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GLACIER SLIDING DOWN AN INCLINED WAVY BED WITH
FRICTION

By L. W. MorLAND
(School of Mathematics and Physics, University of East Anglia, Norwich NR4 7T], England)

Apstract. The effects of frictional tangential traction combined with regelation on the basal sliding
of a temperate glacier down an inclined wavy bed are examined. Two friction models are treated. First,
a Coulomb law model having the assumptions that sliding occurs everywhere and that the tangential traction
is proportional to the normal pressure. Secondly, a velocity power law in which the tangential traction is
proportional to a power of the slip velocity, The ice motion is approximated by steady slow Newtonian flow
and the bed undulation about a mean bed-line has a maximum slope € <€ 1. Flow solutions are constructed
as perturbations (in powers of ¢) of the plane laminar flow corresponding to non-slip on the mean bed-line,
assuming that the ice remains everywhere in contact with the bed; that is, no cavitation takes place. If the
normal traction is predicted to be tensile over part of the bed, implying that cavitation has occurred, then a
new solution is needed in which the ice base over cavitics is traction-free, Since the cavity sections and profile
of the free ice base are then part of the overall solution, an intricate mixed boundary-value problem is set up
for the flow and the present analysis is inadequate.

For a sinusoidal bed the perfect-slip (zero tangential traction) solution predicts compressive normal
traction everywhere on the bed provided that the mean bed-line inclination « (to the horizontal) is less than
a critical value «¢ which is of order e. For greater values of «, including a range of order ¢, the normal
traction is tensile on some parts of the bed, and a solution with cavitation is needed. If the tensile sections
are relatively small it is expected that the resulting cavitation will not change the overall solution significantly.
However, the Coulomb friction solution has extensive zones of tensile traction for all values of «, so that
extensive cavitation would occur. In contrast, the velocity-power friction solution has compressive traction
everywhere on the bed for « < 2. = O(1) provided that the ice depth is not too large, and also for deep
glaciers for « < ac = O(e). Furthermore, the predicted basal sliding velocity varies much less with the
length scale of the bed undulation than in the perfect-slip solution, and is smaller.

RisuMmE. Glissement d'un glacier avee frottement sur un lit incliné ondulé. On a examiné les effets de la traction
tangentielle de frottement combinée avec le regel sur le lit d’un glacier tempéré glissant sur un fond incliné
avec des ondulations. Deux modeéles de frottement sont envisagés: le premier est une loi de Coulomb dans
laquelle la traction tangentielle est proportionnelle 4 la pression normale, le second est une loi-puissance en
fonction de la vitesse dans laquelle la traction tangentielle est proportionnelle 2 une puissance de la vitesse
de glissement. Le mouvement de la glace est assimilé & un écoulement stationnaire lent Newtonien et les
ondulations du lit autour d’une direction moyenne, ont une pente maximum e < 1. Les solutions pour
I’écoulement sont construites comme des perturbations en puissances de ¢ autour de Pécoulement plan
laminaire correspondant au non-glissement sur le lit plan moyen, avec 'hypothése que la glace reste partout
au contact du lit, c’est-a-dire qu’il n’y a pas cavitation. Si Ion prévoit que I'effort normal sur une partie
du lit sera une traction, ce qui implique que la cavitation peut se produire, alors il faut une nouvelle solution
dans laquelle la glace de la base au-dessus des cavités n'est pas soumise & une traction. Deés lors que les
profil et sections des cavités de la glace libre de la base font partie de la solution générale, un probléme
mextricable de valeurs aux limites est soulevé par la détermination de I’écoulement et la présente analyse
est inadéquate.

Pour un }it sinusoidal, la solution du glissement parfait (traction tangentielle nulle) prévoit un effort
normal de compression partout sur le lit pourvu que la pente moyenne « (sur ’horizontale) soit inférieure a
une valeur critique «e qui est de l'ordre de €. Pour des valeurs supérieures de «, y compris un ordre de
grandeur voisin de ¢, il y a un effort de traction normal quelque part sur le lit, et il est nécessaire de chercher
une solution avec cavitation. Si les sections avec traction sont relativement petites, on s’attend 4 ce que
la cavitation résultante ne change pas la solution générale de maniére significative. Cependant, la solution
de la friction de Coulomb présente de larges zones avec efforts normaux de traction pour toutes les valeurs
de «, si bien qu'une cavitation importante peut s’y produire. Par contre, la solution avec frottement en
puissance de la vitesse est valable partout si « < «c avec une valeur . = 0(1), pourvu que la profondeur
du glacier ne soit pas excessive, et aussi pour les glaciers profonds lorsque « < a. avec ae = O(e). En consé-

uence, la vitesse de glissement a la base qui est prédite, varie beaucoup moins avec 1’échelle des longueurs
g’ondc des irrégularités du lit que dans la solution a glissement parfait et est plus faible.

ZUSAMMENFASSUNG.  Gletschergleiten iiber ein geneigtes und gewelltes Bett mit Reibung. Untersucht wird die
Auswirkung tangentialen Reibungszuges in Kombination mit Regelation auf das Gleiten eines temperierten
Gletschers tiber ein geneigtes und gewelltes Bett. Zwei Reibungsmodelle werden herangezogen: erstens ein
Coulomb-Gesetz, bei dem die tangentiale Reibung proportional zum Normaldruck anwichst; zweitens ein
Geschwindigkeitspotenzgesetz, bei dem die tangentiale Reibung proportional zu einer Potenz der Gleitgesch-
windigkeit ist. Die Eisbewegung wird durch stationires, langsames Newtonsches Fliessen angenihert; die
Bettundulation um ein mittleres Bettprofil hat eine Maximalneigung von ¢ < 1. Die Lasungen fiir das
Strémungsfeld werden als Stérungen der ebenen laminaren Strémung, bei der kein Gleiten auf dem mittleren
Bettprofil stattfindet, nach Potenzen von e entwickelt; dabei wird angenommen, dass das Eis iiberall mit dem
Bett in Berithrung bleibt, d.h. keine Kavitation stattfindet. Fiir den Fall, dass sich eine Normalkomponente
der Kraft iiber einem Teil des Bettes in Zugrichtung ergibt, braucht man eine neue Lésung, die Kavitation
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einschliesst, und bei der die Eisuntergrenze iiber den Hohlriumen reibungsfrei ist. Da die Hohlraum-
abschnitte und das Profil der freien Eisuntergrenze dann einen Teil der Gesamtlésung bilden, erhilt man
fiir das Fliessen ein verwickeltes vermischtes Randwertproblem und die vorliegende Untersuchung ist
unzulanglich.

Fiir ein sinusférmiges Bettprofil liefert die Losung fir vollkommenes Gleiten (ohne tangentiale Reibung)
iiberall im Bett eine Normalkraft in Druckrichtung, vorausgesetzt, die Neigung « des mittleren Bettprofils
gegeniiber der Waagrechten ist kleiner als ein kritischer Wert . (in der Grésse von ¢), Fur héhere Werte
von «, einschliesslich eines Bereiches in der Grosse von e, ist die Normalkraft an einigen Stellen des Bettes
in Zugrichtung, und man braucht eine Lésung mit Kavitation, Wenn die Abschnitte unter Zug verhalt-
nismissig klein sind, wird angenommen, dass die entstehende Kavitation die Gesamtlésung nicht entscheidend
verdndert. Dic Losung fiir die Coulomb-Reibung hat jedoch fir alle Werte von « ausgedehnte Zonen unter
Zug, so dass entspechende ausgedehnte Kavitation auftreten wird. In Gegensatz dazu gilt die Lésung mit
Reibung nach dem Geschwindigkeitspotenzgesetz iiberall, wenn x < «. = O(1), vorausgesetzt, dass die
Eisdicke nicht zu gross ist, und auch fiir michtige Gletscher, wenn « < a¢ = O(e). Des weiteren schwankt
die vorausgesagte Gleitgeschwindigkeit weit weniger mit der Lingenausdehnung der Bettundulation als in
der Lésung des vollkommenen Gleitens und ist niedriger.

1. INTRODUCTION

A thin water layer produced by the melting and refreezing of basal ice in a temperate
glacier on up- and down-stream faces of bed protuberances provides lubrication for the basal
sliding which may be a significant part of the overall motion. The shear stress in such a thin
layer is negligible and so there is no resistive tangential traction to the ice motion over the
bed. The bed drag is the resultant, along the mean bed line, of the pressure distribution over
the protuberances. This perfect-slip model is the basis of flow solutions obtained by Nye
(1969, 1970), Kamb (1970), and more recently, Morland (1976). It is assumed that the
ice can be approximated as an incompressible Newtonian fluid of high viscosity in slow steady
flow, and that the bed profile is periodic with small maximum slope € relative to the bed line.
Solutions are obtained as power series expansions in e, assuming that the ice base remains
everywhere in contact with the bed. For a given glacier depth %, an inclination o of the
mgean bed line to the horizontal, and a profile shape, the plane flow solution determines the
basal-sliding velocity, which is defined as the tangential velocity along the mean bed line.
A calculation for a sinusoidal bed shows that the basal-sliding velocity is sensitive to the
length scale of the bed undulation. Furthermore, the normal traction on the bed remains
compressive everywhere only if « < a, for some critical angle x, which is of order ¢, and
hence the solution predicts tensile tractions on part of the bed for « of the order of one and
for some range of « of order e. In these situations cavitation must occur, and a valid formula-
tion must incorporate cavity sections over which the ice base is traction free, these sections
and the profile of the ice base being part of the solution. This intricate problem involving,
as it does, such mixed boundary values, has not yet been attempted. It is, however, expected
that when the tensile sections are relatively small, the resulting cavitation will not have a
significant effect on the overall solution.

The condition of zero tangential traction requires the existence of a continuous water
layer. Pinching-out of the water layer at the crests of protuberances will cause local failure of
this condition, but debris protruding from the basal ice makes frictional contact with the bed
across the large areas over which it is carried (Boulton, 1974, p. 41; 1975, p. 7). The inter-
action of such debris with the bed is complex, as is its dependence on bed profile (which
reveals how it is transported and deposited)., Data obtained by G. S. Boulton, A. Armstrong
and E. M. Morris from field work carried out on the Glacier d’Argentiére in 1973 and 1975
are being analysed in an attempt to construct “simple” friction laws exhibiting the main
features observed in different situations. To ensure a manageable analysis one must assume
that the mean effect of the individual debris contacts can be described by friction laws which
apply continuously over the bed surface. It is with such an analysis in mind that any possible
qualitative effects of bed friction on basal sliding are explored here, by solving the plane flow
problem for two conventional friction laws.
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First, the Coulomb law
ls = —vlp, (1)

where t; and ¢, are the tangential,and normal tractions on the ice base, with s defining a
tangential coordinate in the direction of flow and » a normal coordinate directed into the ice,
v is the friction coefficient assumed to be of order unity. The limiting friction form of Equation
(1) presupposes that sliding occurs everywhere. It is reasonable to assume that any non-slip
zones will be of limited extent and should not influence significantly the overall basal sliding.

Secondly, a velocity power law

13 = EVs”m, (Q)

where Vs is the tangential velocity of the base ice, and E and m are constants. The form of
Equation (2) has been used by Nye (1959) in a different context, and is also inferred by
Weertman (1957, 1964) as a global relation between mean drag and basal-sliding velocity
in his regelation theory which takes a non-linear viscous law for the ice. Weertman suggested
that m is approximately 2 or a little larger, but gave no explicit value for £. In the present
analysis, however, Equation (2) is considered as a possible qualitative relation arising from
debris friction, in contrast with Equation (1), and also in an exploration of its effects on basal-
sliding velocity and cavitation. A value of m = 2 is used in the calculations, and a range of
values for £ compatible with steady flow down the inclined bed is considered.

If part of the work done by the basal friction is released as a surface heat flux, and not
used solely for surface crushing or other mechanical effects, it contributes to the thermal
balance in the regelation mechanism and a non-linear thermo-mechanical coupling is
introduced into the boundary conditions. When only a small part is released as heat this
coupling may be neglected, and it is also shown here that, under moderate restrictions on the
glacier depth and bed profile slope, the entire work contribution is small compared with the
latent-heat terms. The solutions are therefore derived neglecting any friction contribution to
the thermal balance, so that the surface distribution of heatsources at the ice base per unit area,
is LV, (Nye, 196g), where I = 2.8 % 108 ] m~? is the latent heat and Iy is the normal velocity
of the basal ice. Thus, at the bed

eT ‘S
=7 E+Ah e LVy, (3)
where T and § denote temperature in the ice and bedrock respectively, and k; and £y, are the
thermal conductivities of ice and bedrock respectively. & = 2.1 Jm 's "K' and ky = 1k
where r ranges from 1 to 2 for typical bed rocks; the value r = 1.6 (appropriate to granite) is

used in later calculations. In the regelation model the basal ice is everywhere at its melting
point, and if (p,, T,) is a pressure-melting point on the bed-line, then at the bed
T-T,=5-T, = '“C(P*Po)- (4)

Such a linear relation presupposes that 7 and S remain close to 7, at the bed, and
C = 0.7x1077 K/(N m~2). Following Kamb (1970) the first-order dependence is on pressure
# only with no contribution from deviatoric stress changes.

Figure 1 shows the overall plane-flow problem, with coordinates (x, y) respectively along
and normal to a bed line which is inclined at angle « to the horizontal. U is the surface
velocity at y = h, in the x-direction, and the basal-sliding velocity Uy, is defined as the leading-
order term of the x-velocity in a flow continued onto y = 0. The bed profile is

o = f(x), (5)

where f(x) is smooth and extends periodically as x — 4+ c0. It is assumed that the bed slope
is everywhere small, thus

€= |f"(%)|max € 1. (6)
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Fig. 1. Glacier flow over a wavy bed.

The bed conditions (Equations (1) or (2)) and Equations (3) and (4) are applied on y = yp(x).
On the upper free surface the stress o satisfies
y=kh Syy = —Pas Ozy = 0y (7)

where p, is atmospheric pressure, and where it is anticipated that the normal velocity V' on
y = h is zero to the required order in e. The exponential decay of Fy with height demons-
trated in the solutions justifies the surface prescription y = h under a very weak restriction
on h. A geothermal heat flux @ normal to the bed line, with a typical value of 4 x 1072
J m~2 s~ (Paterson, 1969) is included, requiring

Tz—gy as y — o0, S:.:—g_y asy — — o0, (8)
ki kb

in the half-plane solutions determined for 7 and §.

2. FLow EQUATIONS

The construction of velocity and temperature fields, in terms of complex potentials, and
the development of boundary-condition expansions in powers of €, have been described by
Morland (1976). Equations from this earlier paper are prefixed by the letter “M”, only the
main steps are repeated here.

A length scale of the bed undulation A is defined by

A = fmle, where fm = |f(x)|maxa (9)
and dimensionless coordinates (X, ") are defined by
x=AX, y= AL, (10)

in which the bed profile becomes

o = f(AK)[X = eF(X);
FX)| <1, |F(X)| <t
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The following velocity, pressure and temperature decompositions are formulated :

Vg AY\2 Vy
ng I—K(I—T) —+u, E—U, ('2)
QHUS
b = po—pg cos o AY+ 5 P, po = pa—+pg cos a h, (13)
o A UsC
TR gy BBy o g 8, IRULC, (14)
ki A kb A
where u is the ice viscosity and
sin a h?
K= Pg—gm . (15)

A value for u of 3102 N m~2 s is used in the calculations. For given values of « and 4,
Equation (15) determines {/s once « is known. The velocities u and v are dimensionless with
a scale unit U, P is a dimensionless pressure with unit 2uUs/A (Z will denote a dimensionless
stress tensor with the same unit), 7 and § are dimensionless temperatures with unit 2uUC/A.
The free surface conditions of Equation (7) and the flux conditions of Equation (8) arc
satisfied exactly if

Y = kA, u=uv=P=o;
(16)
T >0 as¥ - o, S—>0 as¥— —oo.
The condition of momentum balance is satisfied for slow viscous flow if

V2P = o, i

oP

St i 2

X~ iV | (17)

and

P

e 2

sr— 1V |

so that P, u and v are the pressure and velocity fields for viscosity 0.5 in the absence of any
body force (Langlois, 1964). V?Z is the two-dimensional Laplacian in (X, 1") coordinates.
Steady heat conduction in the ice and bed respectively requires that

v:T =o and Va8 = o, (18)

if we neglect the motion of the ice (Kamb, 1970). Solutions of the biharmonic relations
(Equation (17)) and the harmonic relations (Equations (18)) can be expressed in terms of
analytic functions of a complex variable z = X417 (equations (M43) to (M47)). Let the
values of 4, », T and S on ¥ = o (continued analytically where ¥ = o lies outside the domain)
be denoted by

u(X, 0) = U(X),
U{X’O) = V(X), (l )
T(X,0) = O(X), J
§(X, 0) = Q(X),

and also assume that U, I, ©® and £ vanish or behave sinusoidally as X — + co. Then,
assuming that the complex potentials vanish at infinity in a way consistent with Equation (16),
the potentials may be represented as Cauchy integrals of U, I, ® and Q (equations (M50)-

(M53)).
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The boundary values at ¥’ = ¥ (X ), which arise in the bed conditions (Equations (1)-(4)),
can be approximated by a truncated Taylor series in ¥ about ¥ = o. The series appears as a
power expansion in e by virtue of Equation (11). Evaluation of the various quantities and
derivatives on ¥ = o is made from equations (M50)-(M53), these involve Hilbert transforms
(Erdélyi, 1954). If W(¢) is continuous and vanishes or behaves sinusoidally at infinity, then
its Hilbert transform is

1 [ W)
7 o o o S Y
H[I4I(X)_Wj:t—th, (20)
where f denotes the Cauchy principal value. Also

dH[W]
X

ol (21)
21

and

HIR[W]] = =W,

the latter being the inversion theorem. The useful results when F(x) is a truncated Fourier
series are
H[1] = o,
H [sin kt] = cos kX, (22)
H [cos kt] = —sin kX

the constant function does not satisfy the inversion theorem.
Now the bed conditions represented by Equations (3) and (4) are given by equations
(M65), (M63) and (M62), respectively. Neglecting terms of order e2(U, V, 0, Q), these are

_H[O QL e{F(0"— Q") + F' (0’ —rQ)} = 2w?{V—e(1—x) F'—e(FU)'},  (23)
O+ FH[O'] = U'+H[V'|+eF{B+H[U—V"}, (24)
@— Q4 eFH[® + Q'] = eDF. (25)

The argument X is omitted for brevity. A natural length A,, and later a length Ay, Occur,
these are defined by

Ag =2 (“i—lc) = 0.077 m,

with previous values, and the ratios
w=AAs @ = Ay, (27)

are introduced for convenience. The constants B and D in Equations (24) and (25) are

given by
K Q A\?
B = sin o (COS OH_pg.hC)(?z) 2

D_r—l Kk Q A\?
 r sinapgkiC\h/’

(28)
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The bed conditions given by Equations (1) and (2) require expansions for the dimension-
less tractions ¥; and X,, and the dimensionless tangential velocity Ve/Us. ‘T'o the same
approximation as Equations (23)-(25). these expansions arc:

Al A
¥, = {I—EEF_QeZ(F')z}+H[1"| “elFH[V") + 2(FU")"}, (29)

“h
A A A A

—Zy = B'cz{l —‘11-5 eF}H[V'] +a2ry el {1 ~ eF}+

+e{FH[U |4 2F H|U']}, (30)

where
Ao A cot a
QP'(]R = BKI! B 2= ‘,11' » (.5')
pg cos ah
M= "0 = ‘
e el — 0 (32)
V A
I—,s = 1—k+ U+ 2xch+ efaFH[U'|—FI" 4 F'V}. (33)
It is supposed that
% < 0(e), (34)

so that Equation (16) is satisfied to any order in e with the exponential decay of «, v and P
in Y. Also
B— 0(1)e) ifa= 0(), B=0() ifa=0(1). (35)
In order to balance the boundary conditions in powers of ¢, let
U= U,+Uet+U,er+ ...,
(36)
V= Vot+VietVer+ ...,
k(Alh) = yotyiety.e+ ... (37)
A determination of the coefficients y, gives x in terms of A/k and, in turn, U and {7y. It is
expected that x < O(1) so y, = o, but this will follow from the balance of the boundary
conditions.

Finally, if a proportion j of the work done against basal friction is released as heat, then
in Equation (3) I, is replaced by I'y+jtsVs/L. For the Coulomb law (Equation (1)) s is
of order pgh (and possibly also for the velocity power law (Equation (2)) when «is of order 1)
and generally (F,/Vs) is of order ¢, so neglect of the coupling term requires

Jhle € 3x 104 (38)
This is satisfied for small j, or j approximately one, provided 4 is moderate. In fact, for Equa-
tion (2) the condition for no cavitation when « is of order one also requires that & be not too
large. When a is of order ¢, t; < O(pgha), and non-coupling only requires jh € 3 10%

3. COULOMB LAW

The bed conditions are given by Equations (23) to (25) togelher with Equation (1) written
in the form

X = —vIp, (39)
where X; and X, are given by Equations (29) and (30). First, consider
a=0(), B=4ple B =00) (40)
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and suppose w is of order 1 in the series balance. Values of w which are smaller or larger
may be treated directly, or obtained as limits to the present solution.
The term in €' gives immediately from Equation (39)

Yo = O, (41)
and the € terms give
AU} = v(Bryi—H[VY]),

which imply that

¥e = & (42)
and

Urn = —VI;‘,,
setting constant terms to zero in order to obtain the required behaviour at infinity. Now
the € terms of Equations (23) to (25) give

0y = Qo = H[Vy]—vI, —(141) H[0,] = 20T, (43).
leading to
V" =@V +vH[T,"] = o. (44)
A scarch for a periodic solution without constant term,
-~ Z (an 05 €5 X4 by sin Ea X), & — 2l (45)
n=1 ‘
and the use of the results of Equation (22) shows that both a, and b, are zero, so
s = o,
V, = o,
@: = o, (46)
8= o
Similarly, the e terms of Equations (39) show that
Y2 = 0,
and (47)
U, = —vl,
and Equations (24) and (25) show that
Q, = ©,—DF, ®, = BF+H[V,'|—vV,". (48)
Using these results in the ¢ balance of Equation (23) gives
I''"—@2l +vH[ V"] = —a&*(1—k){F' —AH[F']}, (49)
where
’
e D) = A1 —&) @%
B I_HD A(1—«) @ (50)

It was shown in Morland (1976) that 4 has a maximum value of 0.05 for extreme values of
the glacier parameters, so contributions to the geothermal heat flux which arise solely from
this coefficient are small. The bounded complementary solution of Equation (49) is zero,
analogous to Equation (44). The determination of a particular periodic integral needs F
to be specified. As an illustration of this consider a sinusoidal bed whose shape is described
by the equation

F(X) = sin X. (51)
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The solution of Equation (49) is now

V, = acos X-+bsin X, (52)
= a ! 1+@r—vA
[(1+@?)242) (b) = (1—«) @* (A(l—(ll-):ﬁﬂ)l:l—u) ! (53)
As v tends to zero, U, tends also to zero, and
(1—k) @2 b A(1—x) @
S Rl (54)

thus we recover the solution for perfect slip (Morland, 1976).

The leading velocity terms U, and V, are now determined but, in contrast with the
perfect slip solution, y, = 0 and so «, Us and Uy are still unknown. From the €* terms of
Equation (39)

H[U,1—FH[V,"|—2(FU,")" = v{Biy;—H[V,'1+FH[U,"] +2F H[U/'}. (55)
Thus, the second-order velocity coefficient U, is given by the balance of periodic terms
whereas B,y, is equal to the constant term of

—{FH[U,")+2F'H[U,']+v'FH[V,"]}. (56)
For the profile represented by Equation (51)

By, = —i (1+4v3) <o for v4A < 14-@?, (57)

which, since « and B, are positive, implies that Uy is less than zero. This contradictory result
stems from the application of Equation (39) to the regions of negative pressure (2p > 0)
given in this solution, when the friction (X; < o) is directed up-glacier. From Equation (30)
the leading normal pressure term is
— X ~ —eH[V/]
= e(a cos X+ b sin X)), (58)

which oscillates equally between positive and negative values. Thus there is no balance
without cavitation for Equations (39) and (40).

Now, a is of order one as are both f and B,. If we assume that v, is not equal to one,
then the € terms of Equation (39) give

Yo = 0,
and (59)
Uﬂ = ‘—VVua

and so Equations (23) to (25) lead to Equations (43) to (46) again. Similarly, the € terms give

Y1 = 0
(60)
U = —v,

and also Equations (48) to (54), while the 2 terms of Equation (39) give Equation (56) for a
left-hand side of y,(8,—v~"). Thus

a(l+v2)
yB— 2(1—1’,80) ] (6])

which tends to (1—«) @/(2(1+&?)) as v tends to zero; we recover the perfect slip solution
in this case also. Provided v is less than 1/B then we are able to predict a positive surface
velocity Us. But, again, Equation (58) determines the leading normal pressure term, showing
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that there is no balance without cavitation. The case where v, is equal to one allows a
balance only if U is zero.

In conclusion, the solutions constructed for the Coulomb law, assuming no cavitation,
are invalid for all ranges of bed-line inclination =.

4. VELOCITY POWER LAW
The law represented by Equation (2) can be rewritten as

; A Vg\1/m
Y. = Ml (1/m)-1{ — 3
s=E i Us (UB) , (62)
but we lack data for the physical constant £. However, if we suppose that 4 is less than or
equal to pgh sin « (a condition compatible with the gravity driving force) then
%, < O(xAJh)
= O(A/h),

since « is of the order of one for [y greater than zero. This is satisfied by the equation

/\ r 1/m
Es g (E) Kl“l"ﬂ(rf:) 5 (63)

where e is less than or equal to the order of one provided that « is of order one. If any solution
with ¢ of order one predicts a smaller «, and hence a I; of the order of U/, and U, then
larger values of ¢; occur, presumably with compensating bed tensions as with the Coulomb
law, so that cavitation occurs. However, the form of Equation (63) includes all possible
valid situations. By construction, the equation

e = E/{(2p)"/m(pg sin a)1=Cimpi-arm), (64)

is independent of the solution variable Uy, but depends explicitly on « and on h if m is not
cqual to 2. The perfect slip law X, = o is given by the limit as e tends to zero.
Now I’ is of order Uy, and if
Up/Us = 1 —4 U,
X o,
then Equation (62) approaches the perfect slip law. These conditions do not, in general,
follow Morland (1976), so we assume that

Uy
(Y,: [“FK*'(%;O([)‘ (65)
and hence from Equation (33)
[-ﬁ' /m
(79)" = -t G009, (66)
With the restriction of Equation (34) the € terms of Equation (63) give
Yo=0, U;=o, (67)

and then, the ¢ terms of Equations (23) to (25) are identical with the perfect slip balance
implying that

I’u = 0,
0, = o, (68)
Q, = o.

U/, = o YK {xﬁe (]:K)”m} = o. (69)
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One solution to these equations is

( K )I m
Y # 0, e (70)
I K

thus determining «, {’y, and Us independent of F(X). Again, the e balance of Equations
(23) to (25) is identical with the perfect slip solution, so

VY@tV = —(1—«) @{F —AH[Fk (71)

and, for the sinusoidal bed (Equation (51}).

. (1 —k) @2 e P ;
I,:-l—+az—(cc)sX+AsmA). (72)
In the limit as ¢ tends to zero, Equation (69) implies that ¥, = o as in the perfect slip solution.
The alternative solution of Equation (69) is simply
Y1 =0, (73)

and the perfect-slip results (Equations (71) and (72)) again follow. Now, the ¢* balance in
Equation (63) requires that

' N o 1 emge\tim
y,+H[U,'] -FH[T',"] = e"yz( - ) 5 74)

The product FH[17,"] is in general the sum of a constant " and a periodic term H'X). as in
the perfect slip solution, so

U, = —H[W], 752)

I—k\!/m I"he?
Ksl—e - =5 175b)

where a non-zero I" implies that y, is not equal to zero. As

y: — O(1/e),
KA (e),

(which is equivalent to y, being non-zero), Equation (75) approaches the result (Equation
(70)). Thus, the first solution is given by taking small values for e in Equation (75b). For
the sinusoidal bed (by equation (M88))
(1—«k) @*
2(1-+@?)
and U, and I, are given by the perfect slip solutions (equations (Mgo) and (Mg4)). Thus
the velocity perturbation is changed only by the scale factor Uy, which changes with «
(Equation (8)). Now Equation (75b) becomes

K K 1-G/m) hea
[—Ke(l—h') QQ)(,‘,(I—}—J)Z):O- (77)
When ¢ = o, Equation (77) reduces to the perfect slip result (equation (M8g)).

The basal-sliding velocity is given by

FH[V,"] = {1—cos 2X—Asin2X}, (76)

v 1 2
Uh:upgsmah ’ (78)
K 2u
and, for fixed values of h and @, as e increases /(1 —«) increases and so [y decreases. As
expected, friction decreases the sliding velocity. Calculations have been made for m = 2.
Figures 2 and 3 show the variation of 'y with @ for values for he? of 0.1, 0.4. 1, and 4, for
¢ = 0.5 (Fig. 2) and ¢ = 1 (Fig. 3), compared with U’y of the perfect-slip solution (e = 0).
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In the perfect-slip case the ratio Upe?/h is independent of he2. For € 2 o.1, this range of he?
covers values of & running from 10-400 m. If ¢, € and @ are fixed, we see that Uy decreases
as h decreases. Also, for fixed ¢, the variation of U, with & (the length scale of the undulation)
decreases as h decreases, and, in particular, U), is very insensitive to changes in @ provided
h is small. (As the graph ordinates are proportional to Up/k (Figs 2 and 3), so these effects
are more significant than the Figures appear to suggest. Figure 4 shows the variation of the
ratio Up/Us with & for the values of he? used in the previous Figures. This ratio decreases
with increase of e for each value of he* and @, including the case where ¢ — o (figure &
Morland (1976)). At fixed e, Uy/Us becomes less sensitive to a change in @ as he? decreases.
At both fixed ¢ and @, the ratio increases as he? decreases.
Finally, the relation for normal bed pressure (Equation (30)) has leading terms (recall

Equation (40))

= 0(e): —Zy ~ By, te(Biy.—H[V\]),

(79)

e=0(1): —Zn~ e(Boyi—H[V,']).
Now if A/h is of order ¢, Equation (77) reduces to Equation (70) with y, # o, x = O(1), and,
for such relatively thin glaciers, Equation (79) shows that there is no cavitation if « is of order
€, or if « 1s of order one and

Boyy = (H”.:‘J)max-

For the sinusoidal bed the latter condition becomes

A1 @?) em P
e =0(1): tana < e (l 4 = oo L (8o)
109Ub52
h sin e

-1.0 0 log, (A[A,) 1.0

Fig. 2. Variation of basal sliding velocity Uy with undulation length X (SI-units) for e — o0.5. The perfect-slip solution
(e = 0) is shown by the dotted line.
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W 10°U, €2
h sin e

20T

40
. 1.0
/ 0:4
o1
L 1 1 — BENS— |
-1-0 0 log,, (A/R4) 10

Fig. 3. Variation of basal sliding velocity Uy, with undulation length X (SI-units) for e = 1.0. The perfect-slip solution
(e = o) is shown by the dotted line.

Uh,fU_-,

-1.0 0 log,, (A/},) 1.0

Fig. 4. Variation of the ratio of basal-sliding velocity to surface velocity with undulation length A for different values of he? (SI-
units). These values are shown against the curves. The dashed lines are for e = 0.5, the full lines are fore = 1.0.
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For A/h of order €2, y, zero and y, non-zero, Equation (79) shows that X, oscillates about zero
to the order of e when a is of the order of one, so cavitation always occurs then. But for « of the
order of e, cavitation does not occur if 8,y, is greater than or equal to (H[V,'])max. For the
sinusoidal bed. neglecting the small coefficient 4, the condition becomes

eA(1+a@2) (I Pa ) K
I

her@? pgh cos «

x = 0(e): lan a <

el (81)
As with the perfect-slip result of Morland (1976) (equation (M10o2)), there is a critical limit
ae, Of the order e which increased with the friction coefficient e through the factor «/(1—«).

Thus, the law represented by Equation (2) allows non-cavitation solutions for “‘thin
glaciers™ for all « less than or equal to «. (of order one), and for “‘thick glaciers” for « less
than or equal to « (of order ).

5. CONCLUDING REMARKS

The How solutions which have been established for both friction laws exhibit features
which differ from cach other and from the perfect-slip solution. With the Coulomb law
(Equation (1)), the normal bed traction becomes a tensile stress over finite sections of the pro-
file however small the inclination «; this implies the onset of cavitation and the failure of the
solution which assumes contact everywhere. In the perfect-slip solution the bed pressure
remains positive everywhere provided that « is less than or equal to ae where a is of the order
of e. Since the mean tangential traction must be less than the mean down-plane gravity
force. and by Equation (1) f is of the same order as the normal pressure —¢, in the mathe-
maticai soiution, regions of large normal pressure are counterbalanced by regions of negative
pressure accompanied by negative values of ¢; (the traction driving the glacier). Thus, the
Coulomb law is possible only i’ a significant amount of cavitation takes place. In contrast,
the power-velocity law (Equation (2)) gives a bed pressure which is everywhere positive if
x is less than or equal to ¢ (of order one), provided the glacier depth A is not too large,
and if « is less than or equal 10 2. («¢ of order €) for deep glaciers. Furthermore, the predicted
basal-sliding velocity for a sinusoidal bed is smaller and varies much less with the length
scale of the undulation than it does in the perfect-slip solution, both the magnitude and
variation decreasing as h decreases. These broad features of the different friction laws may
be helpful in the construction of friction models from empirical data.
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