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ABSTRACT. Tidal flexure in ice shelf grounding zones has been used extensively in the past to determine
grounding line position and ice properties. Although the rheology of ice is viscoelastic at tidal loading
frequencies, most modelling studies have assumed some form of linear elastic beam approximation to
match observed flexure profiles. Here we use density, radar and DInSAR measurements in combination
with full-Stokes viscoelastic modelling to investigate a range of additional controls on the flexure of the
Southern McMurdo Ice Shelf. We find that inclusion of observed basal crevasses and density dependent
ice stiffness can greatly alter the flexure profile and yet fitting a simple elastic beam model to that profile
will still produce an excellent fit. Estimates of the effective Young’s modulus derived by fitting flexure
profiles are shown to vary by over 200% depending on whether these factors are included, even
when the local thickness is well constrained. Conversely, estimates of the grounding line position are
relatively insensitive to these considerations for the case of a steep bed slope in our study region. By
fitting tidal amplitudes only, and ignoring phase information, elastic beam theory can provide a good
fit to observations in a wide variety of situations. This should, however, not be taken as an indication
that the underlying rheological assumptions are correct.
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1. INTRODUCTION
The grounding zone, where ice transitions from grounded to
freely floating, is a narrow but crucial portion of marine ice
sheets. Ocean tides beneath the ice shelf lead to ice
flow modulation far upstream of the grounding line
(Anandakrishnan and others, 2003; Bindschadler and
others, 2003; Gudmundsson, 2006) and the flexure of ice
in this region can be used as an indicator of grounding line
(GL) position (Goldstein and others, 1993; Rignot, 1998a, b;
Sykes and others, 2009; Rignot and others, 2011) and migra-
tion (Brunt and others, 2011). Ice-sheet mass balance is often
estimated as the difference between net accumulation
upstream of the GL andmass flux across it but this calculation
is sensitive to uncertainty in the GL position and ice thickness
at the GL (Shepherd and others, 2012).

Studies of ice-shelf tidal flexure have been used frequently
to seek insights into ice rheology and determine GL position
based on a given flexure profile. Ice in the grounding zone
bends to accommodate the vertical motion of the adjoining
ice shelf resulting from ocean tides. In the past this has typic-
ally been modelled as some form of elastic beam/plate equa-
tion (Holdsworth, 1969, 1977; Lingle and others, 1981;
Smith, 1991; Vaughan, 1995; Schmeltz and others, 2002;
Sykes and others, 2009; Sayag and Worster, 2011, 2013;
Walker and others, 2013; Marsh and others, 2014; Hulbe
and others, 2016). Some of these studies seek to determine
the elastic (Young’s) modulus of glacial ice in situ by match-
ing beam theory to observed flexure profiles (e.g. Lingle and
others, 1981; Stephenson, 1984; Kobarg, 1988; Smith, 1991;
Vaughan, 1995; Schmeltz and others, 2002; Sykes and
others, 2009; Hulbe and others, 2016) as an alternative to
seismic or mechanical laboratory experiments (e.g. Jellinek
and Brill, 1956; Dantl, 1968; Roethlisberger, 1972; Hutter,

1983; Rist and others, 1996; Petrenko and Whitworth,
2002). Alternatively, assumptions about ice rheology have
been made in order to invert tidal flexure curves for ice thick-
ness in the grounding zone (Marsh and others, 2014). Finally,
(D)InSAR (Differential Interferometric Synthetic Aperture
Radar) has become a common tool to determine GL position,
either through fitting an elastic beam model to tidal fringes
(Rignot, 1998a, b; Sykes and others, 2009) or by positioning
it at the location in a differential interferogram where vertical
motion is detected above noise for the first time (Rignot and
others, 2011). Here, we question the validity of some of the
approaches listed above.

Ice stiffness, typically described by the Young’s modulus
(E), is important for the transmission of elastic stresses
through ice and is a crucial parameter when considering its
fracture or damage. Elastic stresses play a key role in the
propagation of (relatively) high frequency tidal motion
through ice (Gudmundsson, 2007, 2011; Walker and
others, 2012; Thompson and others, 2014; Rosier and
others, 2015; Rosier and Gudmundsson, 2016) and any
weakening in shear margins due to crevasses could partly
explain the large distances upstream that these signals are
observed (Thompson and others, 2014). Ice stiffness is also
an important parameter for the fracture toughness of ice.
Estimates of this parameter obtained by fitting a beam
model to flexure profiles have recently been used to model
strand crack formation in the grounding zone (Hulbe and
others, 2016).

Direct comparisons cannot be made between laboratory
measurements of ice elasticity and those obtained from
fitting models to ice-shelf flexure profiles, as ice is not
purely elastic over tidal timescales (Schmeltz and others,
2002; Reeh and others, 2003; Wild and others, 2017). The
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true elastic modulus and the ‘effective’ modulus observed in
the field are material properties of two separate rheological
models. In reality, deformation of ice crystal fabric and
change in bulk structure due to accumulated strain leads to
a nonlinear variation in strain rate and an overall softening
of the ice over time. This cannot be observed in the instant-
aneous elastic response. As well as providing a misleading
Young’s modulus, a purely elastic model of ice at tidal time-
scales can only transmit stresses instantaneously with no
phase lag. In contrast, while still not matching all time-depend-
ent changes in ice fabric, a realistic viscoelastic rheology
incorporates the delayed viscous signal, which changes ice
stream response to tidal forcing and leads to long-period
modulation in velocity (Rosier and Gudmundsson, 2016).

In the discussion that follows we will use the term ‘effect-
ive’ ice stiffness to denote the apparent ice stiffness that
would be inferred from a simple interpretation of flexural pro-
files, as has been done frequently in the past. In reality, the
Young’s modulus is a material parameter that should not
change as a result of crevassing (but could be altered by
changes in ice temperature or fabric). It is well established
that ice damage can cause a change in the ‘effective’ ice rhe-
ology. This is often accounted for using a continuum damage
mechanics approach, which introduces a damage parameter
into the rheological equation for ice (Pralong and others,
2003; Pralong and Funk, 2005; Tsai and others, 2008;
Borstad and others, 2012; Thompson and others, 2014).
Here, we adopt the alternative approach of directly including
the crevasses in our model geometry, as has been done by
Freed-Brown and others (2012).

In this study we explore factors that influence flexure that
have been previously ignored and how these factors could

change the interpretation of ice rheology. A quantitive ana-
lysis of the effects of crevassing and vertical density variation
on the tidal flexure of ice in the grounding zone are investi-
gated for the first time. We compare results between a
linear elastic beam model and a 2-D full-Stokes viscoelastic
finite element model that has been used in the past to explore
ice/tide processes (Gudmundsson, 2011; Rosier and others,
2014, 2015; Rosier and Gudmundsson, 2016). The model
domain is based on a comprehensive recent survey of the
grounding zone of White Island on the Southern McMurdo
Ice Shelf, including ice thickness measurements and loca-
tions of probable basal crevasses obtained by radar (Fig. 1).
This extensive dataset provides a unique opportunity to
investigate flexural processes in far more detail than has pre-
viously been possible. We show that using a linear elastic
beam model to study a nonlinear viscoelastic process can
provide an excellent fit to flexure profiles, provided any
phase information is ignored. This flexibility of the elastic
beam theory to successfully replicate observations should
however not been taken as indication of the correctness of
the rheological model on which the linear elastic beam
theory is based. We show that even if ice thickness is
known, the presence of basal crevasses can greatly alter
the flexure profile, which would be misinterpreted as a
change in Young’s modulus. Considerable care should be
taken when interpreting ice-shelf flexure profiles to deter-
mine ice rheology or thickness. In contrast, using flexure pro-
files to determine GL position is reasonably robust depending
on the level of accuracy required.

2. METHODS
The full-Stokes solver MSC.Marc (MSC, 2016) is used to
simulate a 20 km flowline (15 km floating, 5 km grounded)
of the Southern McMurdo Ice Shelf grounding zone. It uses
the finite element method in a Lagrangian frame of reference
to solve for conservation of mass, linear momentum and
angular momentum:

Dρ

Dt
þ ρvi;i ¼ 0; ð1Þ

σ ij;j þ fi ¼ 0; ð2Þ

σ ij � σ ji ¼ 0; ð3Þ

where D/Dt is the material time derivative, ρ is mass density,
vi are the components of the velocity vector, σij are the com-
ponents of the Cauchy stress tensor and fi are the components
of the gravity force per volume. In this way, unlike most pre-
vious studies of tidal flexure, the model does not use any form
of thin beam approximation. We use summation convention
of dummy indices and the comma to denote partial deriva-
tives, in line with standard Cartesian tensor notation. The
model is 2-D plane strain such that all strain components
with an across flow (y) term vanish. The deviatoric stress
and strain components (τij and eij, respectively) are defined as

eij ¼ eij � 1
3
δ ijepp ð4Þ

and

τ ij ¼ σ ij � 1
3
δ ijσ pp; ð5Þ

Fig. 1. Differential interferogram from the Southern McMurdo Ice
Shelf study site, derived from three TerraSAR-X scenes in 2014,
showing the flexure zone as dense band of fringes. Each fringe
corresponds to 2.2 cm of vertical displacement. Background image
is a Landsat 8 scene from 23 February 2017. Also marked is the
grounding line (solid black line), model domain (solid white line),
radargram line (dashed black line), 30 m ice speed contours
(dashed white line) and the location of the firn core (star). Inset
shows the extent of the main figure (red box) in the context of the
Ross Ice Shelf. Note the location of the shear margin between the
Southern McMurdo and Ross Ice Shelves, shown by tightly packed
ice speed contours. Image courtesy DLR.
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where eij are the components of the strain tensor and δij is the
Kronecker Delta.

Ice is treated as a Maxwell viscoelastic material. This is a
two-element rheological model comprising a viscous
damper and an elastic spring connected in series, such that
an applied stress yields an instantaneous elastic strain and
a time dependent viscous strain. The total deviatoric strain
rate _eij is therefore the sum of these two contributions:

_eij ¼ Aτn�1
E τ ij þ 1

2G
τ ij
∇
; ð6Þ

where the dot indicates a time derivative.
The first term on the right-hand side represents the viscous

component of deformation where A is the temperature
dependent rate factor in Glen’s flow law, n is creep exponent
(a nonlinear relation with n= 3 is used throughout) and

τE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ ijτ ji=2

q
ð7Þ

is the effective stress. The second term on the right-hand side
of (6) is the elastic component of deformation, where the
superscript ∇ denotes the upper-convected time derivative:

τ ij
∇ ¼ D

Dt
τ ij � ∂vi

∂xk
τkj �

∂vj
∂xk

τ ik; ð8Þ

G is the shear modulus:

G ¼ E
2ð1þ nÞ ; ð9Þ

ν is the Poisson’s ratio and E is the Young’s modulus
(Christensen, 1982). A standard value of 0.3 is used through-
out for the Poisson’s ratio (Lingle and others, 1981;
Stephenson, 1984; Kobarg, 1988; Smith, 1991; Vaughan,
1995; Schmeltz and others, 2002; Sykes and others, 2009)
and in line with previous studies the effect of changing this
is negligible and not discussed further.

We choose to avoid the complication of matching the
background flow of the ice stream, largely because the
flow in this region is not aligned with the 2-D flexure line
that we investigate. Following Thompson and others (2014)
we set the body force fi= 0 in (2). This will only alter the
viscous component of our model since the effective viscosity
is a function of the effective stress. In this case, since we are
only interested in the relative amplitude of the flexure profile
and do not investigate its phase, any resulting difference
between the two models will be very small. Without the
body force there is no need to apply an ocean back pressure
at the downstream end of the model, so instead a stress-free
condition is applied.

Ice rests on seawater of uniform mass density ρw= 1030
kg m−3 ,which exerts an ocean pressure normal to the base
of the floating ice shelf given by

pw ¼ ρwgSðtÞ; ð10Þ

where g is gravitational acceleration, S(t) is the time varying
sea level, consisting of a sine wave of diurnal period with
an amplitude equal to the local ocean tide of ∼0.3 m.
Grounded ice rests on an elastic bed 5 m thick with stiffness
k= Et/Ht, where Et is the till elasticity and Ht is the till thick-
ness. Sayag and Worster (2011, 2013) previously investi-
gated the effects of till stiffness on the flexure profile and

we do not expand on this analysis. We briefly show the
effect of reducing k in one set of experiments for the sake
of comparison, but in general k is fixed to a value of 1 GPa
m−1, representing a relatively stiff bed (Sayag and Worster,
2013) to avoid complicating our results with soft till effects.
At the GL ice is pinned to the bed such that the GL cannot
migrate, in accordance with DInSAR analysis that shows no
GL migration at this site (Wild and others, 2017). The GL pos-
ition used in the model is the GL position as identified in the
radargram with the aid of DInSAR interferograms.

It is worth pointing out here that, although the system of
equations we solve in our model are very different from the
purely elastic beam model, the boundary conditions we
employ are almost exactly the same. In his derivation,
Holdsworth (1969) assumes that the ice is plane strain,
resting on an elastic foundation and clamped vertically at
the GL. At the downstream end of the beam the vertical
deflection equals vertical tidal motion and its gradients in x
are zero. All these conditions are satisfied in our model, pro-
vided that the domain is sufficiently long (which we show
later in the results).

The model domain consists of an unstructured mesh of
∼50,000, 2-D isoparametric triangular elements, refined
around the grounding zone leading to a resolution of up to
4 m in this region. Radargrams in this area, obtained during
a recent survey, indicate extensive basal crevassing in the
grounding zone. In some simulations we manually add
cracks into the finite element mesh at locations where we
interpret likely basal crevasses based on one of the radar-
grams across the White Island grounding zone (Fig. 2a).

Fig. 2. (a) Radargram across the grounding zone of White Island,
Southern McMurdo Ice Shelf, showing extensive basal crevassing
(some of the more distinct basal crevasses are indicated by
arrows). (b) Outline of the model domain in the grounding zone
for a crevassed geometry: a= 0.25 H, α= 1°, where a is the
crevasse depth through the ice thickness H and α is the crevasse
opening angle. Note that the full model domain extends beyond
this region (extent shown in Fig. 1). (c) Close up of the portion of
the domain outlined in the red box of panel b, showing details of
the crevasse geometry for α= 1°.
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Due to the difficulty in determining crevasse depths from the
radargram we adopt the simpler approach of testing two
scenarios, with depths chosen to be either 10% or 25% of
local ice thickness and crack opening angles (α) of either
1° or 0.001°. An outline of the resulting model geometry,
showing crevasse depths of 25% ice thickness and crack
opening angles of 1°, is shown in Fig. 2b.

A 10 m firn core was taken in the survey area at the same
time as radar measurements were made (location shown in
Fig. 1). This was divided into 5–10 cm sections, which
were weighed and measured to obtain estimates of firn densi-
fication (shown in Fig. 3a). These measurements were fitted
to an exponential curve assuming glacial ice mass density
(ρice) of 917 kg m−3 giving the following depth density rela-
tion:

ρiðzÞ ¼ ρice � ð573 expð�0:0529zÞÞ: ð11Þ

Along with the mass density profile given in (11) we use a
simple relation of a form given by Gibson and Ashby (1988)
to calculate a depth dependent Young’s modulus as

EðzÞ ¼ ρiðzÞ
ρice

� �2

Eice: ð12Þ

The resulting profiles for mass density and Young’s modulus
are shown in Fig. 3a. To make for a sensible comparison Eice
is chosen to be 3.2 GPa so that the Young’s modulus of
glacial ice remains the same as that of the control simulation
and the only difference is in the stiffness of the firn layer.
Using this relation the depth averaged E becomes 2.9 GPa,
however the change is not that simple given that the stiffness
is only reduced at the ice surface. A variety of relations
between mass density and stiffness exist and no measure-
ments were made with which to test this particular form,

however the firn stiffness will undoubtedly be lower and so
this simplest approach provides a useful first step in investi-
gating how the flexure profile would change as a result of
reduced surface stiffness.

A temperature distribution was taken from recent mea-
surements made in a nearby portion of the McMurdo Ice
Shelf (Kobs and others, 2014) and applied to the model
with the simplifying assumption that there is no lateral vari-
ation in basal temperature (Fig. 3b). The rate factor A is
then made a function of temperature using the relation
derived by Smith (1981).

3. RESULTS
Our results are divided into two sections; firstly we use the
full-Stokes viscoelastic model described in Section 2 to simu-
late ice flexure for a number of different geometries and par-
ameter choices to show the effect of these changes on the
surface flexure signal. We then use a nonlinear regression
to fit an analytical elastic beam solution to our modelled
flexure profiles in order to evaluate the performance of this
technique and discuss what can be gained from such an
exercise.

3.1. Full-stokes model
We begin by presenting results from a control run, whereby
we use the full-Stokes viscoelastic model to calculate a
flexure profile but without any additional perturbations i.e.
not changing Young’s modulus with depth and using a
mesh without crevasses. Model simulations use a time
varying sea level (10) and the flexure profile is the difference
between the surface elevation at high tide and the surface
with no tide. We approach this control run in the same
way as previous studies, by taking the thickness profile and
tuning the Young’s modulus to match an observed flexure
profile measured by differential interferometry. Figure 4
shows the DInSAR flexure profile (blue line) and the best fit
obtained with an effective Young’s modulus of 3.2 GPa
(black line) i.e. the control run. As a next step, we introduce
basal crevasses with depths of 25% ice thickness into the
mesh as described in Section 2 and rerun the model. In this

Fig. 3. (a) Density relation obtained by fitting an exponential curve
(11) (blue line) to firn density measurements obtained with the 10 m
core (circles) and the resultant variation in Young’s modulus with
depth as determined from (12) (red line). (b) Temperature
distribution used in the model.

Fig. 4. DInSAR flexure profile (blue curve) compared with best fits
for the crevassed and control geometries (red and black lines,
respectively). Both modelled curves are outputs from the full-
Stokes viscoelastic model.
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case the effective Young’s modulus needed to match obser-
vations is 5.2 GPa (Fig. 4, red line).

Figure 5 shows the difference between the control run
and a more complete set of experiments. To aid comparison
we include results of two simulations where the only
change was to increase or decrease the Young’s modulus
of ice by ±25% to 4.0 and 2.4 GPa, respectively (Fig. 5a).
The first experiment (yellow line in Fig. 5a) uses the
density profile shown in Fig. 3 (blue line) to reduce near-
surface ice elasticity according to the relation given by
(12) (denoted E= f(ρi)). The effect is similar to reducing
the overall Young’s modulus of the entire ice shelf by
25% with no clear way to differentiate between the two
cases.

Comparison of results between experiments that intro-
duced basal crevasses into the model domain are shown in
Fig. 5b. Where the crack opening angle is large (α= 1°)
there is no difference between the flexure profiles at high
and low tide (low tide profiles overlap exactly with their
respective high tide profiles and so are not included) .
For cracks that penetrate 25% of ice thickness the effect
on the flexure profile is very large, equivalent to a reduc-
tion of Young’s modulus of 40%. The effect for cracks
that penetrate 10% of ice thickness is smaller but still
important.

Where the crack opening angle is very small (α= 0.001°)
there is a difference between the flexure profile at high and
low tide (low tide flexure profiles are inverted and indicated
by dashed lines). This is because the cracks are sufficiently
narrow that at various stages in the tidal cycle cracks in a
compression region might close fully at which point they
no longer reduce the effective stiffness of the ice. This
happens at different phases of the tide for different cracks
and also explains why the overall effect of these cracks is
smaller than for large opening angles.

In a number of previous studies it is assumed that ice rests
on an elastic bed (Sayag and Worster, 2013; Walker and
others, 2013) and so we also include the effect of reducing
the stiffness of the bed (Fig. 5c). This has a similar influence
on the flexure profile as reducing the effective ice stiffness
but also increases the reversed sign deflection upstream of
the grounding line.

Several tests were performed to check that the 15 km
length of floating shelf was sufficiently long. Due to the
stress free boundary condition at the downstream end of
the model, if the domain is much longer than the character-
istic bending lengthscale (in this case 1/β≈ 1 km) then the
solution will approach that of an infinitely long ice shelf.
Doubling the length of the ice shelf to 30 km for the a=
25 H, α= 1° geometry led to a maximum difference
between the two resulting profiles of 2 × 10−5 m. Since this
difference is three orders of magnitude smaller than the
signals we investigate, we consider our domain to be suffi-
ciently large that boundary effects are negligible.

3.2. Elastic beam fitting
We now attempt to fit an analytical elastic beam solution to
our modelled flexure profiles to evaluate its performance and
ability to provide useful information on elasticity and GL pos-
ition. Following a similar approach to Rignot (1998a), we
assume an elastic tidal flexure profile for a positive vertical

Fig. 5. Difference in flexure profile between the control (E= 3.2
GPa, k= 103 MPa, no crevasses) and various experimental setups.
(a) shows the effect of making Young’s modulus a function of ice
mass density, denoted E= f(ρi) along with the most extreme
scenario tested, with crevasse depths of 25% ice thickness and
density dependent E. Difference in flexure profile obtained by
simply altering the Young’s modulus are included for the sake of
comparison (b) shows the difference with crevassed geometries of
crevasse depths 0.1 and 0.25 H and crevasse opening angles α=
1° and α= 0.001°. Dashed lines in panel b indicate the equivalent
difference in flexure profile at low tide. Note that for large crack
opening angles α= 1° low tide profiles overlap exactly with their
respective high tide profiles and so are not shown. (c) shows the
change in flexure profile as the bed is made more elastic, from
k= 102 MPa to k= 100 MPa. All curves shown are outputs from
the viscoelastic full-Stokes model.
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deflection of 1 m that takes the form

yðxÞ ¼ 1� expð�βx0Þ½cosðβx0Þ þ sinðβx0Þ� x> x0
0 x � x0

�
ð13Þ

(Holdsworth, 1969) where x′= x− x0, x0 is the estimated GL
position and

β ¼ 3ρwg
1� n2

Eh3

� �1=4

ð14Þ

is the spatial wavenumber. We apply a nonlinear regression
(e.g. Dennis and Schnabel, 1996) of the form

bðkþ1Þ
i ¼ bðkÞ

i þ ðKðkÞ
ji K

ðkÞ
jk Þ�1KðkÞ

kl ðŷl � yðkÞl Þ; ð15Þ

where

b ¼ β
xo

� �
; ð16Þ

Kij ¼ dyi
dbj

; ð17Þ

ŷ is the observed flexural profile and k is the iteration
number. After a few iterations we obtain the optimum
values for β and x0 that best fit each flexure profile using
elastic beam theory. By first performing a regression on the
control simulation with E= 3.2 GPa we calculate an ‘effect-
ive thickness’ h for the model, that does not vary spatially, of
221 m. Direct comparison between our model, which uses
the measured ice thickness, and the linear elastic beam
model of (13) that assumes constant thickness, means some
of the differences can be attributed to this constant thickness
approach. To check that this approach can still be inform-
ative we conducted two experiments where the only differ-
ence from the control was to change Young’s modulus to
4.0 and 2.4 GPa. In this case the regression finds good agree-
ment, fitting a spatial wavenumber equivalent to 3.96 and
2.42 GPa respectively.

Using the ‘effective thickness’ value obtained above
allows us to calculate an ‘effective’ Young’s modulus from
β using (14) for each experiment, the results of which are

summarised in Table 1. For the most extreme experiment,
where we introduce basal crevasses with a depth of 0.25 H
and make Young’s modulus a function of mass density, the
elastic beam model finds a best fit for E= 1.47 GPa i.e.
over a factor of two error from the actual Young’s modulus
used. The elastic beam model fit to profiles produced by
the full-Stokes model was good in all cases, with typical
RMSE of ∼2–3 mm.

Various approaches have been used in the past to estimate
GL position from SAR interferometry. Some previous studies
fit an elastic beam model to the DInSAR flexure profile and
assign the upper limit of tidal flexure (F) at the point x0
(Rignot, 1998a, b; Sykes and others, 2009). Alternatively,
the assumed GL position (G) is placed at the point that verti-
cal motion of ice is detected for the first time above noise
level in the interferogram. We replicate the fringe picking
approach by differencing two modelled flexure profiles at
random points in the tidal cycle and placing G where the
flexure exceeds 2.2 cm, ie. the height equivalent to one inter-
ferogram fringe in TerraSAR-X interferograms. This is repeated
1000 times for each experiment, discarding any sampling
where the difference in tidal elevation was<20 cm, and aver-
aged to obtain an estimate of G based on this approach.

Table 1 compares the estimate of the GL position using
both approaches with the known GL position in the model,
where a positive distance indicates that the GL is determined
to be downstream of its true location. In all cases F was
located upstream of G, while the true GL position was
located between these two points.

4. DISCUSSION
The results shown above demonstrate that the presence of
crevasses and a firn layer could greatly alter tidal flexure pro-
files; changing the width of the grounding zone and thus
leading to a very different ‘effective’ Young’s modulus. In
most cases it is impossible to attribute the cause of differences
between flexure profiles when the only available information
is the surface flexure signal. As previously stated, the Young’s
modulus does not actually change due to the inclusion of
crevasses. The fact that a different effective Young’s
modulus is required to fit the observed flexural profile
(Fig. 4) is due to the lack of a-priori knowledge about crevasses
in the no crevasse simulation. Laboratory experiments on
glacial ice under controlled conditions tell us about the true
rheological parameters whereas effective values obtained
through modelling flexural profiles can inform the extent to
which factors such as crevassing are locally important.

Although the crevassed meshes used in this work are rela-
tively crude they are a first step in assessing the importance of
ice damage in this respect and we have the benefit of knowl-
edge about crack spacing and frequency in this domain. It is
unclear from the work presented here whether the basal cre-
vasses on the Southern McMurdo Ice Shelf have formed due
to the flexure itself, as a result of the shearing flow with the
Ross Ice Shelf in this area or a combination of the two,
however there is no doubt that many other grounding
zones will be crevassed and these effects should be consid-
ered relevant to most tidal flexure studies. Differences in
flexure curves between high and low tides might be indica-
tive of very narrow crevasses closing or opening at different
stages in the tide.

InSAR GL positions are defined as the inland limit of
flexure and it is assumed that this lies close to the actual

Table 1. Inferred properties obtained by regression of an elastic
beam equation to the modelled curves presented in Fig. 5

Experiment Effective
E GPa

1/β m RMSE
mm

x0 m Fringe
pick GL m

E= f(ρi) 2.60 1027 2.78 −106 134
a= 0.1 H 2.84 1050 2.37 −103 153
a= 0.25 H 1.88 948 2.05 −83 144
a= 0.25 H, E= f(ρi) 1.47 760 2.16 −90 140
k= 100 MPa m−1 3.05 1069 2.45 −150 116
k= 101 MPa m−1 3.09 1073 3.36 −138 114
k= 102 MPa m−1 3.16 1079 2.47 −121 139

Effective E, 1/β and x0 are the Young’s modulus, bending length scale and GL
location estimated from each profile using this approach. Fringe pick shows
where the GL would have been placed using the fringe picking method of
interferometory. In both cases the estimated GL locations are given relative
to the known GL location in the model, with a positive distance being down-
stream of this point. RMSE is the fitted beam model to each flexure profile. All
experiments used a Young’s modulus of 3.2 GPa and the crevassed geom-
etries had a crack opening angle of 1°.
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grounding line. The two approaches tested here appear to
perform reasonably well, differing from the true GL position
by ∼80–150 m, however there are two caveats to this.
Firstly the geometry used in this work can be considered an
ideal case, with no lateral effects and a steep bed slope, so
the accuracy of the GL position is likely a best case scenario.
Shallower bed slopes in particular would likely lead to larger
discrepancies between either F or G and the true GL position.
Secondly it is worth noting that, taking this domain as an
example, an error in GL position of 150 m would result in
an error in ice thickness at the GL of over 8%.

Errors in the regression were always small, implying that a
simple elastic beam model can be made to fit very well to a
flexure profile with only two fitting parameters. These small
errors are often cited in previous studies to provide confi-
dence in this type of approach (Vaughan, 1995; Rignot,
1998a, b) however it is clear that care must be taken if this
approach is used to estimate either H or E since other
factors might be at play. In fact, since it is only the product
of EH3 that enters (14) (Holdsworth, 1969), it is impossible
to independently estimate E or H without having some add-
itional information. It is worth noting that, although a model
based on the elastic beam approximation will never succeed
in capturing this additional level of complexity, any model
(i.e. viscoelastic) may lead to a misinterpretation of a
flexure profile without prior knowledge of factors such as
basal crevasses and mass density distribution.

We can use this same product of EH3 in (14) to explore a
first order estimate of what the change in effective ice stiffness
due to crevasses using elastic beam theory would be. In the
case of crevasses that penetrate to 25% of the ice thickness,
this can be thought of in a most basic sense as reducing the
effective ice thickness by the same amount. Using this
simple approach and the EH3 relation, a 25% reduction in
ice thickness would be expected to manifest itself as a reduc-
tion in the effective ice stiffness of almost 60%. Using the full-
Stokes model we find the actual reduction to be closer to
40% (Fig. 4). This discrepancy is unsurprising because the
ice in our model is not completely crevassed along its
entire length and so a lot of ice remains to provide bending
resistance between crevasses. This difference highlights
once again the dangers in applying the linear elastic beam
theory far beyond its useful bounds.

Small surface strand cracks were observed in the ground-
ing zone but are not visible in the radar profiles and so they
have not been included in the cracked model domain.
Including strand cracks would further alter the bending
profile, although since strand cracks reduce the stiffness of
the less dense firn layer this effect is likely to be smaller
than basal crevasses.

Nearby thermal profiles of the Southern McMurdo ice
shelf found temperatures of ∼� 20○C at the ice surface,
increasing to ∼� 4○C at the base with an approximately
exponential profile (Kobs and others, 2014). Laboratory
experiments investigating the temperature dependence of
ice elasticity show that warmer temperatures lead to
reduced stiffness but do not find a clear relation that can be
applied to our model (Hobbs, 1974; Schulson and Duval,
2009). Based on the experiments of Dantl (1968) a tempera-
ture change of∼20○C would result in only a ∼3% change in
ice stiffness whereas experiments by Jellinek and Brill (1956)
suggest a larger sensitivity but with no clear trend. Schulson
and Duval (2009) suggest that a temperature range 0� 50○C
causes the effective stiffness of ice to change by only 5%.

Since there is no consensus on an appropriate temperature-
elasticity relation for glacial ice and any changes to ice stiff-
ness would be slight, we choose to ignore this effect. A more
important effect of temperature is likely the change in viscos-
ity, which shows a clearer and stronger dependence on tem-
perature. Warmer ice is less viscous and so it might be that
ice behaves more viscoelastically over tidal timescales at
its base and more elastically at the surface.

Tidal migration of the grounding line was not included in
the viscoelastic model presented here because the lack of a
body force to balance ocean pressure forcing the ice off the
bed results in limitless upstream migration on the high tide.
In order to check the influence of this the model was run
with the local tidal amplitude and the body force included,
allowing the grounding line to migrate for a purely elastic
ice rheology, and compared with results with a fixed ground-
ing line. Due to the very steep bedrock topography in the
grounding zone of the White Island transect that we model,
migration of the grounding line was only Oð1mÞ and
hence the effect on the flexure profile was negligible.
Clearly on shallow sloping beds where tidal migration of
the grounding line is potentially as much as several kilo-
meters (Brunt and others, 2011) the effect will be very consid-
erable and the assumption of a fixed grounding line for either
an elastic beam model or the full-Stokes model presented
here would lead to an articially narrow grounding zone.

Walker and others (2013) treat the GL as a fulcrum which,
while it may be a suitable simplification for analysing tidal
flexure, is implausible based on the known physical proper-
ties of ice and from geometrical considerations (Tsai and
Gudmundsson, 2015). The limited evidence of reversed
flexure upstream of the grounding line can be explained
physically without this fulcrum if ice is resting on a soft till
as shown in our experiments (Fig. 5c) and previously by
Sayag and Worster (2011, 2013). The recent use of a
fulcrum as a mechanism to drive warm water upstream into
the subglacial water system and speed up ice retreat
(Parizek and others, 2013) is therefore inappropriate. It has
been shown that change to the subglacial hydraulic potential
due to ice flexure would not lead to suction of ocean water
far upstream of the grounding line (Sayag and Worster,
2013).

5. CONCLUSIONS
Observations of tidal flexure in the grounding zone have
been used extensively in previous studies to determine
approximate grounding line position and ice properties.
We have shown, using a viscoelastic full-Stokes model of
flexure constrained by observations made in the grounding
zone of the McMurdo ice shelf, that the interpretation of
flexure measurements could vary considerably depending
on the modeling assumptions made. Inclusion of observed
basal crevasses and mass density dependent elasticity alters
the effective Young’s modulus obtained by fitting the
model to the observed flexure by up to 200% in the set of
experiments presented here. Conversely, estimates of GL
position are reasonably accurate although this may be
partly fortuitous as a consequence of the large gradients in
geometry at the GL.

No previous model has included all of the processes
investigated here and yet the misfit between these previous
models and observations is always small unless ice thickness
is poorly known. Factors such as extensive crevassing might
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be expected to change the shape of a flexure profile suffi-
ciently that a linear elastic beam model would no longer
provide a good fit and yet our results show that this is not
the case and misfit remained small in all cases. The goodness
of fit obtained by the beam theory does not imply that the
rheological description on which it is based is correct but is
a consequence of fitting only the amplitude of the flexure
curve. Deriving values for the Young’s modulus in this
manner and comparing with laboratory derived values, as
has been done in numerous previous studies, does not
provide satisfactory insight into the relevant ice rheology.
In addition, the derived rheological parameters are not trans-
ferrable to other ice streams where local conditions might be
completely different. An elastic beam model will also fail to
reproduce the phase relationship between tides and stresses
acting at the grounding line, and such an approach is not suit-
able for studies of tidal modulation on ice streams. These
results imply that extreme caution should be used when
fitting models to flexure profiles to estimate either E or H
since many other factors could be at play.
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