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ABSTRACT. The stress field in a n isotropic elastic hump representing a typica l bedrock feature is obtained 
for plane strain conditions. Gravity effects are included a nd the applied load is a normal pressure distribution 
ded uced from a n idealized model of glacier fl ow. A Coulomb failure criterion is applied, including the 
effective stress cha nge due to pore-wa ter pressure, and stresses on the predicted failure pla nes d etermined 
for different pressure amplitudes and rela tive gravi ty contributions. The latter make little d ifference to the 
maximum " failure stress" but influence the regions where such stress levels occur. Levels of cohes ive stress 
required to inhibit Coulomb failure a re obtained, and a re low in genera l, implying that coheren t rock in the 
adop ted hump profi le, subject to the model pressure, would not fail. Tha t is, this profile is stable unless 
jointing introduces an easier fa ilure m echanism. 

R ESUME. Efforts dus a l'ecoulement d'un glacier dans line protubirance elastique du lit rocheux. L e champ des 
contraintes d a ns une protuberance isot rope representa nt une caracteristique typique du li t rocheux est 
obtenu pour des conditions de d eforma tion dans un pla n. Les effets de la gravite sont pris en compte et la 
charge appliq uee est une distribution normale des press ions deduites d'un modele ideal d'ecoulement 
glaciaire. On-applique un seuil de ruptu re de Coulomb, en tenant compte d es changements reels introduits 
dans les contra intes par la pression capillaire de I'eau et des efforts sur les pla ns de rupture probables d eter­
mines pour differents niveaux de press ion et de contribution relative de la grav ite. Cette derniere ch ange peu 
de la valeur de la "charge de rupture" maximum mais modifie les regions ou. de tels niveaux d e contrainte 
se produisent. L ' intensite des forces d e cohesion necessaires pour empecher la rupture d e Coulomb es t 
calculee et se trou ve faible en genera l, ce qui implique qu'un rocher coherent dans le profi l adapte pour la 
protuberance, soumis aux press ions du modele, ne rompra pas. C'est-a-d ire que ce profil es t stable, a moins 
qu'une diaclase n'introduise un mecanisme de rupture plus facile. 

ZUSAMMENFASSUNG. SPanmmg ill einem elastischen ElIeke! am Felsuntergrund irifolge des Gletseherjfusses. De.r 
Spannungszustand in einem iso tropen , e1astischen Buckel als einer typischen Erscheinung am F elsuntergrund 
Hiss t sich als ebenes Spannungsfeld beschreiben. Schwerkraftwirkungen werden berilcksichtigt; die aufge­
brachte Las t ist e ine Normaldruckverteilung, hergelcite t aus einem idealisierten M odell des G letscherfliessens. 
Ein Coulomb-Bruchkriterium wird eingefilhrt, das die w irksame Spannungsanderung infolge d es Druckes 
im Porenwasser berilcksichtigt ; die Spa nnungen an den vorberechneten Bruchebenen werden fiir verschiedene 
Druckamplitude n und rela ti ve Schwerkra ftan teile bes timmt. Die letzteren vera ndern die maximale " Bruch­
spannung" nul' wen ig, beein flussen a ber die Berciche, wo solche Spannungsflachen auft reten . Es ergeben 
sich Flachen kohas iver Spannung, die zur Verhunderung des Coulomb-Bruches notwendig sind ; sie liegen 
im allgcmeinen ti ef, woraus zu folgern ist, dass koha renter Fels in dem angenommenen Buckelprofi l, d em das 
Druckmodell g il t , nicht nachgcben wird . Dies bedeutet, dass das Profi l stabil ist, es sei denn , Gelenkbildung 
wiirdc eincn leichteren Bruchmecha nismus bewirken. 

J. INTRODUCTION 

A recent paper by Morland and Boulton (1975) presents an analytic solution and com­
puter calculation of the stress in an isotropic elastic hump in plane strain under applied 
surface loads. The effects of glacier fl ow are model led by assuming an idealized normal 
pressure distribution deduced from Nye's (1969) wavy-bed sliding theory, ignoring the 
restriction to small slopes. On this basis the distribution of local maximum shear stress is 
determined in order to predict likely failure zones, and the global maximum shear stress is 
obtained to compare with a failure stress of any given material. The stress field is independent 
of the elastic moduli of the rock. This analysis is now complemented by including the effects 
of gravity on the stress fie ld , and by making a more detailed examination of the stress field in 
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relation to a Coulomb failure criterion. The body-force contribution was included in an 
analysis of flute formation on a horizontal bed by Morris and Morland (1976), and for 
completeness we now incorporate an inclination of the mean bed line to the horizontal. 

The Coulomb criterion is expressed as an inequality between a dimensionless failure stress 
S, which depends on the local stress and the friction angle q" and a critical value Se which 
depends only on the cohesive stress 'To, angle q" pore-water pressure pw and the chosen stress 
unit. Failure occurs when S exceeds Se. It is found that gravity influences the location of 
zones where S approaches its maximum value, and hence the likely regions of failure. How­
ever the gravity contribution has no significant effect on the maximum value of S attained, 
at least for the chosen hump profile and model pressure distribution, so will not seriously 
influence the predictions of failure . Essentially, the amplitude of the model pressure distribu­
tion far exceeds the variation of body-force stress through the depth of the hump, and the 
gravity terms are dominated by applied surface pressures. 

Since the presence of pore-water pressure reduces the effective stress in the Coulomb 
criterion, the effect of pore pressure up to the ice overburden pressure is considered. However, 
it is found that for the adopted hump profile and model pressure distribution, Coulomb 
failure is unlikely in coherent rock except for glaciers with very high basal sliding velocities, 
implying a stable hump profile under the adopted conditions. A more skew hump, and 
corresponding pressure distribution, may lead to higher failure stress, or a jointed rock system 
to different and easier modes of failure. However, a more realistic determination of the 
applied pressure distribution, and possible tangential traction due to glacier flow over a 
hump with finite slope, is required before reliable predictions can be claimed. 

y 

x 

Fig. I . A moderately skew hump on a mean bed line inclined at angle 1) to Ihe horizontal. nand s are unit vectors normal and 
tangential to the hump contour respectively. a is the local inclination of s to ox. The gravi~y force per unit mass, gk, 
acts vertically downwards . 

2. STRESS FIELD IN THE ELASTIC HUMP 

Consider a single plane hump on a mean bed line Ox inclined at angle S to the horizontal 
(Fig. I) . The bed surface approaches Ox as x ~ ± 00. Introduce dimensionless coordinates 
X = (X, y) by 

x = aX, y = aY 

so that the hump amplitude is approximately unity in (X, Y) coordinates. The moderately 
skew hump shown in Figure I has a boundary defined by Im ( ') = 0 in the conformal 
mapping 

0.5 0.25 
z = ,+ ,-i+ ,- (0.5+ 0 .5i) 

where z = X+iY, which is the hump used in the Morland and Boulton (1975) illustrations. 
Their theory and computer programme were developed for a class of rational mappings deter­
mining stress fields under conditions of zero body force and plane strain when the surface is 

https://doi.org/10.3189/S0022143000021523 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000021523


STRESS IN A BEDROCK HUMP 69 

subjected to normal and tangential tractions In, Is vanishing at infinity. If ex IS the local 
inclination of the surface tangent to Ox, then 

D= (-sincx,cosex), s = (cosex,sincx). 

A gravity force per unit mass gk is now included, where 

k = (sin S, -cos S). 

Introduce a stress unit C to normalize the applied pressure fluctuation due to the glacier flow, 
and let Po be the overburden pressure on the bed line Ox, outside the hump, under depth h of 
ice. Then 

Po = pgh cos S = CP 0 

where p is the ice density. If the stress (J is expressed in the form 

(J = C(1:-Pol) 

(5) 

(6) 

so 1: defines a dimensionless over-stress above an isotropic pressure Po, and assuming that 
there is an isotropic pressure Po near the bed surface outside the influence of the hump loading, 
1: vanishes at the surface as X ~ ± 00. Further, let 

prga 
R=C 

where Pr is the bedrock density, then 1:0 is a self-equilibrating stress field (zero body-force) 
to which the Morland and Boulton (1975) theory applies. Note thatT, and hence (X. k), 
vanishes as X ~ ± 00. If N, T are the normal and tangential tractions associated with 1:0, 
then 

In 
N = C+Po+R(X. k) cos2 (ex-S) (8) 

Is . 
T = C+!R(X. k) sm (2(ex-S)) (9) 

The case of S = 0 (horizontal bed line) was used in an analysis of the formation of glacial 
flutes by morris and Morland (1976). 

Following Morland and Boulton (1975) a model pressure fluctuation based on Nye's 
(1969) theory, but ignoring the restriction to small slopes, is adopted, together with a crude 
cavitation approximation In = 0 whenever the predicted normal traction becomes tensile. 
Thus 

In {-Q(X), 
C+ Po = 

Po, 
( 10) 

where for the hump surface given by Equation (2) the pressure fluctuation is approximately 

[
7T(X-O.3)] [7T(x-O.3)] Q(X) = 0.29 cos -0.96 sin 

2·4 2·4 
(I I) 

on - 1.87 .:::;; X ~ 2.93, zero outside the range, and has amplitude unity. 

C ~ lO'T)U/A for A> I m 

where "1 is the ice viscosity, U is the basal sliding velocity and A is the wavelength of the 
hump, approximately 4.8a. Nye ( 1969) takes 'YJ = 3 X 1012 N s m-2 , U = 3 X 10-7 m s-', 
giving 

as A ~ (10 ~ r) m. 

Note that 
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for the stress unit given by Equation (13) and 8 ~ t7T. Thus Po < I for h < ( IOZ ~ 103) m 
and cavitation occurs under these conditions. Also a regelation layer is assumed, to provide 
perfect slip: 

ts = o. 

If Pr = 3p ~ 3 X 103 kg m - J, 

R ~ 7 X 1O-4 ,\Z ~ (7 X 1O-Z ~ 7 X 10-4 ) as ,\ ~ (10 ~ I) m. (16) 

If R is small, Equations (7) to (9) show that gravity effects are not significant. However, 
since R is proportional to ,\Z and inversely proportional to U for a given hump profile, Equa­
tion ( 16) gives R = 0 (I) if ,\ = 40 m, U = 3 X 10- 7 m s- ' or if ,\ = 10 m and U = 2 X 10-8 
m s- ', both practical conditions. Note that the term in R of Equation (8) increases the normal 
traction N associated with ~o but has the opposite effect in the calculation of the actual 
overstress ~ by Equation (7). The net effect can only be determined by calculated examples. 
By Equations (12) and (14) Po is proportional to ,\ and inversely proportional to U. Po 
increases under the conditions which lead to an increase in R. In fact , since a ~ h, 

R 0.6'\ 
- = -- = O('\ jh) < I 
Po h cos 8 

for 0 ~ i7T. Thus R = 0 (1) implies Po > I; that is, the pressure fluctuation is too small for 
cavitation and Equation (10) applies everywhere, making ~o and ~ independent of Po for 
given R . 

. Consider a Coulomb failure criterion for the bedrock. Failure occurs if 

( 18) 

where 'To is the cohesive stress, pw the pore-water pressure, 1> the friction angle (0 < </> < i7T) 
and 'T, cr are the shear and normal tractions on the failure planes which have normals inclined 
at angles ± (i7T-t</» to the maximum principal stress axis. If cr" erz are the local principal 
stresses, then ~ has the same principal axes with principal values given by 

crI = C(L.1-PO)' 

Defining a dimensionless failure stress S by 

S = tlL.1-L.zl sec 1>+HL.,+~z) tan </> 

Equation (18) becomes 

'To (Pw) S ~ C + Po I - Po tan </> = Se. 

(19) 

S is determined everywhere by ~ and </> for a given hump and boundary loading, while Se 
depends only on the Coulomb parameters and the stress unit C. Failure is initiated whenever 
Smax exceeds Se. Pore-water pressure Pw can theoretically range from zero to Po when Se 
takes its maximum and minimum values respectively. 

Se = Po G: +tan </> ) , 

'To 
Se = Po -, 

Po 

pw = 0, } pw = Po· 

However, the permeabilities of coherent rocks are very small (Morris and Johnson, 1967). 
The highest values for intact rock are ~5 X 10-6 m s- ' (medium-grained sandstone), 
~ 10- 5 m S-I (oolitic limestone) and ~ 10- 6 m S- I (volcanic tuffs). Thus it is unlikely that 
Se will be reduced to its minimum value by pore water within the voids of the coherent rock. 
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Of course, well-jointed rock has a secondary and much higher permeability ansmg from 
the presence of open and continuous cracks and in this case "cleft water pressure" can reduce 
the strength of the rock significantly (Terzaghi, 1962). 

By construction I: and Smax are of order unity, so failure can occur only if Se is of order 
unity or less. Typical cohesive stresses are TO = 5 X 105 N m-2 (siltstone), (2 -+ 5) X 106 

N m - 2 (sandstone) and 107 N m-2 (granite). For h = 100 m the respective values of To/PO are 

TO - = 0.5, 2 -+ 5, 10, h = 100 m. (23) 
Po 

Thus, even in the case pw = Po, failure is possible only when Po ~ 0(2) for silts tone, and much 
smaller for the other rocks, unless h ~ 100 m. The corresponding friction angles are cp = 30°, 
35° and 45°, so for Pw = 0 the required factors are respectively 

TO 
- +tan cp = 1.08,2.7 -+ 5.7, 11, 
Po 

h = 100 m. 

We have used N ye's theory for the sliding of ice over obstacles with small surface slopes to 
define Po, the ratio of the overburden pressure to the amplitude of the pressure variation 
across the hump, in terms of V, ." and A. However, the restrictions on Po for failure to occur do 
not depend on the choice of sliding theory. Consideration of the overall equilibrium of the 
glacier indicates that it is unlikely that the amplitude of the pressure variation across a finite 
hump will be much greater than the overburden pressure. Thus we expect Po ;::: O ( I). Nye's 
theory gives Po = PoA/27}V, which may take smaller values (Equation (14)) . Larger h 
increases Po, and larger V decreases Po for given Po, both effects decreasing Se. 

Since the stress field cannot be influenced significantly by the gravity terms unless 
R = O(I), which implies Po > I and hence Se > I, gravity will not affect failure conditions. 

3. ILLUSTRATIONS 

The stress fields in the elastic hump defined by Equation (2) have been calculated for 
various values of Po and R in the case 8 = o. In Figure 2 the variation of Sm.x with Po for 
cp = 30° and R = 0,0.5, I and the variation of Se with Po for cp = 30°, pw = 0 and TO/PO = 0, 
0.5 are compared. Failure will occur if Sm3x ~ Se. A siltstone hump under 100 m of ice 
(TO /PO = 0·5) will fail if Po ~ 0.3 (R = 0), Po ~ 0·45 (R = 0.5) or Po ~ 0.65 (R = I). The 
R = I curve is however not physically relevant for Po ~ 1. As h increases TO /PO -+ 0 and 
failure can occur at higher values of Po. The analogous curves for sandstone and granite 
are shown in Figures 3 and 4 respectively. In these cases also failure will only occur for low 
values of Po when h = 100 m. Since from Nye's theory Po is inversely proportional to V and 
proportional to A, for a given value of Po, failure is most likely for high basal sliding velocity 
and a small hump. 

Figures 2 to 4 show that Smax increases with Po to a level So at Po = I and then remains 
constant at So. Below Po = I the curve for R = 0 is not quite linear because the point of 
maximum stress moves from inside the hump to the surface of the down-stream flank. For 
R ~ 0.2 the point of maximum stress is on the down-stream surface for all Po. 

The failure criterion (18) holds if Po ~ I and 

TO 
So ;> tan cp+- . 

Po 
That is, failure occurs if the cohesive stress satisfies 

To ~ Tt = I07} (So-tan cp) V /A 

when Po ~ I . For Po ;> I smaller To is required. Figure 5 shows the variation of Tt with A 
for cp = 30°, pw = 0 and R = 0 (appropriate to low values of Po). Failure will occur if 
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Fig. 2. Smax and Se as functions rif Po for .p = 30° and Pw = o. For a siltstone hump under 100 m of ice (TO/PO = 0.5) 
Srn&:< ;;;. Se andfailure will occur when Po .;; 0.3 (R = 0), Po .;; 0.45 (R = 0.5) or Po .;; 0.65 (R = 1) . 
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Fig. 3. Smax and Se as functions of Po for '" = 35" 
and Pw = o. For a sandstone hump under lOO m 
of ice (TO/PO "" 2) Srnax ;;;. Se and failure will occur 
when Po .;; 0.04 (R = 0), Po .;; 0.06 (R = 0.5) 
or Po ';; 0.09 (R = I). 
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Fig. 4. Srnax and Se as functions of Po for '" ~ 45" 
and pw = o. For a granite hump under lOO m of 
ice (TO/PO"" 10) Smax ;;;. Se andfailure will occur 
when Po .;; 0.01 for R .;; 1. 
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Tr ~ To. Siltstone humps with To ~ 5 X IOs N m-z will fail if " ~ 3 m (U = 3 X 10-7 ms-I), 
" ~ 12 m (U = 10- 6 m S- I) or " ~ 37 m (U = 3 X 10-6 m S-I). A basal sliding velocity of 
U = 3 X 10-6 m S- 1 is unusually fast for a normal (non-surging) temperate glacier to which 
the Nye theory is expected to apply. Analogous curves are shown for cp = 35° in Figure 6. 
Sandstone humps, with a minimum To of2 X 106 N m - z, will fail if" ~ 3 m (U = 10-6 ms-I) 
or " ~ 10 m (U = 3 X 10-6 ms-I). 

50 

o 10 20 30 Vm 

Fig. 5. Tf as afunction of )0. for q, = 30°, Pw = 0 and 
R = o. Failure occurs when Tr ;;' TO. Silts tone 
humps will fail if ,\ <:;; 3 m, (U = 3 X 10- 7 ms- I) , 
)o. <:;; 12m (U = 1O- 6 ms- l ) or )o. <:;; 37m 
(U = 3 X 1O-6ms-I) . 

50 

40 

30 

20 - - - _ - To (min) = 2 . 10'Nm-' 

o 10 20 30 

Fig. 6. Tt as afunction of )o.for q, = 35°, Pw = 0 and 
R = o. Failure occurs when Tr ;;' TO. Sandstone 
humps will fail if )0. <:;; 3 m (U = 1()- 6 m S- I) or 
)0. .;;; 10 m (U = 3 X 10-6 ms-I). 

The region of the hump where failure is most likely to occur is shown for various values of 
Po and R in Figures 7 to 10. Figure 7 shows the variation of S for cp = 35°, R = 0 and 
Po = 0.5. The maximum value, Smax = 0.51, is not adjacent to the point of closure of the 
cavity as the previous analysis of this case (Morland and Boulton, 1975) suggested, but deep 
within the down-stream flank of the hump. If R is increased to 0.5, about the largest physically 
reasonable value if Po = 0.5, the maximum value of S increases slightly to 0.547 (Fig. 8) 
and is found on the down-stream surface just below the steepest portion but well up-stream 
of the point of closure of the cavity. Failure and subsequent removal of material in this region 
would tend to steepen the down-stream flank. Figure 9 shows the variation of S for cP = 35°, 
R = 0 and Po = I. The maximum value of S is 0.872 and occurs on the surface just down­
stream of the point where the ice exerts minimum pressure on the rock. Increasing the value 
of R to I (Fig. 10) leads to an increase in the magnitude of Smax to 1.016. Its position does 
not change. Again any failure would tend to steepen the down-stream flank. 
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Srnax' 0·510 
Ice 

0-2 0/) 
0·3 

Fi.l!. . /. 711,. rnria/inn q( ,".fo r ~ :1:; . R U IInd P o n. j . 

Fig . H. Thr !"nI'ill/ inn of S jOT '" .'15. R 11·5 rltld P o 11.5. 

Fig . .') . The I'aria/i"" of Sfnr cb 35. R () aTld P o I. 

Fig. 10 . The vGTia!ioTl ~/Sfor '" = .15' , R = I aTld Po = I . 

4. CONCLUSION 

We have shown that in general the force exerted by a glacier on an obstacle of a given 
roche-moutonnee-like shape will not be sufficient to produce Coulomb failure if the rock is 
coherent. This profile and all other less skew profiles are stable unless jointing introduces an 
easier failure mechanism. Thus we follow Lewis (1954) in suggesting that the typical "roche­
moutonntfe" profile of obstacles on a glacier bed, from large stream-lined boulders to valley 
steps, cannot develop unless the rock is already jointed. 
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