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AnstracT, A consideration of possible expressions for the number and size of bonds intersected by a
potential failure surface leads to the following expression for the strength of snow, or, which is age-hardening
at a constant porosity n:

or = ojexp (—2n/1—n) tanh%wty,
where o is the strength of ice, f; is the time at failure, a is a parameter specifically related to the mechanism
of bonding, and ® is a temperature-dependent parameter. Allowing ¢ to become infinite provides the
envelope of maximum strength for fully age-hardened snow at any porosity n.

Resume. Considérations théoriques sur la dureté de la neige. Considérant les expressions possibles du nombre
et de la taille des contours des grains coupés par une potentielle surface de rupture, on arrive a I'expression
suivante pour la durcté de la neige oy, qui est la consolidation avec I'age pour une porosité constante n:

gy = gjexp (—2n/1—n) tanh%wl;,

ou gy est la dureté de la glace, f; le temps a la rupture, a est un parameétre lié spéeifiquement au mécanisme
de cimentation des grains, et @ est un paramétre dépendant de la température. En faisant tendre f; vers
I'infini, on obtient Ienveloppe de la dureté maximum pour une neige complétement consolidé par 1'age
pour chaque porosité n.

ZUSAMMENFASSUNG. Betrachtungen zur Festigkeit des Schnees. Line Betrachtung der moglichen Ansitze fir
die Zahl und Grosse der Bindeglieder, die von einer méglichen Bruchfliche gekreuzt werden, fiihrt aul den
folgenden Ausdruck fir die Festigkeit o von Schnee, der bei konstanter Porositit n altersgehirtet ist:

oy = ajexp (—2n/1—n) tanh%wly,

wobei o; die Festigkeit von Eis, ¢ die Zeit des Bruches, a ein mit der Bindung spezifisch verkniiplier Para-
meter und w ein temperaturabhiingiger Parameter ist. Lisst man /; gegen unendlich gehen, so erhiilt man
den Grenzwert der maximalen Festigkeit (ir vollkommen altersgehiirteten Schnee bei beliebiger Porositiit n.

INTRODUCTION

Clonstrictions in the solid framework of a porous material are in general points of relative
weakness. Because the bonds between snow particles represent the majority of the constrictions
in a snow mass, it is reasonable that the strength of snow is determined very largely by the
number and size of the intergranular bonds.

Ballard and McGaw (1965) assume that the external stress o on a snow mass produces a
uniform stress condition in the constrictions and that failure occurs when these internal con-
strictions are stressed to the ultimate strength of ice, o;. The failure surface thus generated
has an effective porosity n; and the general equation for the failure strength oy is

o = Ul(I—rlf). (I)
Considering n¢ to be a linear function of porosity » provided a theoretical strength envelope
which agrees well with experimental data for porosities less than 50 per cent. However, a
more general formulation is needed which expresses the effective porosity as a function of
bulk porosity and time over the entire porosity range. It should be possible to develop such a
general expression by considering the number and cross-sectional area of the intersected
constrictions.

The total cross-sectional arca of the constrictions intersected by a failure surface of unit
area is 1 —n¢. The number of constrictions intersected by this unit area, designated as ¢, is a
function of porosity, n; the cross-sectional area of each constriction, designated as Ay, is a
function of time ¢, Expressed mathematically,

qln)
ftig = % slil, (2)

—
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The functions ¢(n) and A4;(t) which appear in equation (2) must indeed be very complex;
but the construction of hypothetical models that approximate actual conditions allows one
to derive approximations to these functions, and to write a general strength equation which
can be compared with experimental data.

EvarLuaTiON oF THE Porosity DEPENDENCE

Snow is conceived to consist of a mass of particles connected by bonds at every interparticle
contact. For simplicity all constrictions are considered to originate from bonding even though
a small fraction of the constrictions of a natural snow mass are intraparticulate; also, for the
purpose of this discussion, it is assumed that the same general particle size distribution and
shape are maintained throughout the history of the snow.

Consider a unit volume of this snow in which there is a very large number, JV, of particles.
Associated with these N particles is a total number of bonds, Q, and each of the () bonds is
shared by two particles. There is then a mean number of bonds, @ /N, associated with each
particle. If each particle has p particles bonded to it, then the number of bonds per particle
equals one half p:

Q_¢
5

W
Since the volume of the solid material, 1 —n, in the unit volume is directly proportional to N>
the dependence of Q on n may be investigated by considering the change in Q as N is varied.
One should arrive at the same function of N regardless of whether N is continuously increased
or decreased, but it is perhaps easier to visualize a hypothetical process in which N decreases.
Therefore, imagine the removal of dV particles such that the number d is small with respect
to NV but still represents a large number of nonadjacent particles which are uniformly distri-
buted throughout the unit volume. If each of the dN particles has (Q [N') r bonds associated
with it, then, since a bond is a junction of two particles, the removal of the dN particles

removes d() bonds, where
dQ = 2(Q[N)r dN. (4)

In an actual process where N is increasing due to consolidation the force of consolidation
produces higher strain-rates in zones of relatively few constrictions; hence there is a tendency
for the particles with the least number of bonds to acquire more bonds first, effecting a more
uniform stress condition throughout the mass. In order to simulate this tendency to a uniform
distribution of constrictions in the model it is necessary that (Q /V)g be the maximum number
of bonds per particle that exist for a particular V.

The functional relationship defining (Q/N)max cannot be readily deduced; however,
assuming this tendency to a uniform distribution of (Q/N) persists throughout the entire
consolidation process then as n approaches zero, (Q [N) max approaches (Q /N). If Nmrepresents
the maximum number of particles that can be contained in a unit volume, it then appears
reasonable to assume that in the neighborhood of Ny, (Q/N)r in equation (4) may be
replaced by the mean value Q /N, i.e.

(3)

dQ dN
Integration of equation (5) from Nm to N and from the corresponding Q to ) produces
Q as a function of N,

0=3n . ©)
From equation (6) one has the expression relating (Q /V)max to (Q/N) and N for N close

to Nm, viz.
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(¥) =2 (5) () )

Inasmuch as (Q/N) (Nm/N) deviates increasingly from (Q/N) as N decreases and satisfies
equation (7) at the boundary N = Ny, equation (7) will be used as an estimate of (Q /N)max
for the larger range of V.
Replacing (Q/N)r in equation (4) by Q Nn/N? yields
do AN
E = 2N ¥ e (8)

Integration of equation (8) from Q* to Q and from N* to N yields
I I ;
Q= Q%exp [QNm (F—W):l: (9)

where N* represents the minimum number of particles necessary to produce a naturally
occurring structure, and Q* is the corresponding number of bonds.
Since the particle size distribution has beenspecified to be invariant with z then Noc(1 —n),

Q = Q*%exp [Q(I—ﬂm) (I:n* — ;)] (10)

I—n

¥ =3 () e 20— (- 5| (1)

Figure 1shows the value of (Q/N), (Q /N ) max,and [(Q [Nmax) — (Q[N)]in units of (Q*/N*)
as a function of » according to equation (11) and (7) for ny, = o and n* = 0-6.

I | I I

and

Maximum QN
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I
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BONDS PER PARTICLE, units of QFN"
H
|
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[~ less Meon Q/N | =]

n
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Fig. 1. Mean and maximum number of bonds per particle in lerms of the mean number of bonds per particle at n* = 0-6
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Defining N, as the number of particles in a unit volume at time f, with porosity ne, then

N=No(1—n). (12)

I—1Mo

From equation (10) the total number of bonds in a unit volume at time #; is

Qo = @*exp [at1—nm) (2 — =5 (13)

I—n I—no

and the number of bonds per particle at time # is

o % i
%:imkwﬂdfg—ﬁﬁ} (14)

At some time ¢ greater than [, with porosity n less than ne two groups of bonds will exist

in the unit volume of snow and are designated as Q' and Q”, such that
Q=g +d (15)

The first group, Q’, will be composed of all initial bonds in the unit volume (i.e. bonds which
were formed at time /), and will include bonds which originated in the unit volume at time
to plus the net increase of initial bonds in the unit volume due to consolidation of the snow
mass. Since Q' is equal to the number of bonds per particle at time /o (equation (14)) multiplied
by the number of particles in the unit volume at some subsequent time ¢ (equation 12)), then

Q@ = f (122 exp [t (2 — =5 | (16)

I —no I—no

The second group of bonds, (", consists of those bonds in a unit volume at porosity n which
are formed subsequent to the initial bonds at times greater than f, as consolidation brings
the discrete particles into more intimate contact. From equations (11), (15) and (16).

Q=00
) Q.*":XPQ(II:HM) [cxp (_ 2(1_"m)) I—n - (7 2(1 —nm))]. (17)

n* 1—n 1 —no 1—o

Now with respect to the failure surface of unit area which intersects a total of ¢ bonds, let
¢’ and ¢” represent the total number of initial bonds and the total number of bonds developed
after #, respectively which are intersected by such a failure surface. The variables ¢, ¢" and
g" are related to 0, Q' and Q" respectively by a proportionality constant k, i.e.

g=kQ, q¢ =kQ, ¢ = kQ". (18)

(The factor £ is related to the geometry of the system of particles and will be discussed later.)

2 pu—
Designating the product of the parameters &k and Q* exp -LII_%m)as B, the equations for
g, q¢', and ¢" are
2 ( I —ﬂm)
g = Bexp (—ﬁ), (21)
’ 1—n 2(1—nm)
= - (I *—Ho) - [— I—no :|, (22)

1—n 1—n 1—n
g* =B [exp (— - 7:1) ~ R (— [_n:n)]. (23)

Equations (21) through (23) or equations (10), (16) and (17) can be used to calculate the
percentages of initial bonds and subsequent bonds that exist at porosity n for a snow mass
which originated at porosity ne. Figure 2 shows the results of these calculations for different
values of no, assuming that ny = o.

https://doi.org/10.3189/50022143000019146 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000019146

A THEORETICAL CONSIDERATION OF THE STRENGTH OF SNOW 163

Although the number of subsequent bonds may be very large they may not contribute
significantly to the strength unless the time and temperature are such that the subsequent
bonds are relatively well developed.

EvavruaTion oF THE TiME DEPENDENCE

The function A4;(f) which appears in equation (2) will now be considered. Specifically,
Ay is some unknown function, ;, of ty—¢;, where ¢; is the time at failure and ¢; is the time at
which the bond originated, i.e.

Ay = dilts—ts). (24)
100
I [ [
—— INITIAL /
| — — SUBSEQUENT n

B @ @
(@] o &)

PERCENT OF TOTAL NUMBER OF BONDS

n
(o]

POROSITY .

Fig. 2. Relative number of initial and subsequent bonds al porosily n_for a snow mass originating al porasity no

A considerable knowledge of this function has been gained by the work of Kingery (1g60),
Kuroiwa (1961), and Hobbs and Mason (1964). The results of their experiments show that if
small ice spheres are brought into contact at time zero, the ratio of the bond neck radius X
and the sphere radius R at any time ¢ may be expressed as follows:

X f(T)nre

R~ R (25)

where f(7T) is some function of temperature, T, and the value of the parameter ¢ lies in the
range 4 << ¢ << 7. This indicates that the cross-sectional area of the bond neck should vary
as £2/¢. Equation (25), based upon experiments where # is small, does not explicitly show X/R
approaching a limiting value for large #; however, there is some indication that X/R does
actually approach a quasi limit in sintered powder compacts. According to Coble (1961) the
initial stage of the sintering process for crystalline solids is characterized by an increase in
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the bond cross-sectional area from zero to approximately o-2 of the particle cross-sectional
area, at which point grain growth begins. Since the rate of bond growth is very slow after
the incipience of grain growth the bond cross-sectional area which exists at the incipience of
grain growth may be considered to represent a limit. In the case of snow, the end of this
initial stage of sintering will be defined as the condition for complete age-hardening. The
studies by Jellinek (1957), Gow and Ramseier (1963) and Ramseier and Sander (unpublished)
on the strength of age-hardened snow show that when snow is sintered at almost constant
porosity, the strength approaches a limiting value for large ¢, which is further indication that
the interparticle contact area approaches a limit.

In order to deduce a satisfactory expression for ;(fs—t;) in equation (24), the right side
of equation (25) will be replaced by a function which has a limit as ¢ becomes very large.
The following function is somewhat arbitrarily chosen from a family of possible functions:

% = %tanhﬁ'ﬂ[m(T)t], (26)
where X’/R’ is the limiting value for X/R at the completion of age hardening. X'/R’ is depen-
dent on particle size and w(7) is a temperature-dependent parameter. For small values of ¢
equation (26) becomes

X X
e R 1/efile
R iy Rrw(T) ¢ (27)
which is of the same form as equation (25). The function y(f;—#;) may now be written as
Jli(i[—ti) = Ay tanh= w(tffti), (28)

where Ar; represents the limiting bond cross-sectional area at the termination of the initial
stage of sintering and « is approximately 2/c.

THne GENERAL Form oF (1—ny)

Now that expressions for the porosity and time function have been derived, one may
write the equation for (1 —n¢) from cquation (2).

1—ng = Z l,[i-;, ff—fu —+ z l/‘a tf—t (29)

i =1 =3
By defining a mean limiting cross-sectional area 4, equation (29) can be written, using
equations (22) and (28),

1 — ity i A (I = ) exp [— 5(1_—”’“)] tanh w(tr—ts) +F, (30)

I—No I —1o

where

j =A qZ tanh« w(tfgti).
Partitioning the interval (fo, f) int(r)fs;b-intervals and considering n (and hence ¢) as a
function of ¢ allows one to develop the integral expression for 7,
It
Pz J tanh* w(ty—t)dg" (£). (31)
When dn/dt is continuous, equation (3?) may be rewritten as

f i
j = Af tanh« w(t[-t) di E—tdt (32)

ta

https://doi.org/10.3189/50022143000019146 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000019146

A THEORETICAL CONSIDERATION OF THE STRENGTH OF SNOW 165

Calculating dq”/dn from equation (23) and replacing 7 in equation (30) according to equation
(32) produces the general expression for 1—ng

I—1o I—no

1—ny — AB (Irﬁn ) exp [# M] tanh® w(tp—to) +

iy

2(1—nm)
—|—ftanh°‘c.u(f1-—t) =P [— I—ne |—

to I —no

2(1—nm) exp [_ 2(11;77::“)] ﬂl(ﬁ .
e di

The integral in equation (33) can be evaluated numerically for any fixed ¢; if the parameters
w and « are accurately known and if one has a satisfactory expression for n(¢).

Certain situations arise in engineering for which dn/dt in equation (33) is zero, causing
the integral to vanish leaving a more easily manageable form of (1—any).

(33)

AGE HARDENING AT CONSTANT POROSITY

The time-dependent strength of reworked or processed snow is often considered to be a
constant-porosity phenomenon. Specifically, dn/dt in equation (33) is zero, n = n,, and
to = 0. The strength relationship from equation (1) becomes

2(1—nmp)
1—ng

oy = aidB exp [— ] tanh = wis. (34)
Choosing the value of o; to be that of fine-grained polycrystalline bubble-free ice requires that
nm = 0. It should be noted that o; can correspond to any fine-grained polycrystalline ice
with uniformly distributed voids if 7y is chosen accordingly. The boundary condition
of = o; at { —o0 and n —> 0 requires that

4B = ¢ (35)
and

- ) tanh# wly, (36)

I—1o

op = a0 €Xp (——

Equation (36) was compared with data of Jellinek (1959) (Fig. 3), and Butkovich (1962)
(Fig. 4), by using the linearized form

Y = aX+oy, (37)
where

Y = Inop+2nf1—n (38)

X = In[tanh(wt)]. (39)

A least squares analysis of Jellinek’s data for a series of values of w produced a maximum
coeflicient of correlation for w = 0-001, and predicted the values of « = 0-22 and o; = 55
kg./cm.?. Using these values of the parameters, equation (36) predicts the ultimate strength
of this snow to be 14-5 kg./cm.?, and g5 per cent of this strength should be reached after 45
days of age hardening at —10° C.

A similar analysis of Butkovich’s data required w = 0-0002 and predicted values of
a = 0-26 and o; = 88 kg./cm.?. The predicted ultimate strength of this snow is 16-4 kg./em.?
and g5 per cent of this value should be reached after 8 months of age hardening at —20° C.
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IJE— PREDICTED ULTIMATE STRENGTH OF SNOW AT -10°C. & 40% POROSITY |

S

COMPRESSIVE STRENGTH, kg/cm?
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© WILMETTE SNOW -
® HOUGHTON SNOW .
1 I | 1 1
0 100 200 300

TIME , hours

= : i 2
Fig. 3. Comparison of theoretical relationship oy = oy exp (— 1—_—nn) tanh®(wt) for oi = 55 kg.Jem?, a = 0-22 and

w = 0-o0r with data of Fellinek (1959)

I T T T T =
64 _PREOIC"ED ULTIMATE STRENGTH OF SNOW AT -20°C. A 457% POEOS\YY—
15— —

i
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Fig. 4. Comparison_of theoretical relationshify oy = oi exp (— %) tanh®(wt) for oy = 88 kg.[em.?, a = 0-26 and
w = 0+0002 with data of Butkevich (1962)
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THE STRENGTH ENVELOPE

Since the conditions for fully age-hardened snow are { —o and dn/di = o, then from
equation (36) the maximum strength at any porosity is

2n
of = orexp | ———|. (40)
The theoretical relative strength envelope
af 2n
;#cxp(—lin) (41)

is shown in Figure 5. For comparison the relative strength envelope of Mellor and Smith
(unpublished)

b 2
2 exp [— (—lju—)—z], for b = 2, (42)

o n
and the linear relative strength envelope of Ballard and McGaw (1965)

af n
A (1—;1), for m = o0-56, (43)

are also shown.

T T
MELLOR 8 SMITH
08 1265 |
. \ |
5 os -
: \
z
2
by \ _
=
wv
: W |
£ 04— BALLARD 8 McGAW: \ i
ot /1965
P |
w
ox
02— =
| l LA
0 0.2 04 06

POROSITY
. A - g 2 s 3
Fig. 5. Comparison of theoretical relative strength envelope oglai = exp (— ]Tnn ) with relative strength envelopes of Mellor

and Smith or/a; = exp (— ) and Ballard and McGaw oife; = 1 (— - )

2n?
(1—n)? 0-56
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The linearized form of equation (40)

ai = 05X, (44)

2n
X =exp (— —)

I—n

where

was compared with the compressive strength data of Butkovich* (1956) (Fig. 6), by regressing
op on X. The analysis predicted a value of o; of 58-8 kg.[cm.? for ice at —10° C.

60 T T T T

b
o

COMPRESSIVE STRENGTH, kg./cm?2
N
(=]

I I | L [=
0 0.2 0.4 06

POROSITY

, " " 2 . . "
Fig. 6. Comparison of the theoretical strength envelope oy — o1 exp (7 ?i”) with compressive strength data of Butkovich
(1956)

DiscussioN oF CONSTANTS

It is of interest to examine the reasonableness of equation (35) by considering the magni-
tude of the various constants contained in the equation. Since by definition

B = K(Q*|N*)N* exp

then equation (35) requires that

1—n*

Ak(Q*IN*)N* exp

= L. (45)

an*

1—n*

The mean limiting cross-sectional area, 4, of the bonds is associated with some mean particle
radius r, and according to Coble (1961), A ~ 0-2ar* k introduced in equation (18), may be
considered to represent the fraction of the total bonds in a cube of unit volume intersected by
a failure surface which is parallel to the face of the cube. If the failure surface does not deviate
from a plane by more than 7/2 then the size of the volume containing the intersected bonds

* Mean values corrected to —10° C.
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is approximately r/2; hence, k ~ r/2. The porosity n* is the maximum which can be naturally
obtained with granular particles such as those produced in processed snow. A reasonable
value of n* is in the neighborhood of 0-6. The mean number of bonds per particle (Q*/N*)
which exists at #* should be very close to 2. This would allow each particle to be touched by
an average of four particles. Since N* is the number of particles that exists in a unit volume
at a porosity of n* ~ 0-6, then

ik B0 _ B3
. 4713 ard’

Using these estimated values in calculating the left side of equation (45) one has

L Ty T oL
(0-2mr )(2)(2)(7”3) R = %

which is approximately equal to 1 as required by equation (45).

CONCLUSION

The method used to incorporate the porosity-dependent strength of snow into the theory
has resulted in a limiting strength relationship, Figure 5, which in general represents the
observed strength of age-hardened snow; however, it appears from Figure 6 that this limiting
curve still does not satisfactorily agree with the strength data at higher porosities. Since
Butkovich used samples from a naturally consolidating snow mass, the higher porosity samples
selected from shallow depths where dn/dt is relatively large may not represent an age-hardened
snow because of the presence of a significant number of incomplete bonds. On the other hand,
it is quite possible that the assumed distribution of the maximum number of bonds per particle
made in equation (7) is not valid for this higher porosity range.

Analysis of strength data for age- hardemng at constant porosity predlcted values of the
parameter « which result in values of ¢ = 7 in the ice sphere sintering equation. This may be
an indication that the phenomenon of bond growth for an aggregation of irregularly shaped
ice particles, such as is visualized for snow, cannot be satisfactorily idealized by the sintering
equation for a pair of perfect spheres.

The assumption of uniform stress distribution in the constricted areas of an externally
stressed snow mass may be a fallacious one. Indeed, if significant stress concentration can
develop just prior to failure, then the magnitudes of these concentrated stresses will be greatly
affected by the geometry of the particles and bonds, i.e. they will be a function of porosity
and time.

Comparison of the theory with experimental data has predicted values for the strength
of ice which are considerably larger than the published values for ice (Butkovich, 1954).
At —10°C. both the porosity-dependent data of Butkovich and the time-dependent data of
Jellinek predict consistent values for the strength of ice, 58 and 55 kg./cm.” respectively. That
snow should predict a strength of ice that is greater than what direct experimentation on ice
indicates is not surprising when one considers that at temperatures near the melting point
the surface activity should anneal and repair to such an extent that more of the true molecular
strength should be realized. The great number of individual bonds that must be broken in
order for the mass to fail precludes the possibility of one surface flaw precipitating failure.

MS. received 13 July 1965

REFERENCES

Ballard, G. E. H., and McGaw, R. W. 1965. A theory of snow failure. U.S. Cold Regions Research and Engineering
Laboratory. Research Report 137.

https://doi.org/10.3189/50022143000019146 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000019146

170 JOURNAL OF GLACIOLOGY

Butkovich, T. R. 1954. Ultimate strength of ice. U.S. Snow, Ice and Permafrost Research Establishment. Research
Report 11.

Butkovich, T. R. 1956. Strength studies of high-density snow. U.S. Snow, fce and Permafrost Research Establishment.
Research Report 18.

Butkovich, T. R. 1g62. Studies of the age hardening of processed snow. U.S. Cold Regions Research and Engineering
Laboratory. Research Report 9g.

Coble, R. L. 1961. Sintering crystalline solids. I. Intermediate and final state diffusion models. Fournal of Applied
Physies, Vol. g2, No. 5, p. 787-92.

Gow, A. J., and Ramseier, R. O. 1963. Age hardening of snow at the South Pole, Fournal of Glaciology, Vol. 4,
No. 35, p. 521—36.

Hobbs, P. V., and Mason, B. J. 1964. The sintering and adhesion of ice. Philosophical Magazine, Eighth Ser., Vol. g,
No. g8, p. 181—97.

Jellinek, H. H. G. 1959. Compressive strength properties of snow. Journal of Glaciology, Vol. 3, No. 25, p. 345-54-

Kingery, W. D. 1960. Regelation, surface diffusion, and ice sintering. Fournal of Applied Physics, Vol. 31, No. 5,
p. 833-38.

Kuroiwa, D. 1961. A study of ice sintering. Tellus, Vol. 13, No. 2, p. 252-59.

Mellor, M., and Smith, J. H. Unpublished. Strength studies on snow. Paper presented at International Symposium
on Scientific Aspects of Snow and Ice Avalanches, Davos, Switzerland, 1965.

Ramseier, R. O., and Sander, G. W. Unpublished. Sintering of snow as a function of temperature. Paper presented
at International Symposium on Scientific Aspects of Snow and Ice Avalanches, Davos, Switzerland, 1965.

https://doi.org/10.3189/50022143000019146 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000019146

	Vol 6 Issue 43 page 159-170 - A theoretical consideration of the strength of snow - G.E.H. Ballard and E.D. Feldt

