 up and down. 
If the veins made the ice isotropically permeable the lines of water flow would be orthogonal 
to the equipotentials, but even taking account of anisotropy the only result we need is that the 
vein water will flow from higher to lower </>. When the glacier bed is as shown, before the seal 
is broken, clearly the vein water is forced towards the lake. 

The effect of the underpressure in the veins is to reduce p, and therefore </> , throughout the 
ice, thus lowering the potential barrier; the reduction could correspond to a few metres of 
water head. 
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Fig. 13. (a l t.·qllipotflllin/ , p " ' '''"- INl lpr within IlIr ia Il ear all ice-dammed lake .<IIeh n., Grimsl,iit ,/. (b ) Schematic equi­
potentials for vein-wot" whfll 0/1 icr-dammed lake does not reach bedrock. 

8. VEINS AND A LAKE PERCHED ON THE ICE 

The foregoing analysis is readily extended to the situation of a glacier lake that does not 
necessarily reach bedrock. Figure 13b shows an idealized section through such a lake which 
has a horizontal ice bottom at .(; ,. Because a point (x, z) may now have both ice and water 
above it, the vein pressure p in Equation (41) is to be taken as the overburden pressure due to 
the overlying ice and any overlying water that may be present. The equipotential 4> = 0 and 
those above it are the same as before. To draw the equipotentials below it we need only 
observe that 04>10.(; = (pw - p;)g in ice and o4> lc .(; = 0 in water. 

If water is to escape from the lake by draining through the veins, the glacier bed must be 
everywhere below the equipotential 4> = 0, because otherwise with an impermeable bed there 
would be no path that did not cross the forbidden region ANC of higher potential. N is a critical 
point. In terms of ice freeboard H, if the bed is less than IOH below the lake level the lake will 
not drain through the veins. But if the bed lies below this critical depth the lake may drain 
through the veins, making use of the instability appropriate to a large reservoir of fixed 
pressure. 

It appears that this is why glacier lakes, particularly marginal lakes where the glacier 
depth is small, are able to exis t at all in spite of the porosity provided by the vein system in 
the ice; and this is also why lakes in the middle of temperate glaciers, where the ice is deep, 
are seldom if ever seen. It is interesting to compare this explanation for marginal lakes with 
that given by Shreve (1972, p. 212); as far as I can see the explanations do not conflict, 
although they differ in emphasis. 

A lake sealed in this way can empty suddenly if forward motion of the glacier establishes 
a path, say a crack or crevasse, that short-circuits across the forbidden region ANC . But we 
must remember that the region is only forbidden because veins have time to adjust their 
internal pressure to be about equal to the overburden pressure- and so a pathway must be 
opened quickly if it is to be effective . This, rather than a change of water level , may some­
times explain the sudden emptying often observed in marginal glacier lakes. 
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APPENDIX A 

THE STABILITY OF A VEIN CON NECTED TO A RESERVOIR 

We wish to examine the stability of the sys tem, represented in Figure llb, of a short length of vein connecting 
two reservoirs, the water in the lower res~rvoir being maintained at a fixed level. The time-dependent equations 
for flow in the vein are Equations (35) to (38 ). Let PB be the fixed pressure at the outlet end and let PB + P (t ) 
be the varying pressure at the inlet end. When the fixed length I of the vein is small enough we may take the 
pressure gradient to be uniform. P in Equation (35) is taken as the m ean pressure PB+ !P(t ), while S, m and Q 
are taken as the spa tial means. Equation (36 ) merely serves to give the spa tial change of discharge. The other 
three equations (35), (37) and (38) become 

I PI dP 
Q lPwg.-!- ( I - Y) 7i = mL - h S dt , 

for the variables S(I ), m (t ), P (t ), Q(t ). The equa tion for the upper reservoir is 

dh* 
"Tt = QI- Q , 

(A-I ) 

(A-2 ) 

where" is its surface area, h* is the height of the water surface above the outlet, and QI = QI( t) is the inflow. 
The vein being short, we neglect the varia tion of discharge along it and take the outflow from the reservoir to 
be the same as the spatial m ean flow Q through the vein. Since pwgh* = PB + P, the reservoir equation becom es 

" dP 
pwg cl! = QI - Q . (A-4) 

The four equa tions (A-I ), (A-2 ), (A-3), (A-4), with known Qi and initial conditions. d etermine the proble m . 
Elimination of Q and m in these four equations gives 

( 
P)( P) 81TTJL (I dS (Pi-PB- tp)n) dP 

pwgs+ 7 Pwgs+ ( I - y ) 7 S = - VI- Sdt + 2 nA" - 41TTJY di 
and 

~ dP = QI _~ (PWgs+ !:.) 
pwg dt 81TTJ I 

as equations for S(t) and P (t ). Now put 
QI = Qo + Q[(t ), 

P = Po + p [( t ), 

S = So+ S[(t), 

(A-5) 

(A-6) 

where suffix 0 denotes the steady sta te and suffix I denotes a small perturbation from it. Note that we perturb 
the inflow as well as the pressure and the cross-section. 

If the term in dP/dt in Equation (A-5) is expressed in terms of P and S by using (A-6), the resulting coupled 
pair of perturbation equations is 

dS[ 
de = AP, + BS, + FQ" (A-7) 

dP[ 
de = CP, + DS, + EQ" (A-8) 

where the constant coefficients A, B, C, D, E , F depend solely on the steady-state parameters, thus : 

A = ViSo' [( +~) ( _ ).L{ +( _ ) ~) _ ySOpwg] + Son (P1 -PB- !PO)n- ' 
81TTJLI pwgs I I Y T pwg. I Y I 2", (nA .. )n ' 

B = ViSo (pwg. + !'.2)[(pwg. + ( J- y) Po} _ ySOPWg] , 
81TTJL I I" 

C = So' pwg 
- 81TTJI . --;- , 

D = _~ (pWg. + !'.2) pwg 
41T'1 I" 

(A-g) 

E = pwg , 

" 
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T he physica l meaning of Equations (A-7) and (A-B ) is most clearly seen if we set Y = 0 (no pressure-melting 
effect ) instead of Y = 0.313 , which is the true value. The fina l result, Equation (A-I I ), shows that y represen ts 
merely an awkward complication, having some quantitative effect on the stability condition but not making 
any qualitative d iffe rence. With Y = 0, Equation (A-7 ) has F = 0 and comes from the physics of the vein 
flow , while Equation (A-B ) expresses the behaviour of the reservoir drained by the vein. Thus in Equation (A-7) 
we may consider the case where PI is constrained to be zero (infinite reservoir ) ; B is positive and represents 
an exponential growth constant for the cross-sectional perturbation SI ' This is the instability discussed in the 
main part of the paper in connexion with Figure Ila . On the other hand, in Equation (A-B ), if QI and SI are 
set equal to zero (fixed inflow and fixed cross-section for outflow). an initial perturbation in the level of the 
reservoir, giving an initial PI, is seen to relax exponentially, for C is negative. The essence of the behaviour of 
the combined system is the competition between the instability of the vein and the stability of the reservoir. 

To see the physical meaning of A, note that if the system is in a steady state and the pressure is suddenly 
increased by PI by raising the level in the reservoir, the cross-sec tion grows at the rate dSI /dt = API. Similarly 
for D; if the system is in a steady state and the cross-section is suddenly increased by SI , the pressure changes 
at the rate dP, /dt = DSI; D is negative, indicating that the level in the reservoir will fall , as it must . 

Continuing the formal analysis, if we eliminate PI in Equations (A-7 ) and (A-B ) we obtain the fo llowing 
second-order linear differential equation for SI: 

d'S, _ (B -'- C ) dS' __ (BC_AD )S = F dQI -, (AE- CF )Q . 
dt' ' dt I dt I 

(A-Io ) 

Thc terms in dQ, /dt and QI on the right-hand side are forcing terms and do not affect the stability conditions. 
First we show that the coefficient of SI is positi ve. Substitution of the expressions for A, B, C and D given by 

Equations (A-g) shows that the requ ired condition is 

(
Po) / Po\ 16."."Ll n(Pi - Pn - tPo)/ - 1 

2 Pwgs -~ T ( I - Y) f- 1Pwg, -- ( I - Y) T/ + ----;;;s;;-· (/lA. )" > 0. 

Since a ll three terms are separately pos itive this inequality is satisfied unconditionally. Thus the coefficient of SI 
in Equation (A- Io ) is positive, and the sys tem is eq uivalent to a harmon ic osci ll ator with a damping coefficient 
- (B+C ). 

For stability (positive damping) 

B + C < o. 

Substituting the va lu es of Band C from Equations (A-g) gi ves 

wherc 

CX(' = 

(for stability ) 

{piL + Y(Pwg81+ Po)} Pwgl " So. 
(Pwgsl+ Po){Pwgsl + (I - y)P01 

(A-I I) 

ClC is the critical value of the reservoir area. Smaller areas give positive damping ; larger areas give negative 
damping, and therefore instability. (If the reservoir has sloping sides, IX and Clc must refer to the area of the water 
surface. ) It is straightforward to show that for a range of Cl around IXc the system will oscillate if disturbed, but 
that there is no oscillation for very small or very large Cl. 

To see the order of magnitude of "'c take the case where the pressure gradient in the vein is the same as it 
would be in a mass of ice with a hor izontal surface, so that Po = - Pigsl. Then, with g, = g sin 8, 8 being the 
inclination of the vein, we have 

Pw{ Pi (L/g ) + Y(Pw- pl )1 sin 8} S 
Cl c = ( pw - pi ){pw - ( I - y)p;}lsin'8 ' o· 

(A- 12) 

Since L/g is a length (34 km ) large compared with I, the term in Y in the numerator is negligible. Moreover 
one can see that the coefficient of So is a large number: the critical reservoir area is much larger than the vein 
cross-section. Table A-I shows values of "'c for a vein of circular section 20 [.tm in diameter. As we have not 
considered the effect of spatial variations a long the win it is not clear what value of I is most appropriate. But the 
table shows that, for a very wide range of values, the critical area of the reservoir lies between the cross-sectional 
area of a vein and the area of a glacial lake- and th is is the essential result that we need. 

TABLE A-I. THE CRITICAL AREA "c OF THE RESERVOIR FOR DIFFERENT 
LENGTHS I AND INCLINATIONS 8 OF A VEIN 

s~ 
0.1 mm I mm Icm I m 100 m 

3 m' 0 .3 m' 300 cm' 3 cm' 3 mm' 
0 . 1 3 00 m ' 30 m' 3 m' 300 cm' 3 cm' 
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APPENDIX B 

DIFFE RENTIAL EQUATIONS FOR NON-STEADY WATER FLOW IN A BASAL SHEET 

T hese equa tions may be written down very simply by a nalogy with those fo r a ve in. As for a vein we assume 
perfect heat transfer and slow viscous fl ow, but in this case we sha ll a lso ass ume that the water pressure P is equal 
to the ice pressure Pi . 

Take the s coordinate in the direc tio n o f flow. let q(s, t ) be the volume of water flowing per unit width per 
unit time, let m'(s, t ) b e the mel ting ra te of m ass per unit a rea. a nd let a(.<./ ) be th(' thi ckn ess of the water sheet. 
The equations analogous to (35 )-(38 ) are: 

Geometry: 
oa 
at Vi m' - R, (B- 1) 

Continuity: 

(B-2 ) 

Poiseuille flow of water: 

(B-3) 

Energy: 

(B-4) 

In the first equa tion R (s, t ) which is analogous to (oSlo t)pl, is the rate of lifting o f the ice. 
The unknowns are q, m' , a and R ; but b ecause R appears onl y in the firsl eq u a tion the sys t('m red uces essen­

tially to three equa tions for three unknowns. 

APPENDIX C 

T UNNE LS OR A SHEET? 

We have remarked tha t the observational ev idence would a llow the water d uring a j okulhlaup from G rimsvotn 
to be in a basal sheet rather than in a tunnel system for at least part of its course. O ur approach has been to 
sh ow tha t if we a dopt the hypothesis tha t the wa ter flows in a tunnel sys tem it leads to no obvious con trad iction. 
But, of course, we might have proceeded from the oppos ite direc tion and looked for a self-consistent sheet-flow 
solution. Without h aving calculated it in detail I believe that , if no lateral g ra dients a re a llowed in the bed or 
in the ice thickness, a solution would exist corresponding to a wa ter shee t fed s teadily from a top reservoir a long 
a horizontal line at the head of the glacier and flowing d ow n to a line sink at the end of the glac ie r. But for 
severa l reasons I do not think this type o f solution offers a realis tic alterna ti ve to the tunnel solution . 

In the first place the breaking of the hydros ta tic seal at the up-stream end provides a concentrated source of 
water rather than a line source. So to be in a sheet the water would have first to fa n ou t. H aving fanned out, 
assuming it did do so, it would encounter at leas t two effec ts tending to force it to concen trate in a tunnel. The 
first comes from the potential gradient. If we assume that the wa ter pressure in a sh ee t equals the ice overburden 
pressure, it follows from Equation (2) tha t 

'" = (Pw - Pi )gZb + PigZ" (C-I ) 
a nd so 

g rad '" ~ pig (0. 1 grad Zb + grad z, ). 
I n o ther words, as is well known, the surface g radient of the ice is some 10 times more effective tha n the bed 
grad ien t in directing the flow of water. I f the surface h ad no la teral slope, there would thus be a weak force 
driving the water towards valleys in the bed; but moderate la te ral surface gradien ts can overcom e this tendency 
a nd drive the water towards valleys in the surface . In eithe r case a sheet wou ld tend to concentrate into chan nels . 
The fac t tha t the two main outlet stream s of Skeidaraljokull em erge at the two edges of the glacier front, both in 
no rma l times and during a jokulhlaup, probably reflects this influence of the ice surface gradient. / 

A nother effect tending to concentra te a sh ee t into chan nels arises from the h eat production. In a transverse 
sec tion through a water shee t at the bed o f a glacier, because the flow is fastes t w h ere the shee t is thickes t, these 
places will mel t fas test, and sc· transverse thickness vari a tio ns in the wa ter sh ee t will become accentua ted . In 
calcula ting the process from the basic diffe rentia l equations (B-1 )- (B-4) the difficulty is to decide h ow to trea t R, 
the rate of lifting of the ice. The Jilic re ntia l equa tions (B-1 )-( B-4) assume that processes are slow en o ugh for the 
ice to move up and down differentially and plastica ll y and so achieve the balance p = Pi. For faster processes this 
condition wi ll no lo nge r be fulfill ed a nd p becomes an unknown , but if the processes a re so fas t a nd on a small 
enough scale tha t thert is no time for the ice to sag differentia ll y we can put R = o. I f we assume perfect hyd rauli c 
connexion in the tranS\'erse d irect ion. so that the potential is the same for a ll points in a Iransverse sec tion . wc then 
find 

oa , 
'at ex /11 ex q x a3 . (C-2) 

Thus a place twice as thick as average grows eight times faster. This seem! a powerfu l concentra ting process, bUI 
to calculate it in d e tail entails a closer considera tion of the pl as ti c sagging. 

https://doi.org/10.3189/S002214300001354X Published online by Cambridge University Press

https://doi.org/10.3189/S002214300001354X

