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THE FLOW OF ICE, TREATED AS A NEWTONIAN VISCOUS
LIQUID, AROUND A CYLINDRICAL OBSTACLE NEAR THE
BED OF A GLACIER

By E. M. Morris
(Institute of Hydrology, Crowmarsh Gifford, Wallingford, Oxford OX10 8BB, England)

AnsTrACT. This paper describes an analytical solution of the equations of motion and heat conduction
for ice flowing around a cylindrical solid inclusion and over a solid plane boundary. This is intended to be a
simplified representation of the flow of clean glacier ice around a stone and over a rigid rock bed. The ice is
treated as a Newtonian viscous liquid and the equations are solved in two dimensions. Regelation boundary
conditions are applied at both ice-rock interfaces. It is found that finite solutions for the temperature and
stream function only exist for the special cases in which two dimensionless critical wavelengths are zero.
That is, unless the stone is very far from the glacial bed, the classical regelation boundary conditions cannot
be obeyed over the whole of its surface,

REsUME. L'écoulement de la glace, traitée comme un liquide visqueux Newtonien, autour d’un obstacle cylindrique au
voisinage du fond d’un glacier. Ce papier expose une solution analytique du mouvement de conduction de
chaleur pour de la glace s’écoulant autour d’un obstacle solide cylindrique au dessus d’un support plan
solide. Le but est d’obtenir une représentation simplifiée de I’écoulement d’une glace propre de glacier autour
d’un bloc sur un lit plan rigide. La glace est traitée comme un liquide visqueux Newtonien et les équations
sont résolues dans deux dimensions. Les conditions aux limites de regel sont appliquées aux deux interfaces
glace-rocher. On trouve qu’il n'existe de solutions finies pour la température et la fonction de courant que
pour les cas spéciaux ol deux longueurs d’ondes critiques sans dimensions sont nulles. A moins que le bloc
soit trés éloigné du lit rocheux, la condition aux limites classique de regel ne peut étre respectée sur la totalité
de la surface,

ZusAMMENFASSUNG. Der Fluss von Eis, betrachtet als Newtonsche viskose Flissigkeit, um ein zylindrisches Hindernis
nahe dem Gletscherbett. Dieser Beitrag beschreibt eine analytische Lésung der Bewegungs- und Warmeleitungs-
gleichungen fir Eis, das um einen festen zylindrischen Einschluss und iiber eine feste ebene Fliche fliesst.
Sie soll den Fluss von reinem Gletschereis um einen Felsblock und tiber ein starres Felsbett vereinfacht
darstellen. Das Eis wird als Newtonsche viskose Flussigkeit betrachtet; die Losungen sind zweidimensional.
Die Randbedingungen fiir Regelation werden auf die Grenzflichen von Eis und Fels angewandt. Es zeigt
sich, dass finite Lésungen fir die Temperatur- und Strémungsfunktion nur fiir jene Spezialfille existieren,
in denen die zwei dimensionslosen kritischen Wellenlingen verschwinden. Die klassischen Randbedingungen
fur Regelation kénnen nur dann iiber die ganze Oberfliche des Felsblocks eingehalten werden, wenn dieser
sehr weit vom Gletscherbett entfernt ist.

INTRODUCTION

The problem of describing the motion of a clast in the basal ice of a glacier lies at the heart
of physically-based models of erosion and deposition. Order-of-magnitude calculations have
been made by Lewis (1960), who discussed the maximum force that could be exerted by a
rock held in ice, and by Boulton ([¢1975]), who adapted Weertman’s (1957) sliding theory
to produce a condition for the onset of abrasion. Réthlisberger (1968) identified and described
the processes which tend to bring clasts into contact with the bed. Full analytical solutions
for the motion of isolated clasts in ice unbounded by other solid surfaces have been obtained
by Glen and others (1957), to explain the preferred orientation of the long axes of clasts in the
direction of flow of a glacier, and by Watts (unpublished), in order to derive equivalent
viscosities for dilute suspensions of particles in ice. This paper describes an analytical solution
for the flow of ice past a solid object and over an external solid boundary. The analysis
indicates that interaction between processes occurring on the glacier bed and on the surface
of a clast in the basal ice will produce effects which have not been considered in previous
calculations.

Figure 1 shows the simple two-dimensional problem that will be analysed in this paper.
A long cylindrical stone with circular cross-section, radius R, lies in the ice at the point x = o,
» = A. The stone lies in an area zone (i) where the glacier bed and the surface of the ice
are horizontal planes, y = o0 and y = H. Up- and down-stream, in zones (ii) and (iii), the
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Fig. 1. A ¢ylindrical stone radius R lying a distance A from a plane rock surface in ice of thickness H.
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glacier bed is undulating and has an overall slope. We shall suppose that the boundaries of
zone (i) are far enough from the origin for the ice flow not to be affected by the presence of
the stone. ‘

In basal-sliding theories dealing with clean ice (Weertman, 1957; Lliboutry, 1968;
Nye, 1969, 1970; Kamb, 1970) it is usual to assume that a lubricating “regelation layer” of
water exists between ice and bed-rock. Thus, locally, the shear stress at the ice-rock interface
is zero. However, if the bed undulates about a given base plane the ice exerts a net force on
the rock which can be interpreted as the result of an average shear stress acting over the base
plane. In zones (ii) and (iii) there is an average shear stress between the ice and the un-
dulating bed. In zone (i) we will suppose that the bed can be given an effective or “‘magic”
roughness for part or all of its area, despite the fact that geometrically it is treated as a flat
plane. This means that the shear stress on this part of the boundary y = o can take non-zero
values. Thus, the transition between the region of flow over an effectively rough bed and the
region of flow around the smooth stone and over a smooth bed is independent of the choice
of the extent of zone (i). This allows a physically reasonable description of the boundary
conditions on y = o to be combined with simple boundary conditions describing the velocity
distribution in the ice at the boundaries between zones (i), (ii), and (iii). The geometry of
this problem has been specified in such a way that the two boundaries at which the physical
processes are most complicated, the ice—rock interfaces, are coordinate curves in the bipolar
coordinate system.

Suppose that in zones (ii) and (iii) the ice moves under gravity with a steady-state flow
pattern which depends on the shape of the bed and the depth of the ice. In general there will
not be a steady-state situation in zone (i), for, unless the stone is at rest with respect to the bed
or moves in such a way that the separation A is maintained, the pattern of flow must change
with the change in the relative positions of the ice-rock interfaces. This problem does not
arise in the analysis of the motion of isolated clasts in ice.

For the sake of making a relatively simple first analysis, it is assumed in this paper that
forces —X, — ¥ and a couple L oppose the forces X, ¥, and couple L exerted by the ice so
that a steady-state situation is maintained. Thus, only a small sub-set of the possible solutions
for the motion of the ice and stone is being considered. The set of solutions with X = o,
L = o, and — ¥ equal to the weight of the stone is physically possible. Other solutions are
artificial, but the direction of the resultant force that would have to be applied to the stone,
in order to maintain its position with respect to the bed, gives an indication of the direction in
which the stone would tend to move in the real situation where gravity is the only force acting
at a distance on it.

Boulton ([¢1975]) derives a condition for the lodgement of a stone on a glacier bed by
estimating the horizontal force exerted on the stone by the ice and equating this to the
retarding friction between stone and bed. Strictly speaking, the analysis in this paper cannot
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be applied to a stone in contact with the bed. However, if the stone is extremely close to the
bed, i.e. when A = R, we might postulate the existence of a very small irregularity on the
stone which allows normal and frictional forces to be transmitted without disturbing the
pattern of flow of the ice or altering the physical processes at the boundaries. Then we might
hope to derive a more accurate estimate of the lodgement condition, based on an analytical
solution for the forces of the ice on the stone rather than an order-of-magnitude calculation.

THe NAVIER-STOKES EQUATIONS IN BIPOLAR COORDINATES
The bipolar coordinates a, f are defined in terms of the Cartesian coordinates x, y by the

equations
asin B
* = Cosh a—cos B’
_ (1)
asinh a
Y

~ cosh a—cos B

y.l

/a=n1
T §
A
a
a=0 =
an

Fig. 2. The bipolar coordinate system.

The coordinate curves are two sets of coaxial circles (Fig. 2) which intersect orthogonally.
The scale factor a is the distance between the point « = oo and the line o = o (the x-axis).
The metric coefficient is
cosh «—cos
- e 1 (2)
a

Elements of arc have lengths 8a/k, §B/h. The radius of the circle @ = ; is R = afsinh
and the distance of its centre from the line « = o is A = a|coth «,|. In this coordinate
system, the Navier—Stokes equations for the slow steady flow of a linearly viscous incom-
pressible fluid under gravity are

06, ch ch ch do,
Fa+h i —Oaa E+Gﬂﬁ E_Qca‘-ﬁ ﬁ-l_h a,eﬂ ==l (3)
and
0o ch ch ch 0044
Fﬂ-l_hﬁ_ﬁﬁﬁ a_ﬁ+caa aﬁ—gcﬂa aa-l'h B 0. (4)
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F, and Fj are the components of the body force which can be derived from the hydrostatic

pressure p,
p
by = ‘o’
b (5)
g4
Fe=h T h
If the line « = o0 is horizontal, then
sinh «
1 :pb_Pga cosh dACOS,B’ (6)
where p, = py is constant on « = o0, p is the density of the ice, and g the acceleration due to

gravity.
The components of the stress tensor gy are related to the components of the strain-rate
tensor ¢;; by the equations
Taa = —PI—P+27)é11=
Spp = —Pr—p+2épp, (7)
) Oy = QT]ézﬁa
where 7 is the viscosity and p is a pressure term. The continuity equation is

(8)

where u, is the velocity in the « direction and u, the velocity in the 8 direction. Thus, a stream
function ¢ may be defined by the equations
o
U, = —h—
X C‘B 3
i (9)
s
ug = h—.
s Cor
The Navier-Stokes and continuity equations reduce to the biharmonic equation for the
stream function

V"ﬁ =0 (IO)
and the Laplace equation for the pressure p
v = o. (11)

The general solution for the biharmonic equation in bipolar coordinates has been given by
Jeffrey (1920, 1922)

h = ¢+ Z (¢n cos nf8+ xp sin nf), (12)

n=1
where the Fourier coefficients ¢, x» are functions of a:

¢o = 4, cosh a+ By cosh a+C, sinh «a+ Dy« sinh «,
¢, = A, cosh 2a+B,+C, sinh 20+ D «,
én = Ay cosh (n+1) e+ By, cosh (n—1) a+Cyp sinh (n+1) a+ Dy sinh (n—1) o, (13)
x1 = 4, cosh 2a+ B,"+C}" sinh 20+ D,'«,
xn = An' cosh (n+1) «a+By" cosh (n—1) a+Cy’ sinh (n-+1) a- Dy’ sinh (n—1) «.
Since p and 7y % are conjugate functions, an expression for p in terms of the constants Ay, Ay,
etc., can be derived. The leading term is 29(B,+D,) B/a. Since p must on physical grounds

be single-valued with B,
By = —D,. (14)
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The components of the strain-rate tensor can be expressed in terms of i

- o [ oh o 9
Coa = ——fla—ﬁ‘(ha—a)—}la'eﬁ,

) o\ | oh oy
= hgg(h5e) 1 ap:

, SN A A
”mﬂzs{x(" 5&)‘@(’* e-a)'r’ J

and hence, using Equations (12) and (13), may also be written as Fourier series in B with
coefficients that are functions of the hy coefficients A4,, 4,’, etc. From Equation (6), p, may
also be expanded in a Fourier series

A

(15)

pr = Pr—psa—2pga > exp (—n) connf. (16)

Hence, from Equation (7), the components of the stress tensor may be expanded in Fourier
series with coefficients that are functions of the hy coefficients.

BouNDARY conDITIONS

Figure 1 shows a cylindrical stone, radius R, at a distance A from the horizontal bed of a
glacier. The surfaces of the stone and bed are defined by the curves « = a;, « = o respectively.
The equation of the upper surface of the ice is

by
= = I
2 o (17)
Up- and down-stream boundaries are defined by the equation
x = +4X. (18)

‘The coefficients in Equations (13) are determined by applying boundary conditions to these
five curves.

() The ice—rock interfaces

Conditions at these interfaces will be described in terms of the “classical” regelation
theory (Nye, 1967) although laboratory experiments have shown that this theory is over-
simplified (Nunn and Rowell, 1967; Townsend and Vickery, 1967; Drake and Shreve,
1973; Morris, 1976). Drake and Shreve have pointed out that the effect of impurities,
supercooling, and the formation of a trace must be included in a complete regelation analysis.
However, we use the simple theory since it allows a simple and clear mathematical demons-
tration of a difficulty which I believe would arise in any case. In this geometry the classical
regelation analysis proceeds as follows: Between ice and rock on the surfaces o — 0, & = o
there are thin films of water, the regelation layers. On the boundary between the ice and
the stone (a« = a;) there is no shear stress;

Gap = O. (19)

On part of the boundary between the ice and the bed we may want to allow a non-zero shear
stress 7 produced by the effective roughness. Thus
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Gap = T ﬁzgﬁgﬁx
_)gl Q.B ‘-<-.182
(20)
Gap = 0, B>ﬁla 16< _)el
_)gz < B < 182

where B; and B, are arbitrary constants.
This boundary condition can be written in the form of a Fourier expansion for o,

el
T . :
Coup = ;{(ﬁl_ﬁz)‘l' z; (sin nf;—sin nf,) cos ”B} (21)
n=1
on the surface « = o.

In areas where the normal pressure on the rock is high, ice melts and the water travels
through the regelation layer to the areas of low normal pressure. The ice-water interfaces
are always at the melting-point temperature, which varies with the stress normal to the
interface. Thus

T = Uy, o« =0y, & =0, (22)

where C is a constant having the value 0.7 X 1077 deg Pa~™. -

The high-pressure areas have a lower temperature than the low-pressure areas. Thus the
latent heat released by the ice when it refreezes in the low-pressure areas flows through ice,
stone, and bed to melt more ice in the high-pressure areas.

The velocity of the ice in the positive direction is

u, = —h%—;. (23)

The latent heat released by freezing per unit time on an element 8B/k is Lu,3B/h on o = O
and —Lu,8B/k on « = a;, L is the latent heat of melting of ice per unit volume (2.8 % 108
J m=3). Let Ty, Ts, Ty be the temperature distributions in the ice, stone, and bed respectively,
and ki, kr the thermal conductivities of the ice and rock. Then, on a = 0,

8Ty . OT\OB . 8B
("r" = _k‘hE)T—L”“T’ =
2
_aTb k a_Ti_Lﬁ .
AL T T
and on & = a,
aTj aTs ua
Ll ek e (25)

In the classical regelation analysis the temperature distributions are solutions of the Poisson
equation with boundary conditions given by Equations (24) and (25), and the restriction
that the temperature should remain finite as « —o, f — o0 (i.e. as x — 00, y—> oo) and as
o —> 4 00,

The distributions have the form

T, = Z {(Eﬂ, exp (na) 4Gy exp (—na)) cosnnﬁ_l_
k=1 sin nf
4 (Fnexp (u)-+Haexp (—no) 24Tt 7, 0 <a< ()
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o

Tgi= Z {(E,, exp (2na;) +Gy) exp (—na)

cos nf
B
n
sin nf
n

+ (Fn exp (2na,) +Hpy) exp (—ne) }+I¢x1+.7a o 2= ay, (27)

and
[+ ]

Ty = z {(E,;-J—Gn) exp (nx) = nB+

n

no=1

Si"n"ﬁ}ﬁ, «<o. (28)

Using Equation (22) the T coefficients, Ep, Gy, etc., can be defined in terms of the hys coeffi-
cients. Then Equations (24) and (25) give sets of equations relating groups of the Ay
coefficients. Further equations are derived from the boundary conditions (1g) and (21) for
the shear stress. We arrive finally at sets of linear equations from which all the ks coefficients
may be determined given A, B, Co, Dy, By, 4, C,, 4,,C,, 4/, B, C,', D/, 4, and C,.
The further equations which determine the values of these last coefficients are derived from
other boundary conditions.

+ (Fu+Hpy) exp (ne)

(i) The ice—air.interface

Since H > a we have a —> 0, 8 — 0 on the upper surface of the glacier. The expansions
for p and é,, reduce to

©
b= _Z_nz Cn'+Dy', E::s:
éix = 0. '
Therefore, from Equation (7) the boundary condition
Oaa = O} y=H,
reduces to
o

D @D =o. (29)
n=1
Now h — o0 as « and B — 0 s0 hu, — 0, hy — 0 if u, and ¥ remain finite on y = H. We may
therefore specify two more conditions

B, = o,
- (30)
Ayt Z (gt B =

(iii) The up-stream and down-stream boundaries

In a complete analysis of glacier flow the gravitational forces which produce motion in the
ice are determined from the slope of the bed and/or the upper surface of the ice (e.g. Morland,
1976). We have focussed attention on a small horizontal area of the bed over which the ice
has a uniform thickness. We have to suppose that up-stream and down-stream of this area
gravitational forces act so as to produce a certain pattern of flow of the ice as it enters and
leaves the area of interest around the stone. This pattern is defined by boundary conditions
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on x — +X,. For example, we might suppose that far away from the stone there is simple
shear flow parallel to the bed. Thus, for example,

g
i — ;}—y’—uh_y, X = +x; = 400, (3!)

where up, is the sliding velocity at the bed.

FORCES ON THE STONE

Let the forces applied to the surface o = «, be statically equivalent to forces X and ¥
acting at the centre of the stone and a couple L. X acts in the direction parallel to the bed
and ¥ in the perpendicular direction

2m
ox cy
X = '[ (G:zc: ?.—m-o‘zp a) d,B,
0

-

(32)

o
Il
e
A
Q
=
=2
=
gl
+
Q
R
=
51 =l
e
(=B
=
g

4

On the surface of the stone 6,5 = 0. From Equations (22) and (26), using the series expansions

-
o

cx .
e —aqa n exp (—na;) sin nf,
> (33)
ow
oy
B ™ —2a n exp (—ne;) cos nf.

J
Expressions for the forces may be obtained in terms of the T coefficients which are themselves

known in terms of the ks coefficients. Thus,
%

2a
= Tﬂ- exp (—na,) (Fn exp (no;) +Hpn €xp (—nay)),
o o (34)
1= & B exp (—ne,) (En exp (no;) +Gn exp (—ney)),
Lo—=0,

DiscussioN

The solution of the equations relating the coefficients of the series expansion for I
(Equation (12)) is discussed in the Appendix. Itis found that the series of coefficients {¢n}
and {{,} diverge, unless both A, and A" (two dimensionless critical wavelengths) are zero.
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Given that L, C, ky, ki, and n are known, finite, and non-zero physical constants, this conditien
means that @ — oo and the ratio of the distance of the radius of the stone to the distance
of its centre from the bed R/A — 0. In other words, a solution exists for an isolated cylinder
in ice (and has indeed been given by Watts (unpublished)), but not when there is another
solid boundary.

Thus, we have found that, in the steady state, the classic regelation boundary conditions
cannot be obeyed both at a flat bed and at the surface of a circular stone. That is, the tempera-
ture and stress distributions cannot be matched so that both the surfaces are at the pressure-
melting point.” A similar problem has arisen before in theoretical work on regelation and has
been discussed by Nye (1967) and Morris (1976). In their analyses, for wires and spheres
moving through ice and for ice moving around a cylinder with a wavy surface respectively,
there is apparently only one boundary at which normal stress and temperature must be
matched. However, at any point within the ice where there is a water inclusion, for example
at a three-grain intersection, a relation between. the normal stress across the interface and the
temperature can also be defined. Thus there are internal boundaries to be considered.
Morris suggested that melting and. refreezing within the ice would produce an ‘‘internal”’
temperature distribution to be added to the “‘regelation” temperature distribution which is
produced by melting and refreezing on the solid boundary. The total temperature distribution

“would match the stress distribution so that the ice is always at the pressure-melting point.
The classic method of analysis of regelation problems depends on the assumption that any
“internal” component of temperature is negligible compared to the “regelation” component
at the solid boundary. : :

I suggest that, even in the time-dependent case, when there are two solid boundaries with
melting and refreezing on each there is no reason to suppose that the temperature and stress
distributions can be matched so that the ice at both surfaces is at the pressure melting point.
There are three ways in which this problem could be resolved:

(1) melting and refreezing within the ice could produce an “internal” temperature
distribution such that the ice at the two boundaries and at the internal water inclusions
was at the pressure-melting point. The magnitude of the internal heat sources and
sinks would not be negligible compared to the magnitude of the sources and sinks on
the boundaries;

(2) the ice could separate from the boundaries producing water-filled cavities with
shapes such that the temperature at the ice-water interface was always the correct
melting-point temperature for the normal stress across the interface. At the moment
we do not know if there is any shape for which a steady-state solution is mathematically
possible given our formulation of the problem with linearly viscous ice and classical
regelation boundary conditions; _

(3) the ice could separate from the boundaries producing cavities filled with air and/or
water vapour. In this case, parts of the boundary where there is no melting can be
well below the pressure-melting point and the requirement that stress and temperature
distributions should match at all points of the boundaries is relaxed.

Field observations of clasts in basal ice (e.g. Vivian and Bocquet, 1973; Boulton and others,
1979) indicate that cavities frequently occur in the lee of large particles. Some of these
cavities are full of water, others have long spicules of clear ice. The habit of these ice crystals
suggests that they may have grown into a cold atmosphere which is below the pressure-
melting point. :

Of course, the conditions at the bed of a glacier are vastly more complicated than the
simple problem that has been analysed in this paper. We have, for example, ignored the
effect of geothermal heating, drainage of water at the glacier bed, and the interaction between
several clasts in transport which may obscure the effects of the stress—temperature adjustment

https://doi.org/10.3189/50022143000029774 Published online by Cambridge University Press


https://doi.org/10.3189/S0022143000029774

126 JOURNAL OF GLACIOLOGY

process described here. The classical regelation theory used in this paper and in current haxal
sliding and lodgement theories is known to be inadequate. However, two conclusions can be
drawn which are important for theories of erosion and deposition:

1. Cavities may form around clasts in transport in the basal ice because of the presence
of the bed. These cavities must be distinguished from those produced by “cavitation”
(Nye, 1970) which is controlled by the overburden pressure of ice.

2. The size and shape of such cavities will depend on the pattern of flow of the ice. If
the stone moves to a part of the bed with a different flow pattern, or the pattern at a
given point changes in time, bulk melting or refreezing must take place as the cavities
adjust to the new situation.

Thus, we cannot expect that the forces on a stone due to the ice can be calculated by a
simple application of classic regelation and plastic-flow theory. Even when the clastisin contact
with the bed and there is only one ice-rock boundary there may not be solutions of the partial
differential equations for ¢ and 7 if regelation boundary conditions are applied along the
whole of the boundary. Happel and Brenner ([¢1973], p. 61) remark that it is difficult to
generalize on the required conditions for the existence of unique solutions to the Navier—Stokes
equations given combinations of prescribed velocities and derivatives at the boundary. We
know there are solutions for the rather odd mixed boundary conditions that arise from
classical regelation theory when these are applied on spherical, cylindrical, and plane surfaces
(note that in Nye’s solution for a perturbed plane and the Morris adaptation of this for a
perturbed circular cylinder the boundary conditions are applied at the unperturbed surface).
However, these are rather special geometries in which the orthogonal curvilinear coordinate
system defined by the boundary curve has metric coefficients which do not vary with position
along the boundary. Whether solutions exist for Newtonian flow of ice over rock humps or
clasts of any shape resting on the bed with classic regelation conditions applied over the whole
boundary is an open question.

I do not believe that the problem of the adjustment of stress and temperature distributions
that has been raised in this paper is an artefact of the particular geometry, flow law, and
boundary conditions chosen. The simplifications I have made merely allow a clear analytical
demonstration of the need for an adjustment process. This process will almost certainly occur
whenever there are two ice-tock interfaces close together and may also have a part to play
in a complete description of flow over steep bedrock obstacles.

APPENDIX

This Appendix gives the derivation of the coefficients of ¢, for high n. Similar equations hold for the coefficients

of xn. For low values of n some terms of the equations are lost or altered but the overall form is the same.
The shear-stress boundary conditions (Equations (21) and (19)) lead to

an{(n+1) An+ (n—1) Bn}—(n—1){ndn_1+(n—2) Bu_y}— (n+1){(n+2) Any1-+nBnis}

- -::—:; {sin (nB)—sin (nB2)},  (A-1)

and

an cosh a; {(n+1) Ay cosh (n+1) e+ (n—1) Bn cosh (n—1) e+
+(n+1) Cn sinh (n+1) ¢+ (r—1) Dy sinh (n—1) o} —
—(n—1){nAn_y cosh na;+(n—2) Bn_, cosh (n—2) oty +nCp_y sinh na; +
+(n—2) Dp_ysinh (n—2) &} —
—(n+1){(n+2) Anyy cosh (n+2) oy +nBy..y cosh nay+ (n+2) Cpyy sinh (n+ 2) o+
4+nDp,ysinh na} = 0. (A-2)
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The normal stress boundary conditions lead to equations for the T coefficients

= EE;;—:S—M {RlAn_1+Rzgnul+(R3_Sl exp (_"“I)) Cnit

+ (Ry—8, exp (—nay)) Du_y+RsAn—+ReBn+
+ (R;—S8; exp (—ne;)) Cu+(Rg—Ss exp (—nay)) Dy+ReAn 1+
+RioBunii+ (Ru—S; exp (—ne)) Cnyx+ (Ryz— 385 exp (—net)) Dy}, (A-3)
b= g (Rt RuBayt (RS, exp (1)) G+
+ (Ry— 8, exp (ﬂfl:)) Dyt +RsdAn+ ReBy+
+ (R;—8; exp (no;)) Cn+ (Rg—S, exp (na;)) Dy+Rydp 1+
+ RioBniy+ (R —S; exp (n2,)) Cnyx+ (R — S5 exp (neer)) Dk (A-4)

R; and S§; are functions of n, cosh nxz; and sinh na;:

R, = —(n—1)(n—2) sinh na,,

R; = —(n—1)(n—2) sinh (n—2) «,

R; = —(n—1)(n—2) cosh no,

Ry = —(n—1)(n—2) cosh (n—2) «,,

Ry = 2(n+1)(n cosh a; sinh (n+1) «;—sinh na,),
Ry = 2(n—1)(n cosh «; sinh (n—1) &, +sinh na,),
R; = 2(n+1)(n cosh a; cosh (n+1) ;—cosh na,),
Rg = 2(n—1)(n cosh oy cosh (n—1) &;+ cosh nay),
Ry = —(n+1)(n+2) sinh (n+2) «,
Ryo = —(n+1)(n+2) sinh nay,
Ry, = —(n+1)(n+2) cosh (n+2) «,
Ry, = —(n+1)(n+2) cosh nay,

Sy = —(n—1)(n—2),

8§y = 2(n+1)(n—1),

and
83 = —(nt+1)(nt2).

If us/h is expanded in the Fourier series

o
=24 Z (mn cOs nf+ pu sin nf), — (A-5)
n=i1
and
[+ o]
uy X, 3
T D (Kncosnft usinnf),  a=a, (A-6)
=171
the velocity boundary conditions (Equations (24) and (25)) give
pn = T tke—k) Fat (ke +ki) Hy), (A-7)
and .
= 11, {(ke+ki) exp (noes) Fut (ke—ki) exp (—nay) Ha). (A-8)
Substitution for Fy and Hy from Equations (A-3) and (A-4) into Equations (A-7) and (A-8) gives
pn = 45_i:|(iTzz,- {(Ax2—2Ag2) (Rydn_y+R:Bn_ 1+ RyCrn_y+ R,Dn_, +RAn+
+Ran+R7Cn+RsDn+R0An+x+Rlan+1+RuCn+1 +Ri2Dn 1)+
+ (Ax2 exp (na;) — A2 exp (—naty)) (81 (Cn_y+Dn_y) +
+82(Cn+Dn) +83(Cnyr+Dnia))}y (A-g)
and
T = e (W exp (1) —~ A" exp (=) (Ridn_o+ RuBBn_s+-RiCa_s +

+RDn_+RAn+ ReBn+ chn+RsDn+RgAn+1 +R[uBn+1+Rncn+1+R12Dn+1) = o
+ (A2 = A2) (S1(Cn1+ Da_t) +8:(Cn+- D) + 85(Cryr+Dri))h (A-10)
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M and A’ are dimensionless critical wavelengths which may be compared to the critical wavelength given In
Nye (1969):
2C (kr+ ki) 9

A2 = —'_;I.al - (A-11)

and
; 2C (ke —k
At = _(._rL..az_l)_q . (A-12)
Now, from Equation (g)
¢ oh
—ahuy = ah 78 (hapr) — ahis L (A-13)

hence from Equations (A-5) and (A-6)

*(Pﬂ_z+ Fn+z)'—(Pﬂ-I+PT‘+I)+ 3Pﬂ
= na(An+Bn)— (n+2) g (Ans1tBusi) —(n—2) g (An_y+ Bu_1), (A-14)

and

*(Tﬂ—1+Tﬂ+3)_(rﬂ.—l+yﬂ+!)+%rn g
— na cosh a{Ay cosh (n+1) &+ By cosh (n— 1) a;+Cy sinh (n+1) o+ Dpsinh (n—1) &y} —

—(n+2) g {An,1 cosh (n+2) e+ Bn,y cosh nya+Cn.y sinh (n+2) 2+ Dy, sinh ne}—
—(n—2) g {An_y cosh na;+Bu_; cosh (n—2) & +Cay sinh nay+ Dy_y sinh (n—2) 2} (A-15)

Substitution for p; and ¥; from Equations (A-g) and (A-10) and for B; and D from Equations (A-1) and (A-2)
using i — n—3, n+3 leads to two simultaneous equations for 4y ; and Cn; in terms of the known coefficients
An_s to An,, and Cn_; to Cn .. Note that some coefficients are functions of Ay or Ay’, others depend only on a;.
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DISCUSSION

J. WEerTMAN: Do your boundary conditions take into account the surplus, unfrozen water
that is left over after the regelation cycle is completed? The volume of this water produced
per unit time should be equal to the work done per unit time divided by the latent heat of
melting—freezing per unit volume of ice. You could not obtain a consistent set of equations
that could give a steady-state solution for this problem. But if water is continuously produced
by the regelation cycle—which is a Carnot cycle—the problem cannot be a steady-state one.

E. M. Morris: My boundary conditions are those used by other authors such as G. S. Boulton
and B. Hallet, since I am trying to investigate the validity of their order-of-magnitude analysis.
I agree that the regelation equations used by these authors are inadequate.
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