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Abstract

Basal motion is the primary mechanism for ice flux in Greenland, yet a widely applicable model
for predicting it remains elusive. This is due to the difficulty in both observing small-scale bed
properties and predicting a time-varying water pressure on which basal motion putatively
depends. We take a Bayesian approach to these problems by coupling models of ice dynamics
and subglacial hydrology and conditioning on observations of surface velocity in southwestern
Greenland to infer the posterior probability distributions for eight spatially and temporally con-
stant parameters governing the behavior of both the sliding law and hydrologic model. Because
the model is computationally expensive, characterization of these distributions using classical
Markov Chain Monte Carlo sampling is intractable. We skirt this issue by training a neural net-
work as a surrogate that approximates the model at a sliver of the computational cost. We find
that surface velocity observations establish strong constraints on model parameters relative to a
prior distribution and also elucidate correlations, while the model explains 60% of observed vari-
ance. However, we also find that several distinct configurations of the hydrologic system and
stress regime are consistent with observations, underscoring the need for continued data collec-
tion and model development.

Introduction

Glaciers and ice sheets convert potential energy in the form of accumulated ice at high eleva-
tions into heat, either by viscous dissipation within the ice itself or by frictional dissipation at
the interface between the ice and the underlying bedrock or sediment. This latter process, here-
after referred to as ‘sliding’, is responsible for .90% of observed surface velocity over much of
Greenland, even in regions that are not particularly fast flowing (Maier and others, 2019).
Because variations in ice flow dynamics make up .50% of contemporary ice loss in
Greenland (Mouginot and others, 2019), correctly modeling sliding is as critical to predicting
future Greenland mass loss as having reliable climate models. Ensemble modeling of
Greenland’s future has shown that uncertainty in ice dynamics accounts for between 26
and 53% of variance in sea level rise projections over the next century (Aschwanden and
others, 2019).

Observations (e.g. Iken and Bindschadler, 1986) and theoretical considerations (e.g.
Weertman, 1964; Lliboutry, 1968; Fowler, 1979) suggest that basal sliding depends on basal
effective pressure. However, explicitly modeling basal effective pressure – and more generally,
modeling the subglacial hydrologic system – remains among the most significant open pro-
blems in glacier dynamics. The difficulty results from a discrepancy in spatial and temporal
scales between the physics driving sliding and water flux versus the scale of glaciers and ice
sheets: physics at the bed occur on the order of a few meters with characteristic timescales
of minutes, while relevant timescales for ice-sheet evolution occur over kilometers and
years. To upscale glacier hydrology to a scale relevant to the overlying ice, a variety of approx-
imations have been proposed, including different physical phenomena thought to be morpho-
logically relevant such as a continuum approximation of linked cavities (Bueler and van Pelt,
2015), a lattice model of conduits or a combination thereof (Werder and others, 2013; De
Fleurian and others, 2014; Hoffman and others, 2016; Downs and others, 2018; Sommers
and others, 2018). However, validating the models of sliding and hydrology remains elusive,
partly due to potential model misspecification, but also due to a lack of sufficient observational
constraints on model parameters such as hydraulic conductivity of different components of
the subglacial system, characteristic length scales of bedrock asperities and the scaling between
effective pressure and basal shear stress.

Previous assimilation of surface velocity observations

The above challenges are not new, and ice-sheet modelers have used geophysical inversion
methods (e.g. Parker and Parker, 1994) in glaciological applications to circumvent them for
over two decades (e.g. MacAyeal, 1993; Morlighem and others, 2010; Gillet-Chaulet and
others, 2012; Favier and others, 2014; Joughin and others, 2014; Cornford and others,
2015). Commonly, a linear relationship between basal shear stress and velocity is adopted,
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and then surface velocities are inverted for a spatially varying
basal friction field such that the resulting surface velocities are
close to observations. This approach lumps all basal processes
into one field, a frictional parameter that varies in space while
ignoring temporal variability, exchanging the capability of longer-
term predictive power for spatial fidelity to observations at an
instant.

Several variants on this approach exist. For example Habermann
and others (2012) performed the above procedure with a pseudo-
plastic power law. Larour and others (2014) assimilated surface
altimetry data into re-constructions of transient ice flow. The nov-
elty of their approach was that surface mass balance and basal fric-
tion were determined in time as well as space, resulting in adjusted
modeled surface heights and time-varying velocities that best fit
existing altimetry. Such an approach allows for a better quantifica-
tion of time-evolving basal and surface processes and a better
understanding of the physical processes currently missing in tran-
sient ice-flow models. Their study also demonstrated that large
spatial and temporal variability is required in model characteristics
such as basal friction. However, for prognostic modeling, such
approaches cannot be applied because we cannot assimilate future
observations. As such, a middle ground between purely empirical
and local process modeling must be found.

Several recent studies have taken this approach. Pimentel and
Flowers (2011) used a coupled flowband model of glacier dynam-
ics and hydrology to model the propagation of meltwater-induced
acceleration across a synthetic Greenland-esque domain, and
established that the presence of channels can substantially reduce
the sensitivity of the system to fast influxes of meltwater. Hoffman
and others (2016) showed that for a 3-D synthetic domain based
on West Greenland, a weakly-connected drainage system helps to
explain the temporal signal of velocity in the overlying ice. The
previous two studies, although not formally assimilating observa-
tions, compared their model results to observations in an effort
to validate their qualitative results. Minchew and others (2016)
directly inverted surface velocities at Hofsjokull Ice Cap for a
spatially varying basal shear stress, and in conjunction with a
Coulomb friction law, inferred the distribution of effective pres-
sure. Brinkerhoff and others (2016) used a Bayesian approach
to condition a 0-D model of glacier hydrology and sliding on sur-
face velocity and terminus flux observations to infer probability
distributions over unknown ice dynamics and hydrologic model
parameter. Although not coupled to an ice dynamics model,
Irarrazaval and others (2019) present a Bayesian inference over
the lattice model of Werder and others (2013), constraining the
position and development of subglacial channels from observa-
tions of water pressure and tracer transit times. Aschwanden
and others (2016) demonstrated that outlet glacier flow can be
captured using a simple local model of subglacial hydrology,
but further improvements are required in the transitional zone
with speeds of 20–100 m a−1. This disagreement between
observed and simulated speeds most likely arises from inadequa-
cies in parameterizing sliding and subglacial hydrology. Finally
and notably, Koziol and Arnold (2018) inverted velocity observa-
tions from West Greenland to determine a spatially-varying trac-
tion coefficient after attenuation by effective pressure derived
from a hydrologic model.

Our approach

In this study, we seek to expand on previous approaches by coup-
ling a state of the art subglacial hydrology model to a 2.5-D (map
plane plus an ansatz spectral method in the vertical dimension)
model of ice dynamics through a general sliding law (hereafter
referred to as the high-fidelity model), and to then infer the distri-
bution of practically unobservable model parameters such that the

ice surface velocity predicted by the model is statistically consist-
ent with spatially explicit observations over a region in western
Greenland. Throughout the study, we assume spatially and tem-
porally constant parameters in the hydrologic and sliding model
so that spatial and temporal variability in basal shear stress is
only attributable to differences in modeled physical processes.

It is likely that there exists substantial non-uniqueness in
model parameter solutions. Different controlling factors in the
hydrology model may compensate for one another, as may para-
meters in the sliding law: for, example, the basal traction coeffi-
cient could be made lower if sheet conductivity is made higher,
leading to a lower mean effective pressure. In order to fully
account for these tradeoffs and to honestly assess the amount of
information that can be gained by looking solely at surface vel-
ocity, we adopt a Bayesian approach (e.g. Tarantola, 2005) in
which we characterize the complete joint posterior probability
distribution over the parameters, rather than point estimates.

Inferring the joint posterior distribution is not analytically
tractable, so we rely on numerical sampling via a Markov Chain
Monte Carlo (MCMC) method instead. Similar inference in a
coupled hydrology-dynamics model has been done before
(Brinkerhoff and others, 2016). However, in the previous study
the model was spatially averaged in all dimensions, and thus infer-
ence was over a set of coupled ordinary differential equations.
Here, we work with a model that remains a spatially explicit
and fully coupled system of partial differential equations. As
such, the model is too expensive for a naive MCMC treatment.
To skirt this issue, we create a so-called surrogate model, which
acts as a computationally efficient approximation to the expensive
coupled high-fidelity model. We note that this idea is not new to
glaciology; Tarasov and others (2012) used a similar approach to
calibrate parameters of paleoglaciological models based on
chronological indicators of deglaciation.

To construct the surrogate, we run a 5000 member ensemble
of multiphysics models through time, each with parameters
drawn from a prior distribution, to produce samples of the mod-
eled annual average velocity field. This is computationally tract-
able because each of these model runs is independent, and thus
can be trivially parallelized. We reduce the dimensionality of the
space of these model outputs through a principal component
analysis (PCA) (Shlens, 2014), which identifies the key modes
of model variability. We refer to these modes as eigenglaciers,
and (nearly) any velocity field producible by the high-fidelity
model is a linear combination thereof. To make use of this
decomposition, we train an artificial neural network
(Goodfellow and others, 2016) to control the coefficients of
these eigenglaciers as a function of input parameter values,
yielding a computationally trivial map from parameter values
to a distributed velocity prediction consistent with the high-
fidelity model. Unfortunately, neural networks are high variance
maps, which is to say that the function is sensitive to the choice
of training data. To reduce this variance (and to smooth the rela-
tionship between parameters and predictions), we employ a
Bayesian bootstrap aggregation approach (Breiman, 1996;
Clyde and Lee, 2001) to generate a committee of surrogate mod-
els, which are averaged to yield a prediction.

Surrogate in hand, we use the manifold Metropolis-adjusted
Langevin algorithm (mMALA; Girolami and Calderhead, 2011)
to draw a long sequence of samples from the posterior probability
distribution of the model parameters. mMALA utilizes both gra-
dient and Hessian information that are easily computed from the
surrogate to efficiently explore the posterior distribution. Because
the surrogate model itself is based on a finite sample of a random
function, we use a second Bayesian bootstrap procedure to inte-
grate over the surrogate’s random predictions, effectively account-
ing for model error in posterior inference (Huggins and Miller,
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2019) induced by using the surrogate (rather than the high-
fidelity model) for inference.

We find that high-fidelity model is able to reproduce many of
the salient features of the observed annual average surface velocity
field for a terrestrially terminating subset of southwestern
Greenland, with the model explaining on average �60% of the
variance in observations. As expected, we find significant correla-
tions in the posterior distribution of model parameters. However,
we also find that surface velocity observations provide substantial
constraints on most model parameters. To ensure that the distri-
bution inferred using the surrogate is still reasonable given the
high-fidelity model, we select a handful of samples from the pos-
terior distribution, feed them back into the high-fidelity model,
and show that the resulting predictive distribution remains con-
sistent with observations. The process described above is applic-
able to the broad class of problems in which we would like to
perform Bayesian inference over a limited number of parameters
given an expensive deterministic model.

Study area

We focus our study on the region of western Greenland centered
around Russell Glacier (Fig. 1). The domain runs from the ice
margin to the ice divide, covering an area of �36,000 km2. This
region was selected because it strikes a balance between being
simple and being representative: all glacier termini are terrestrial,
which means that the effects of calving can be neglected in this
study, surface slopes are modest, and surface meltwater runoff
rates are neither extreme nor negligible, yet there is still substan-
tial spatial variability in glacier speed even near the margin, from
a maximum of 150 m a−1 over the deep trench at Isunnguata
Sermia, to ,30 m a−1 just 20 km to the north.

Additionally, this region of Greenland has long been a hotspot
for observations due to its proximity to the town of
Kangerlussuaq. The bed is well-constrained by Operation
IceBridge flightlines, and throughout this study, we use the
basal topography of BedMachine V2 (Morlighem and others,
2017). We force the model with surface meltwater runoff com-
puted with HIRHAM (Mottram and others, 2017), averaged by
month between 1992 and 2015. As such, our forcing is time-
varying but periodic with a period of 1 year. When comparing
modeled to observed velocities (henceforth called uobs), we use
as our observation the inSAR-derived annual average velocity
fields of Joughin and others (2018), further averaged over the
years 2014 through 2018.

Numerical models

Ice dynamics

Viscous flow
The flow of the ice sheet over a volume V is modeled as a low
Reynolds number fluid using a hydrostatic approximation to
Stokes’ equations (Pattyn, 2003)

∇ · t′ = rig∇zs, (1)

where

t′ = 2txx + tyy txy txz
txy txx + 2tyy tyz

[ ]
. (2)

zs is the glacier surface elevation, ri is the ice density, g is the
gravitational acceleration and tij is a component of the deviatoric

stress tensor given by

tij = 2hėij, (3)

with ė the symmetrized strain rate tensor. The viscosity

h = A
2

−(1/n)

(ėII + ė0)
1−1/n (4)

is dependent on the second invariant of the strain rate tensor ėII.
Note that we make an isothermal approximation, and take the ice
softness parameter A to be a constant. We explicitly note that this
assumption may be questionable. However, because models of
Greenland thermal conditions frequently do not match borehole
observations in the region considered here (e.g. Harrington and
others, 2015) and sliding in this region is an order of magnitude
greater than deformation (Maier and others, 2019), we choose to
avoid the additional computational expense and uncertainty asso-
ciated with introducing a thermal model. The exponent in Glen’s
flow law n = 3.

Boundary conditions
At the ice surface Gzs and terminal margin GT (where the ice
thickness is assumed to approximate zero), we impose a no-stress
boundary condition

t′ · n = 0, (5)

where n is the outward pointing normal vector, and 0 is the zero
vector.

The remaining lateral boundary GL is synthetic in the sense
that there are no natural physical boundary conditions that should
be applied there. Here, we adopt the boundary condition of
Papanastasiou and others (1992), who suggest that the boundary
term appearing in the weak form of Eqn (1) (the second term in
Eqn (B2)) not be replaced by an arbitrary condition (no stress,
e.g.), but rather retained and included as an unknown to be deter-
mined as part of the solution procedure. Although this does not
lead to a unique solution in the strong form of the differential
equation, it does lead to one after discretization with the finite
element method. The resulting boundary condition for linear
Lagrange finite elements specifies that the curvature of both vel-
ocity components vanishes at a point near the boundary which
for a sufficiently smooth velocity field outside of the domain
approximates a stress free boundary at an infinitely distant loca-
tion. Griffiths (1997) refers to this as the ‘no boundary condition’
and show that it is equivalent to solving a reduced order equation
in the neighborhood of the boundary, which for the discretization
that we describe below reduces to the solution of the shallow ice
approximation.

At the basal boundary Gzb we impose the sliding law

t′ · n = −b2Np‖u‖q−1
2 u, (6)

with b2 the basal traction coefficient and u the ice velocity, and we
use ‖ · ‖2 to denote the standard L2 norm. We note that this slid-
ing law has some theoretical (Fowler, 1987) and empirical (Budd
and others, 1979; Bindschadler, 1983) support, but does not sat-
isfy Iken’s bound (Iken, 1981). As such there are alternative slid-
ing laws that may be preferable (e.g. Schoof, 2005). However, we
defer a detailed comparison of different sliding laws, and condi-
tion this study on Eqn (6) being a reasonable (and numerically
stable) approximation to the true subglacial process.

Journal of Glaciology 387

https://doi.org/10.1017/jog.2020.112 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2020.112


The effective pressure N is given by the ice overburden pres-
sure P0 = rigH less the water pressure Pw

N = P0 − Pw.

The exponents p and q control the non-linear response of basal
shear stress to the effective pressure and velocity (respectively).
We note several limiting cases of this sliding law: when
p = q = 1, we recover the linear Budd law (Budd and others,
1979). When p = 0, we get the pressure-independent Weertman
law (Weertman, 1957). In the limit q � 1, we recover a perfectly
plastic model of basal stress (e.g. Kamb, 1991).

In practice, we use a re-parameterized version of Eqn (6)

tb = g2N̂p‖û‖q−1û, (7)

where N/Scale(N) = N̂ is the effective pressure non-
dimensionalized by the ice overburden averaged over the model
domain, and u/Scale(u) = û is similar, with the characteristic
scale of u taken to be 50 m a−1. Thus, the resulting relationship
between g2 (which has units of stress) and b2 is

b2 = g2

Scale(N)pScale(u)q
. (8)

This transformation is helpful because the power law terms on the
right-hand side of Eqn (6) can vary by several orders of magni-
tude, thus requiring that b2 does the same in order to maintain
a given characteristic surface velocity. The g2 parameterization
circumvents this scale issue. We take g2, p and q to be unknown
but spatially and temporally constant.

Hydrologic model

In order to predict the effective pressure N on which the sliding
law depends, we couple the above ice dynamics model to a hydro-
logic model that simulates the evolution of the subglacial and
englacial storage via fluxes of liquid water through an inefficient
linked cavity system and an efficient linked channel system.

This model closely follows the model GlaDS (Werder and others,
2013), with some alterations in boundary conditions, discret-
ization and opening rate parameterization.

Over a disjoint subdomain �Vi , �V,
⋃

i[T
�Vi = �V, where T

is the set of triangles in the finite element mesh, the hydraulic
potential f = Pw + rwgzb (with zb the bedrock elevation) evolves
according to the parabolic equation

ev
rwg

∂f

∂t
+ ∇ · q− C + O = m, (9)

where Pw is the water pressure, rw the density of water, q the hori-
zontal flux, C the rate at which the cavity system closes (pushing
water into the englacial system), O the rate at which it opens and
m is the recharge rate (either from the surface, basal melt or
groundwater). The hydraulic potential is related to the effective
pressure by

N = rwgzb + P0 − f. (10)

The horizontal flux is given by the Darcy–Weisbach relation

q = −ksh
as‖∇f‖bs−2

2 ∇f, (11)

a non-linear function of the hydraulic potential, characteristic
cavity height h, bulk conductivity ks and turbulent exponents as

and bs.
The average subglacial cavity height h evolves according to

∂h
∂t

= O− C. (12)

Here, we model the subgrid-scale glacier bed as self-similar, with
bedrock asperity heights modeled with a log-normal distribution:

log hr � N ( log �hr , s
2
h), (13)

and a characteristic ratio r of asperity height to spacing. Thus, the

Fig. 1. Study area, with location of domain in Greenland (top left), detailed modeling domain with the computational mesh overlain with bedrock elevation and
surface contours (right), and closeup of mesh with domains used in modeling labeled (bottom left, see text). Note that the equilibrium line altitude is at approxi-
mately the 1500 m contour. Vi represent individual mesh cells, dVij the boundary between them and GT the terminal boundary.
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opening rate is given by

O =
∫1
0
Max ‖u(6 = 1)‖2r(1−

h
hr

), 0

( )
P(hr) dhr , (14)

where we use P(·) to denote the probability density function. For
s2
h = 0, this expression is equivalent to the standard opening rate

used in previous studies (e.g. Werder and others, 2013), albeit
reparameterized. However, this implies that once the cavity size
reaches hr , then the opening rate becomes zero: for a glacier mov-
ing increasingly quickly due to a high water pressure, there is no
mechanism for subglacial storage capacity to increase. For s2

h . 0,
our formulation regularizes the opening rate such that there is
‘always a bigger bump’, but with a diminishing effect away from
the modal bump size. Here, we make the somewhat arbitrary
choice that s2

h = 1 and take �hr to be a tunable parameter.
The cavity closing rate is given by

C = 2
nn

Ah|N|n−1N. (15)

Over a domain edge ∂Vij (the edge falling between subdo-
mains �Vi and �Vj), mass conservation implies that

∂S
∂t

+ ∂Q
∂s

= J−P

rwL
+mc, (16)

with S the size of a channel occurring along that edge, J the
opening rate due to turbulent dissipation, P the rate of sensible
heat changes due to pressure change and mc the exchange of
water with adjacent domains. We adopt the constitutive relations
given in Werder and others (2013) for each of these terms. The
channel discharge Q is given by another Darcy–Weisbach relation

Q = −kcS
a
c

∥∥∥∥ ∂f∂s
∥∥∥∥
b−2

2

∂f

∂s
, (17)

where kc is a bulk conductivity for the efficient channelized sys-
tem. The channel size evolves according to

∂S
∂t

= J−P

riL
− Cc, (18)

with channel closing rate

Cc =
2
nn

AS|N|n−1N. (19)

Substitution of Eqn (18) into Eqn (16) leads to an elliptic equation

∂Q
∂s

= J−P

L
1
ri
− 1

rw

( )
+mc. (20)

The exchange term with the surrounding sheet is given by

[q · n]+ + [q · n]− = mc, (21)

which states that flux into (or out of) a channel is defined impli-
citly by the flux balance between the two adjacent sheets.

Boundary conditions
We impose a no-flux boundary condition across boundaries
GT < GL in both the sheet and conduit model:

q · n = 0 (22)

Q = 0 (23)

At first glance, this seems to be a strange choice: how then, does
water exit the domain? To account for this, we impose the condi-
tion that whenever f . fzs , where fzs = rwgzs is the surface
potential, any excess water immediately runs off. Because the
margins are thin, and the flux across the lateral boundary is
zero, the hydraulic head there quickly rises above the level of
the ice surface, and the excess water runs off. This heuristic is
necessary to avoid the numerically challenging case when poten-
tial gradients would imply an influx boundary condition. With a
free flux boundary, the model would produce an artificial influx of
water from outside the domain in order to keep channels filled,
which is particularly problematic in steep topography. Most of
the time, the chosen inequality condition has the practical effect
of setting the hydraulic potential on the terminus to atmospheric
pressure. We note that a better solution would be to devise a
model that allows for unfilled conduits along with an explicit
modeling of the subaerial hydrologic system. However, we defer
that development to later work and condition the results of this
study on the heuristic described above.

In addition to this condition, we also enforce the condition
that channels do not form at the margins (i.e. S = 0 on
GT

⋃
GL). At the terminus, this ensures that there are no channels

with unbounded growth perpendicular to the terminus, and also
to ensure that lateral boundaries (where H . 0) are not used as
preferential flow paths.

Surrogate model

The solution of the coupled model defined above defines a func-
tion F : Rk

+ � Rnp that maps from a parameter vector

m = [ks, kc, �hr , r, g
2, p, q, ev]

T (24)

of length k = 8 to a vector of annually-averaged surface speeds
defined at each point on the computational mesh

F (m) = 1
t1 − t0

∫t1
t0

‖u(t; m)|z=zs‖2dt,

where t0 = 15 years and t1 = 20 years, i.e. the result of running
the high-fidelity model with time-varying meltwater forcing for
20 years given parameters mi, computing the speed at the surface,
and taking its average over the last 5 years to ensure that the
model has reached dynamic equilibrium. We emphasize that we
are dealing in speeds, but that further study could extend the
methods presented here to consideration of the complete vector
quantity.

The evaluation of F is computationally expensive and we
anticipate needing to evaluate it many times in order to approxi-
mate parameter uncertainty through, for example, an MCMC
sampling scheme, which cannot be easily parallelized. We there-
fore seek to create a function G :Rk

+ � Rnp that yields approxi-
mately the same map as F , but at a substantially lower cost.

A variety of mechanisms may be used to construct such an
approximation, here called the surrogate model. To construct
the surrogate, we take a machine-learning approach, in which
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we create a large (but finite) set of model input and output pairs
D = {(mi, F (mi))}. We then use these input–output pairs as
training examples over which to optimize the parameters of a
highly flexible function approximator, in this case an artificial
neural network. We note that each sample is independent, and
thus the evaluation of the high-fidelity model for each ensemble
member can be performed concurrently.

Large ensemble

In order to construct the training data for G, we must select the
values mi over which F should be evaluated. Because all values
in m are positive, yet we do not wish to bias the dataset toward
certain regions of the plausible parameter set over others, we
choose to draw m from a log-uniform distribution with lower
and upper bounds bL and bU:

log10 (m) � U(BoundL, BoundU). (25)

We refer to this distribution as Pem(m). The specific values of the
bounds are given in Table 1, but in general, parameters vary a few
orders of magnitude in either direction from values commonly
found in the literature. Note that this distribution is not the
prior distribution that we will use for Bayesian inference later
on. Rather, it is an extremal bound on what we believe viable par-
ameter values to be. However, the support for the distributions is
the same, ensuring that the surrogate model is not allowed to
extrapolate.

One viable strategy for obtaining training examples would be
to simply draw random samples from Pem(m), and evaluate the
high-fidelity model there. However, because we would like to
ensure that there is a sample ‘nearby’ all locations in the feasible
parameter space, we instead generate the samples using the
quasi-random Sobol sequence (Sobol and others, 2011), which
ensures that the parameter space is optimally filled (the sequence
is constructed such that the sum of a function evaluated at these
samples converges to the associated integral over the domain as
quickly as possible). Although the Sobol sequence is defined
over the k-dimensional unit hypercube, we transform it into a
quasi-random sequence in the space of Pem(m) using the percent
point function.

With this distribution of parameters in hand, we evaluate F on
each sample mi. Using 48 cores, this process took �4 d for 5000
samples. Note that some parameter combinations never con-
verged, in particular cases where g2 was too low and the resulting
velocity fields were many orders of magnitude higher than
observed. We discarded those samples and did not use them in
subsequent model training.

Surrogate architecture

Dimensionality reduction
We construct the surrogate model G in two stages. In the first
stage, we perform a PCA ( Shlens, 2014) to extract a limited set
of basis functions that can be combined in linear combination
such that they explain a maximal fraction of the variability in
the ensemble. Specifically, we compute the eigendecomposition

S = VLVT , (26)

where L is a diagonal matrix of eigenvalues and the columns of V
are the eigenvectors of the empirical covariance matrix

S =
∑m
i=1

vd,i log10 F (mi)− log10 �F
[ ]2

, (27)

with vd a vector of weights such that
∑m

i=1 vd,i = 1 (defined later
in Eqn (39)) and

log10 �F =
∑m
i=1

vd,i log10 F (mi). (28)

We work with log-velocities due to the large variability in the
magnitude of fields that are produced by the high-fidelity model.

The columns of V are an optimal basis for describing the vari-
ability in the velocities contained in the model ensemble. They
represent dominant model modes (Fig. 2) (in the climate litera-
ture, these are often called empirical orthogonal functions). We
refer to them as ‘eigenglaciers’ in homage to the equivalently
defined ‘eigenfaces’ often employed in facial recognition problems
(Sirovich and Kirby, 1987). The diagonal entries of L represent
the variance in the data (once again, here these are a large set
of model results) explained by each of these eigenglaciers in des-
cending order. As such, we can simplify the representation of the
data by assessing the fraction of the variance in the data still unex-
plained after representing it with j components

f (j) = 1−
∑j

i=1 Lii∑m
i=1 Lii

. (29)

We find a cutoff threshold c for the number of eigenglaciers to
retain by determining c = maxj [ {1, . . . , m}:f (j) . s. We set
s = 10−4, which is to say that we retain a sufficient number of
basis functions such that we can represent 99.99% of the velocity
variability in the model ensemble. For the experiments considered
here, c ≈ 50.

Any velocity field that can be produced by the high-fidelity
model can be approximately represented as

F (m) ≈
∑c

j=1

l j(m)Vj, (30)

where Vj is the j-th eigenglacier, and lj is its coefficient. The (row)
vector l(m) can thus be thought of as a low-dimensional set of
‘knobs’ that control the recovered model output.

Artificial neural network
Unfortunately, we do not a priori know the mapping l(m).
In the second stage of surrogate creation, we seek to train a
function l(m; u) with trainable parameters u = {Wl , bl , al ,
bl : l = 1, . . . , L} such that the resulting reconstructed velocity
field is as close to the high-fidelity model’s output as possible,
where L is the number of network blocks (see below). For this
task, we use a deep but narrow residual neural network. The
architecture of this network is shown in Figure 3. Our choice to
use a neural network (as opposed to alternative flexible models
like Gaussian process regression and polynomial chaos

Table 1. Upper and lower bounds for both the log-uniform distribution used to
generate surrogate training examples, as well as the log-beta prior distribution

Parameter Lower bound Upper bound

ks 10−4 100

kc 10−4 100
�hr 10−3 101

r 10−2 101

g2 105 107

p 10−1 1.2
q 10−1 1.2
ev 10−4 10−2
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expansion) was motivated primarily by the relatively high dimen-
sionality of our predictions, for which Gaussian processes and
polynomial chaos expansions are not well suited due to the diffi-
culty of modeling cross-covariance.

As is common for artificial neural networks, we repeatedly
apply a four operation block with input hl−1 and output hl . As
input to the first block we have our parameter vector, so
h0 = m. In each block, the first operation is a simple linear
transformation

âl = hl−1W
T
l + bl , (31)

where Wl and bl are respectively a learnable weight matrix and
bias vector for block l. To improve the training efficiency of the
neural network, the linear transformation is followed by so-called
layer normalization (Ba and others, 2016), which z-normalizes
then rescales the intermediate quantity âl

al = al
âl − ml

sl
+ bl , (32)

where ml and sl are the mean and standard deviation of âl , and al

and bl are learnable layerwise scaling parameters. Next, in order
for the artificial neural network to be able to represent non-linear

functions, we apply an activation

ẑl = ReLU(al), (33)

where

ReLU(x) = Max(x, 0) (34)

is the rectified linear unit (Glorot and others, 2011). Next we
apply dropout (Srivastava and others, 2014), which randomly
zeros out elements of the activation vector during each epoch of
the training phase

zl = ẑl ⊙ R, (35)

where R is a vector of Bernoulli distribution random variables
with mean p. After training is complete and we seek to evaluate
the model, we set each element in R to p, which implies that
the neural network produces deterministic output with each elem-
ent of the layer weighted by the probability that it was retained
during training. Dropout has been shown to effectively reduce
overfitting by preventing complex co-adaptation of weights: by
never having guaranteed access to a given value during the train-
ing phase, the neural network learns to never rely on a single fea-
ture in order to make predictions.

Finally, if dimensions allow (which they do for all but the first
and last block), the output of the block is produced by adding its
input

hl = zl + hl−1, (36)

a so-called residual connection (He and others, 2016) which pro-
vides a ‘shortcut’ for a given block to learn an identity mapping.
This mechanism has been shown to facilitate the training of deep
neural networks by allowing an unobstructed flow of gradient
information from the right end of the neural network (where
the data misfit is defined) to any other layer in the network.
For each of these intermediate blocks, we utilize nh = 64 nodes.

At the last block as l = L, we have that l(m) = hL−1WT
L + bL.

In this study, L = 5. l(m) is then mapped to a log-velocity field
via V , as described above. The complete surrogate model is
thus defined as

G(m) = 10l(m)VT
. (37)

Surrogate training

To train this model, we minimize the following objective

I(u)/
∑m
i=1

∑np
j=1

vd,iAj log10 G(mi; u)j − log10 F (mi)j
[ ]2

, (38)

where Aj is the fractional area of the j-th gridpoint, and
vd,i [ [0, 1],

∑m
i=1 vd,i = 1 is the weight of the i-th training

example model error. The former term is necessary because our
computational mesh resolution is variable, and if were to simply
compute the integral as a sum over gridpoints, we would bias the
estimator toward regions with high spatial resolution.

The model above is implemented in pytorch, which provides
access to objective function gradients via automatic differentiation
(Paszke and others, 2019). We minimize the objective using the
ADAM optimizer (Kingma and Ba, 2014), which is a variant of
minibatch stochastic gradient descent. We use a batch size of 64
input–output pairs (i.e. 64 pairs of parameters and their asso-
ciated high-fidelity model predictions), and begin with a learning
rate of h = 10−2, that is exponentially decayed by one order of

Fig. 2. First 12 basis functions in decreasing order of explained variance for one of 50
bootstrap-sampled ensemble members. The color scale is arbitrary.
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Fig. 3. Architecture of the neural network used as a surrogate model in this study, consisting of four repetitions of linear transformation, layer normalization,
dropout and residual connection, followed by projection into the velocity field space through linear combination of basis functions computed via PCA.

Fig. 4. Comparison between emulated velocity field (a) and modeled velocity field (b) for three random instances of m. Note the different velocity scales for each
row. These predictions are out of set: the surrogate model was not trained on these examples, and so is not simply memorizing the training data. (c) Difference
between high-fidelity and surrogate modeled speeds, normalized by standard deviation of surrogate model ensemble (a z-score), with histogram of the same
shown by blue line. (d) Difference between high-fidelity and surrogate modeled speeds, normalized by high-fidelity model speeds.
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magnitude per 1000 epochs (an epoch being one run through all
of the training instances). We run the optimization for 4000
epochs.

The results of the surrogate training are shown in Figure 4. We
find that for most instances, the surrogate model produces a vel-
ocity field in good agreement with the one produced by the high-
fidelity model: in most cases the predicted velocities fall within
20% of the high-fidelity model’s predictions. Furthermore, in
.99% of instances the nodally defined high-fidelity model predic-
tions fall within three of the ensemble’s standard deviations of its
own mean (although these residuals are clearly non-normal). The
exception to this occurs in instances where the velocity fields are
more than three orders of magnitude greater than observations.
Since we intend to use the surrogate for inference and such a vel-
ocity field implies that the parameters that created it are unlikely
to be consistent with observations anyways, this extreme-value
misfit will not influence the inference over glacier model
parameters.

Bayesian bootstrap aggregation

Neural networks are known to be high-variance models, in the
sense that while the high-fidelity model may exhibit a monotonic
relationship between input parameters and output velocities, the
neural network may exhibit high frequency ‘noise’, similar to
that exhibited when fitting high-order polynomials to noisy
data. This noise is problematic in that it tends to yield local min-
ima that prohibit optimization and sampling procedures from full
exploration of the parameter space. In order to reduce this vari-
ance, we introduce Bayesian bootstrap aggregation (Breiman,
1996; Clyde and Lee, 2001) (so-called bagging), in which we
train the surrogate described B times, with the sample weights
used in Eqn (38) each time randomly drawn from the Dirichlet
distribution

vd,i � Dirichlet(1), (39)

where 1 is a vector of ones with length m, the number of training
instances.

This procedure yields B independent instances of G (with sin-
gle instances hereafter referred to as Gi), which are combined as a
committee. One way to think about this process is that the high-
fidelity model is the mean of a distribution, and each ensemble
member is a ‘data point’ (a random function) drawn from that
distribution. The optimal estimate of the true mean (once
again, the high-fidelity model) is the sample mean of the boot-
strap samples

�G(m) =
∑B
i=1

ve,iGi(m), (40)

with the weights ve,i [ [0, 1],
∑B

i=1 ve,i = 1. Although this
aggregation reduces predictive error (i.e. yields a better approxi-
mation to the high-fidelity model) relative to using a single
model, uncertainty remains because we are approximating the
true mean with the mean based on a finite number of samples.
To account for this residual uncertainty in the surrogate model,
we can once again employ Bayesian bootstrapping (Rubin,
1981). In principle, we assume that the sample (the computed
members of the bagging committee) provide a reasonable
approximation to the population (all possible members of the
bagging committee) when estimating variability in the mean. In
practice, this means that we model G(m) as a random function
given by Eqn (40) augmented with Dirichlet distributed weights

ve,i � Dirichlet(1). (41)

Bayesian inference

We would like to infer the posterior distribution of model para-
meters m given observations d, with the added complexity that
the random surrogate described above is only an approximation
to the high-fidelity model. The former is done using MCMC sam-
pling (Kass and others, 1998), the details of which are described in
Appendix C. The latter can be accomplished by marginalizing over
the surrogate distribution, or equivalently the bootstrap weights ve.

P(m|d) =
∫
P(m, ve|d)dve (42)

Applying Bayes theorem to the right-hand side, we have that

P(m|d)/
∫
P(d|m, ve)P(m, ve)dve

/
∫
P(d|m, ve)P(m)P(ve)dve,

(43)

where we have used the fact that the bootstrap weights and model
parameters are independent. On the left-hand side is the quantity
of interest, the posterior distribution of model parameters given
observations, while inside the integral, P(d|m) is the likelihood of
observing the data given a set of model parameters, and P(m) is
the prior distribution over model parameters.

Likelihood model

Observations of surface velocity are reported as a field, as are the
model predictions, and thus we have an infinite-dimensional
Bayesian inference problem (Bui-Thanh and others, 2013; Petra
and others, 2014) because there are an infinite number of real-
valued coordinates at which to evaluate misfit. However, in con-
trast to previous studies, rather than finite observations with an
infinite parameter space, we have the converse, with continuous
(infinite) observations and finite-dimensional parameters. To cir-
cumvent this difficulty, we propose a relatively simple approxima-
tion that can account for observational correlation and a variable
grid size. We first assume a log-likelihood of the form

logP(d|m, ve)/− 1
2

∫
�V

∫
�V
′

r(x)r(x′)
s(x, x′)

r2dd
�V
′
d�V, (44)

where rd is the data density (number of observations per square
meter), s(x, x′) is a covariance function

s(x, x′) = s2
obs + s2

cor 1+ d(x, x′)
2l2

( )−1

(45)

that superimposes white noise with variance s2
obs and rational

exponential noise with variance s2
cor and characteristic length

scale l, which we take as four times the local ice thickness. The
former term is intended to account for aleatoric observational
uncertainty. The latter is a catch-all intended to account for epis-
temological uncertainty in the flow model and systematic errors
in derivation of the velocity fields, with the rational exponential
kernel having ‘heavy tails’ that represent our uncertainty in the
true correlation length scale of such errors. Although they
represent our best efforts at specifying a sensible likelihood
model, we emphasize that they are also somewhat arbitrary and
can have significant effects on the resulting analysis. However,
in the absence of a more clearly justified model, we assume the
one presented here.

r(x) is a residual function given by

r(x) = �G(x; m, ve)− ‖uobs‖2(x), (46)
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where uobs is the satellite derived, annually averaged velocity field
described in the ‘Study area’ section, and in which we omit writ-
ing the dependence on m for brevity.

Because solutions are defined over a finite element mesh, we
split the integrals in Eqn (44) into a sum over dual mesh elements
T in collection T

logP(d|m, ve)/− 1
2

∑
T[T

∑
T ′[T

∫
T

∫
T ′

r(x)r(x′)
s(x, x′)

r2dT ′dT. (47)

Finally, we make the approximation∫
T

∫
T ′

r(x)r(x′)
s(x, x′)

r2dT ′dT ≈ r(xT )r(xT ′ )
s(xT , xT ′ )

r2AT ′AT , (48)

where xT are the coordinates of the barycenter of T (the finite
element mesh nodes) and AT its area. Defining

rT = [r(x1), r(x2), . . . , r(xN )] (49)

and

S
−1 = KŜ−1K , (50)

where Ŝij = s(xi, xj) and K = Diag([rA1, rA2, . . . , rAN ])
yields the finite-dimensional multivariate-normal likelihood

P(d|m)/ exp − 1
2
rTS−1r

[ ]
. (51)

Prior distribution

In principle, we have very little knowledge about the actual values
of the parameters that we hope to infer and thus would like to
impose a relatively vague prior during the inference process.
However, because the surrogate is ignorant of the model physics,
we must avoid allowing it to extrapolate beyond the support of the
ensemble. One choice that fulfills both of these objectives is to use
as a prior the same log-uniform distribution that we used to gen-
erate the surrogate. However, the ensemble distribution was
designed to cover as broad a support as possible without biasing
the surrogate toward fitting parameter values near some kind of
mode and does not represent true prior beliefs about the param-
eter values. Instead, we adopt for the parameters a scaled log-Beta
prior

log10 m− BoundL
BoundU − BoundL

� Beta(a = 2, b = 2) (52)

This prior reflects our belief that good parameters values are more
likely located in the middle of the ensemble, while also ensuring
that regions of parameter space outside the support of the ensem-
ble have zero probability.

Marginalization over ve

In order to perform the marginalization over bootstrap weights,
we make the Monte Carlo approximation

∫
P(d|m, ve)P(m)P(ve)dve ≈

∑N
i=1

P(d|m, ve,i)P(m), (53)

with ve,i drawn as in Eqn (53), where N is a number of Monte
Carlo samples. The terms in the sum are independent, and may
be computed in parallel. However, they are also analytically
intractable. Thus, we draw samples from each of the summand

distributions (the posterior distribution conditioned on an
instance of ve ) using the MCMC procedure described below,
then concatenate the sample to form the posterior distribution
approximately marginalized over ve. The marginalization of the
posterior distribution in this way is similar to BayesBag
(Bühlmann, 2014; Huggins and Miller, 2019), but with bootstrap
sampling applied over models rather than over observations.

Results

Posterior distribution

The diagonal entries in Figure 5 show the prior and posterior
marginal distributions for each of the eight parameters in m.
One immediate observation is that the posterior distributions
for all parameters exhibit a significantly reduced variance relative
to the prior distribution. This implies that surface velocity infor-
mation alone conveys information not only about the sliding law,
but also about the parameters of the hydrologic model.

Hydrology parameters
We find that the hydraulic conductivity has a mean value of
ks = �10−3 m1−as+bs , but with a 95% credibility interval of
about an order of magnitude in either direction. Unsurprisingly,
this parameter exhibits a strong negative correlation with charac-
teristic bedrock bump height hr : because flux through the ineffi-
cient system is a function that increases with both transmissivity
and cavity height, an increase in one term can be compensated for
by the other. Interestingly, bedrock bump heights most consistent
with observations are on the order of meters. We emphasize that
this does not imply that average cavity heights are on the order of
meters; in fact, the model typically predicts average cavity thick-
ness on the order of tens of centimeters (see Fig. 8). Rather,
this result implies that the model should never reach h = hr , at
which point the opening rate begins to decouple from velocity.
Nonetheless, this rather large bedrock asperity size introduces
the potential for very large cavities to form. This tendency is offset
by a very low bump aspect ratio r, which tends to be ,0.1.
Conditioned on the hypothesized physics, the observations indi-
cate an inefficient drainage system formed around large and low-
slope bedrock features.

A particularly interesting feature of these results is found in the
distribution over channel transmissivity kc. Of the various para-
meters governing subglacial hydrology, this one is the most poorly
constrained. As shown in Figure 8, there are a number of drainage
configurations that are consistent with observations, from essen-
tially negligible to extensive. This insensitivity means that a
broad array of channel conductivities are possible, and also
implies that more research is needed either to quantify the influ-
ence of the efficient system on ice dynamics or to directly observe
the channel network in order to constrain this value for prognos-
tic modeling. We note that the null hypothesis that the surface
velocity is simply insensitive to kc is not supported by our results,
as kc exhibits strong correlations with parameters (e.g. the sliding
law exponent q) that clearly affect the ice velocity.

The englacial porosity ev controls the speed at which the
hydrologic head changes in response to alterations in flux or for-
cing. We find that this parameter is relatively poorly constrained
by observations relative to prior assumptions. This is not surpris-
ing: we would expect the influence of this parameter to primarily
manifest itself by controlling the rate of change of water pressure
and hence velocity. Since we only consider time-integrated quan-
tities here, this characteristic is not well constrained. Nonetheless,
this study suggests a porosity that is on the lower end of the plaus-
ible spectrum of values. This indeterminacy also motivates the
potential utility for time dependent inversion (see ‘Discussion’).
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Sliding law parameters
g2 exhibits a strong positive correlation with p. This is simply the
result of an increase in p yielding an immediate decrease in the
sliding law pressure term (which is typically less than unity),
and thus a commensurate increase in g2 will yield a similar sliding
velocity. This is also true (although to a much lesser extent) of g2

and q. g2 is strongly constrained by observations, as it sets the
scale of glacier velocity, which is directly observable.

The pressure exponent p has a median value of p = �0.5, with
a relatively small variance. Similarly, the sliding law exponent q
also has a median value of q = �0.5, but with a significantly lar-
ger spread. This spread is distinctly non-Gaussian. Indeed, based
on the curvature evident in the joint distributions between q and
most other variables, it seems that the distribution over q is the
superposition of two overlapping distributions, one associated
with a value of q closer to 0.6 (which agrees well with

Aschwanden and others (2016), and the other (somewhat less
probable) mode q = �0.2. This latter secondary mode implies
that pseudoplasticity may also be an appropriate bed model. It
seems possible that this ‘indecision’ on the part of the sampler
implies that different regions of the glacier might be better fit
by different sliding laws, an unsurprising result if some regions
are underlain by till and some directly by bedrock. These two
modes also lead to different preferred hydrologic parameters: in
the pseudoplastic mode, we see a greater transmissivity and a
smaller characteristic asperity size (by about an order of magni-
tude in each case) compared to the less plastic mode.

Posterior predictive distribution

The inference above was performed using a surrogate model, and
while the surrogate reproduces predictions from the high-fidelity

Fig. 5. Posterior distributions. (Diagonal) Marginal distributions for the posterior (black) and prior distribution (red), with BayesBag posteriors in blue (at half scale
for clarity). (Below diagonal) Pairwise marginal distributions illustrate correlation structure between parameters. (Above diagonal) Correlation coefficient for each
pair of parameters, with red and blue corresponding to positive and negative correlations, respectively.
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model in the large majority of circumstances, we have yet to
ensure that samples from the posterior distributions inferred
using the surrogate produce velocity fields that are consistent
with observations when fed back into the high-fidelity model.
We note that we do not expect perfect correspondence to obser-
vations: the model is necessarily a substantial simplification of a
highly complex and heterogeneous physical system. Rather, we
seek to verify that samples drawn from the posterior distribution
conditioned on the surrogate model lead to velocity predictions by
the high-fidelity model that are consistent with observations to
the extent that this is possible.

We selected 256 random samples from the posterior distribu-
tion shown in Figure 5, and ran the high-fidelity model with these
parameter values. Figure 6 shows the mean velocity field as well as
the interquartile range, along with the observed velocity. We find
that the model fits the observations reasonably well, with an
appropriate pattern of fast flow in the outlet glaciers and slow
flow in the interior. The transition between these two regimes
near the equilibrium line altitude (ELA) is also well-captured by
the model. However, the model produces velocity predictions
that are somewhat more diffuse than observations, and also fails
to match the high-velocities evident in some steep marginal
areas. The spread in model predictions is consistent with the
imposed observational uncertainty, with an interquartile range
(IQR) of between 20 and 30 m a−1 over most of the ice sheet
below the ELA. Above the ELA, the predicted spread is lower
than the observational uncertainty in slow flowing regions, indi-
cating that the model is less sensitive to parameter choice in
this region than the faster flowing areas downstream.
Nonetheless, sliding still makes up �80% of the modeled (and

presumably observed) surface velocity there. Conversely, the
model error induced by the surrogate leads to somewhat higher
spread in some fast flowing regions near the margin, likely due
to these being the places where significant non-linearity in the
model (e.g. channelizations, reaching the ‘elbow’ of the sliding
law, etc.) occur, and hence are more challenging to emulate.

It is also useful to establish the degree to which the optimized
model explains the observation. Figure 7 shows the velocity obser-
vations versus predictions in the form of a scatter plot, as well as
the model’s predictive spread. Clearly, the model carries substan-
tial predictive power, however there is also substantial variability
around the 1 : 1 line. One simple goodness-of-fit metric is the
Bayesian R2 (Gelman and others, 2019), which measures the vari-
ance in model predictions relative to the variance of model pre-
dictions plus the variance of the residuals. For a model that
perfectly models the data, R2 = 1, and for values less than unity
R2 quantifies the fraction of data variance explained by the
model. After weighting points by corresponding area, we find a
median value of R2 = 0.6, indicating that the model explains
60% of the variance in the observations. Taking this number
and the results in Figure 7 together, particularly given the
non-Gaussianity of the residuals, we think that the model pre-
sented here is underparameterized: a model that allows for
some spatial variability in basal conditions would likely fit the
data better, and would also be conceptually justifiable, given
that different regions of the bed have different geology and sedi-
ment cover. However, determining how to parameterize this vari-
ability without a wholesale return to the difficulties associated
with spatially explicit traction coefficients remains a challenge.

Hydrologic configuration
Although our surrogate model does not provide direct access to
the state variables of the hydrologic model, the posterior predict-
ive samples do. In Figure 8, we show the hydraulic potential,
channel flux and subglacial cavity size for a weakly, moderately
and strongly channelized posterior sample (specifically, posterior
samples corresponding to the 16th, 50th and 84th percentile
annually integrated flux through the conduit system), all of
which produce velocities that are (more or less) equivalently con-
sistent with observations. In the weakly channelized case, large

Fig. 6. Posterior predictive distribution. (Top) Observed velocity for study site.
(Middle) Median of predicted velocity fields computed by running the high-fidelity
model on samples from the posterior distribution from Figure 5. (Bottom)
Interquartile range of velocity posterior predictive distribution. The red dot is the
location at which a time series is extracted for Figure 9. Note the smaller color
scale relative to the top two plots.

Fig. 7. Observed versus median modeled velocity from 50 ensemble members. The
5th and 95th quantile from the ensemble are given by red lines, plotted for every
20 points. Blue line gives a one-to-one correspondence. Median Bayesian R2 = 0.6.
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channels occur only near the terminus, where large upstream
areas and low overburden pressures allow very large but highly
localized channels to form. We note that this low channelization
case produces a spacious distributed system, with h frequently

reaching 1 m in areas of convergent topography (e.g. the bottom
of troughs). A much more well-developed channelized system
develops in the moderately channelized sample. However, the
inefficient drainage system magnitude remains similar, indicating
that despite its greater extent, the channelized system transports
relatively little water. Conversely, in the most channelized model
run, channels extends nearly all the way to the ELA. The resulting
distributed system configuration has much less capacity, with the
average cavity size rarely exceeding 0.25 m.

Temporal changes in velocity
Although we constructed the surrogate model and inferred para-
meters based on time-averaged velocities, the underlying model is
still time-dependent and it is of substantial interest to examine the
time-dependent behavior of the model. Figure 9 shows the ice
sheet’s speed and water pressure as a fraction of overburden in
the middle of Isunnguata Sermia, coincident with the red dot in
Figure 6. Although we find similar qualitative behavior in each
simulation, namely an increase in water pressure associated with
the onset of meltwater in the spring and a coincident increase
in velocity, the peak velocity and speedup duration varies signifi-
cantly between simulations. This spread in behavior occurs des-
pite annual average velocities that are consistent with
observations conditioned on the uncertainty assumptions stated

Fig. 8. (Left) Annual average configuration of channels for the simulation according to the 16th (top), 50th (middle) and 84th (bottom) quantile of annually inte-
grated channelized system flux. The widest blue line is �300 m3 s−1 while the smallest visible lines are 10−2 m3 s−1. Contours show the hydropotential. (Right)
Associated distributed water layer thickness fields.

Fig. 9. Time series of velocity (black) over a single year at the red point in Figure 6,
modeled annual averages (blue), observed annual average (red) and fraction of over-
burden (green).
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above. This spread is most acutely driven by uncertainty in the
englacial porosity ev, which plausibly varies by nearly two orders
of magnitude, and controls the water pressure rate of change.

In nearly all simulations, water pressure is uniformly high
throughout the year, reaching or exceeding overburden pressure
during the meltwater season. This uniformly high pressure is con-
sistent with observations for this reason. However, the annual pat-
tern of velocity remains inconsistent with the observational record
(e.g Andrews and others, 2014; Moon and others, 2014), in par-
ticular the lack of a significant winter speed-up. One important
future line of inquiry that we are currently undertaking is whether
the current model (or any currently proposed hydrologic model)
can replicate this time-varying field for any parameter combin-
ation. If so, then the posterior parameter variance will likely be
reduced substantially. However, to answer this question in the
negative would call into considerable question the utility of hydro-
logic models for glaciological modeling.

Discussion

Model selection
To paraphrase Box and others (1987): ‘All models are wrong, but
some are useful’. Despite the relative robustness of the Bayesian
framework here, its ability to quantify parametric uncertainty,
and the model’s encouraging ability to reproduce many salient fea-
tures of the velocity observations, we remain skeptical of drawing
conclusions that are too certain. This skepticism emerges primarily
from the issue of model misspecification: it is almost certainly the
case that neither the hydrologic model nor the chosen sliding law
(nor even the first-order ice dynamics) are a wholly appropriate
approximation of the true physics. This is clearly seen in
Figure 7, which indicates that the residuals between the predicted
and observed velocities possess systematic (rather than random)
biases. As such, the model is wrong, but is it useful? We argue
that this study represents a first step toward a defensible mech-
anism of predicting glacier sliding into the future. However, the
physics simulated here are only one possibility, and perhaps not
the best possibility. As such, one useful next step toward the goal
of a prognostic sliding law would be to repeat the procedure pre-
sented here with a variety of candidate models, and to use a for-
mal model selection criterion such as Akaike’s information
criterion (Akaike, 1998)

AIC = 2k− 2 log P(d|m), (54)

which estimates the relative information loss of a set of candidate
models with respect to the true data generating process, to select
between them. Indeed, we can do this very simply for the model
presented here and, for example, an unregularized inversion of
basal traction of the type popularized in MacAyeal (1993). In the
above, k is the number of parameters, which in the case of this
study is k = 9 (including the data variance). In the spatially varying
inversion, k = 4042, which is the number of gridcells plus one. In
the study presented above, the log probability at the a posteriori
most probable parameter estimate is (to a constant that cancels
when comparing AIC between two models) log P(d|m)/−74.
In the case of the spatially varying inversion, the log-likelihood is
effectively zero, representing a nearly perfect fit to the data. Thus,
we have AIC ≈ 166 for the model presented here, and
AIC ≈ 8042 for a spatially varying inversion (although this num-
ber will decrease substantially in the presence of regularization,
which induces a spatial covariance that decreases the number of
effective parameters). Thus, although the model presented here
does not fit the data as well, this disadvantage is more than offset
by its simplicity with respect to minimizing the loss of information
relative to a perfect model of glacier physics.

Nonetheless, it is unlikely that the model presented here is the
optimal one. We intend to explore this question systematically in
the future by examining both alternative hydrologic and sliding
parameterizations, as well as (re-)introducing spatially varying
parameters in such a way that a model selection criterion such
as AIC is optimized. It is highly likely that an optimal model
accounts both for parameters that vary subject to a to-be-
determined smoothness constraint coupled with more advanced
physical models. The framework suggested here provides a con-
sistent methodology for coupled model optimization that can be
applied to any model configuration, without the need for the
implementation of time-dependent adjoints, which may be time-
consuming and numerically challenging to implement.

Including time-dependent observations
Another important consideration is that we use observations that
are averaged over the year, thus likely discarding important infor-
mation contained in time rates of change and temporal patterns.
Fortunately, the procedure presented here is easily amenable to
time-dependent inversion. The only substantive difference is in
the construction of the surrogate (rather than train a network
to predict the coefficients of the eigenglaciers presented in
Figure 2, these basis functions must be explicit in time as well)
and the likelihood function (which must now include observa-
tions at different points in time and also explicitly model spatio-
temporal covariance).

Supplementary datasets
In addition to time-varying data, it will also be important to aug-
ment velocity observations with other measurements. In particu-
lar, including borehole measurements of water pressure would
likely yield a much smaller admissible parameter space by con-
straining the rate of change in pointwise storage in the coupled
sub-/englacial hydrologic system. Similarly, radar-derived esti-
mates of channel extent (Livingstone and others, 2017) would
provide a statistical target for determining which of the samples
presented in Figure 8 is most consistent with reality. The
Bayesian framework offers a natural mechanism for incorporating
diverse observations into the likelihood model, and the wide avail-
ability of such observations represents a major avenue for
improvement in parameter estimation for sliding prediction.

Spatial generalization
Finally, it remains to be seen whether the parameter distributions
inferred here are transferable to other parts of Greenland, and
whether the associated models can exhibit similar fidelity to data.
It stands to reason that parameters that likely depend on the under-
lying geology, such as average asperity height �hr , the ratio of asperity
height to spacing r and the traction coefficient g2 should vary across
Greenland, while parameters that are more intrinsic to the ice con-
figuration, such as hydraulic conductivities, sliding law exponents
and englacial porosity should remain close to constant. At the very
least, this study supports the notion that when parameters vary
across space, it is possible that they may do so at geologically relevant
spatial scales while still maintaining good fidelity to observations.

Conclusions

We developed a coupled model of subglacial hydrology and glacier
flow, and used it to infer the posterior probability distribution of
eight key model parameters. Because the model is computationally
expensive, this inference was non-trivial. We first had to construct a
large ensemble of concurrent model runs, with ensemble members
determined by sampling from the space of admissible parameter
combinations. We then used the resulting samples to train an arti-
ficial neural network to act as a surrogate for expensive model
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physics. Because the neural network was not a perfect reproduction
of model physics, we introduced a double bootstrap aggregation
approach to both smooth the surrogate’s response to different para-
meters, and also to robustly account for model error. With the sur-
rogate in hand, we ran an MCMC method to draw samples from
the posterior distribution given an observed annual average velocity
field. We found that the velocity observation provided substantial
information about all of the model parameters relative to a prior
distribution, although some were more strongly constrained than
others. In particular, we found that both transmissivity of the sub-
glacial conduit network and the englacial porosity remain highly
uncertain, and this uncertainty leads to a qualitative variety of solu-
tions that are consistent with observations. Nonetheless, we find
that this eight parameter model can account for 60% of variance
in the observational dataset, and produces velocity fields that are
spatially consistent with observations.
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Appendix A Symbol tables

See Tables 2 and 3.

Table 2. Symbols used in defining the high-fidelity model

Symbol Value Units Description

A 10−16 Pa−n a−1 Ice softness
as

5
4 Sheet thickness flux exponent

ac
5
4 Channel size flow exponent

bs
3
2 Sheet potential flux exponent

bc
3
2 Channel potential flux exponent

b2 Pa1−p m−q a−q Traction coefficient
ev Englacial porosity
ė a−1 Strain rate tensor
ė0 109 a−1 Strain rate regularization
ėII a−1 Second invariant of strain rate

tensor
g 9.81 m s−2 Gravitational acceleration
g Pa Scaled traction coefficient
Gzb Basal boundary
GL Non-terminus lateral boundary
Gzs Surface boundary
GT Terminal boundary
h m Average cavity thickness
�hr m Average bedrock bump size
H m Ice thickness
h Pa a Ice viscosity
L 3.35×105 J kg−1 Latent heat of fusion
kc m2−2ac+bc a−1 Pa1−b Channel conductivity
ks m1−as+bs a−1 Pa1−b Sheet conductivity
ṁ m a−1 Specific meltwater
mc m2 a−1 Channel-cavity meltwater exchange
n 3 Glen’s flow law exponent
np Number of points in FEM mesh
n Normal vector
N Pa Effective pressure
p Sliding law pressure exponent
P0 Pa Ice overburden pressure
Pw Pa Water pressure
C Finite element basis function
q Sliding law velocity exponent
q m2 a−1 Cavity flux
Q m3 a−1 Channel discharge
r Ratio of asperity height to spacing
ri 917 kg m−3 Ice density
rw 1000 kg m−3 Freshwater density
S m2 Channel size
Scale (N) 106 Pa Effective pressure scale
Scale (u) 50 m a−1 Velocity scale
s2
h m logarithmic std. dev. of bed asperity

size
6 Thickness-scaled vertical coordinate

(Continued )

400 Douglas Brinkerhoff and others

https://doi.org/10.1017/jog.2020.112 Published online by Cambridge University Press

https://doi.org/10.5194/tc-12-971-2018
https://doi.org/10.5194/tc-12-971-2018
https://doi.org/10.5194/tc-12-971-2018
https://doi.org/10.5194/tc-12-971-2018
https://doi.org/10.5194/tc-8-2335-2014
https://doi.org/10.5194/tc-8-2335-2014
https://doi.org/10.5194/tc-8-2335-2014
https://doi.org/10.5194/tc-8-2335-2014
https://doi.org/10.5194/tc-8-2335-2014
https://doi.org/10.3189/S0022143000015744
https://doi.org/10.1126/sciadv.aaw5406
https://doi.org/10.1017/jog.2016.26
https://doi.org/10.14943/lowtemsci.75.105
https://doi.org/10.1017/jog.2020.112


Appendix B Discretization and numerical solution of the
high-fidelity model

Momentum balance

We discretize the momentum equations using a mixed finite element method.
Introducing a terrain-following 6-coordinate

6 = zs − z
H

, (B1)

where zs is the upper ice surface, H is the ice thickness and z is the vertical
coordinate, we decompose the domain as V = �V× [0, 1]. Introducing a
test function C(x, y, 6), multiplying it by Eqn (1), and integrating over the
domain, we obtain the following variational formulation: find u [ U , such
that

0 =
∫
�V

∫0
1
(�∇C+ ∂6C�∇6) · t′ H d6 dV

−
∫
Gl

∫0
1
C · t′ · n6 dG

−
∫
�V

∫0
1
C · td d6 dV

+
∫
�V

C · b2Np‖u‖ p−1
2 u dV|6=1,

∀C [ V ,

(B2)

where �∇ is the gradient operator in the two map-plane dimensions and
td = rgH �∇zs is the gravitational driving stress, and with U , V [ W1,2(V),
and where W1,2 is a Sobolev space over the model domain V. To discretize
the weak form, we restrict C to a finite subset of V :

C [ V̂ , V , (B3)

where

V̂ = V�V ⊗ V�V ⊗ V0 ⊗ V0 (B4)

is a tensor product of function spaces defined over �V and [0, 1], respectively.
For V�V, we use the continuous piecewise linear Lagrange basis ji

{ }np
i=1, where

np is the number of gridpoints in a mesh defined on �V (Zienkiewicz and
others, 2005). For V0, we utilize the basis set

c1 = 1, c2 =
1

n+ 1
[(n+ 2)6n+1 − 1]

{ }
. (B5)

Using the standard Galerkin approximation Û = V̂ , we introduce the ansatz
solution

u(x, y, 6) =
∑
i[n

�ui + ud,i
1

n+ 1
[(n+ 2)6n+1 − 1]

[ ]
ji(x, y), (B6)

where �u is the vertically averaged velocity, and ud is the deviation from that
average induced by vertical shearing. The above expression implies that the
solution in the vertical dimension is a linear combination of a constant (i.e.
the shallow-shelf approximation) and a polynomial of order n+ 1, which cor-
responds to the analytical solution of the isothermal shallow ice approxima-
tion. As such, this discretization scheme allows for the exact recovery of
both shallow ice and shallow shelf solutions in the appropriate asymptotic
regimes, while not requiring the formation of a full 3-D mesh (the 6 dimension
always has one layer, ranging over 6 [ [0, 1]). Intercomparison has shown
that approximate solutions produced by this method agree well with more

Table 2. (Continued.)

Symbol Value Units Description

t′ Pa Hydrostatic deviatoric stress tensor
td Pa Driving stress
u m a−1 Horizontal velocity vector
�u m a−1 Vertically-averaged velocity vector
ud m a−1 Shear velocity
f Pa Hydraulic potential
j Lagrange basis function
J J m−1 a−1 Dissipative heating
C J m−1 a−1 Pressure heating
zb m Bed elevation
zs m Surface elevation
V 3-D ice domain
dVij Boundary between subdomains

i and j
�V Horizontal extent of ice

Table 3. Symbols used in defining the surrogate model and MCMC sampling

Symbol Description

a MCMC acceptance probability
âl Output of linear transform
al Output of layer normalization
al Layer normalization scaling
a Prior parameter
bl Trainable bias vector
bl Layer normalization offset
b Prior parameter
BoundL Parameter lower bound
BoundU Parameter upper bound
c Number of retained eigenglaciers
d(x, x′) Distance
d Data vector
D MCMC step size
f Fraction of explained variance
F High-fidelity model
G Surrogate model
hl Residual sum
Ĥ Approximate Hessian
k Parameter vector length
K Number of observations per subdomain matrix
l Length scale of data correlation
L Number of ANN blocks
m Vector of model parameters
Pem(m) Evaluation sampling distribution
Q( · | · ) MCMC proposal function
r(x) Data residual function
R Dropout matrix
r Residual vector
rd Data density
s Explained variance threshold
s(x, x′) Covariance function
sobs Data white noise std.
scor Data correlated noise std.
S Model empirical covariance
Ŝ Data covariance matrix
S Area-scaled data covariance matrix
V Matrix of ensemble eigenvectors
l Eigenglacier coefficients
L Diagonal matrix of ensemble eigenvalues
u Surrogate model trainable parameters
Wl Trainable weight matrix
ẑl Output of activation
z Output of dropout
vd Vector of bootstrap weights for surrogate training
ve Vector of bootstrap weights for aggregation
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expensive 3-D discretizations of the hydrostatic Stokes’ equations (Brinkerhoff
and Johnson, 2015), but we emphasize that this method does not ‘converge’ to
the solution of the Blatter–Pattyn equations, as the fixed basis does not allow
for either h or p refinement.

Hydrology

We seek to solve Eqn (9) on each subdomain �Vj and Eqn (20) on each sub-
domain boundary Gij. To discretize, we multiply both by the same test function
u and integrate by parts, leading to the variational problem: find f [ F such
that

0 =
∑
j

∫
�Vj

u
ev
rwg

∂f

∂t
−∇u · q+ u(C − O−m) dV

+
∑
j

∑
i,j

∫
Gij

− ∂u

∂S
Q+ u

J−P

L
1
ri
− 1

rw

( )
− Cc

( )
dG ∀u [ Q,

where F, Q [ W1,2(�V). We have used natural boundary conditions, continu-
ity between channel segments, and continuity between the sheet and edges to
cancel boundary terms. To discretize this equation, we restrict F̂ , F, Q̂ , Q

to function spaces defined by the continuous piecewise linear Lagrange basis.
Although Eqn (12) and (18) are ordinary differential equations, it is con-

venient to put them in a variational form: find h [ Z, S [ S such that

0 =
∑
j

∫
Vj

∂h
∂t

−O+ C
[ ]

wdV

+
∑
i

∑
j,i

∫
Gij

∂S
∂t

−J−P

riL
+ Cc

[ ]
vdG, ∀w [ Z, v [ S,

(B7)

with Z [ L2(�V), S [ L2(G). We restrict these functions spaces to a constant
basis over each subdomain (i.e. order-zero discontinuous Galerkin over both
mesh elements and edges).

Numerical solution

We use finite element software FEniCS (Logg and others, 2012) to compile all
of the variational problems described above. We solve the problems over an
isotropic computational mesh with variable resolution, ranging from �250
m diameter elements near the margins to �1 km near the ice divide. The
mesh was created using a Delaunay Triangulation routine in the package
gmsh (Geuzaine and Remacle, 2009).

We use the implicit Euler method (Butcher, 2016) to discretize all time
steps. Although only accurate to O(Dt), we have found that the implicit
Euler method leads to substantially improved stability in the non-linear cavity
and conduit equations compared to higher order explicit (e.g. Runge–Kutta) or
semi-implicit (e.g. Crank–Nicholson) methods. We deal with the integral in
the opening rate O using Gauss–Legendre numerical quadrature of order
seven (Milne-Thomson and others, 1972).

Because the system of equations are non-linear and strongly coupled, we
perform Newton’s method on a single residual encompassing all seven equa-
tions simultaneously, using a Jacobian inferred from an automated symbolic
computation of the Gâteaux derivative. Note that this implies that we must
solve a large non-linear system at each time step. Because of the poor condi-
tioning of the problem, we have found direct solution of the linear system of
equations for each Newton update is required. To this end, we use MUMPS,
which is implemented in PETSc (Balay and others, 2017).

We employ an adaptive time-stepping procedure that ensures convergence:
the time step is slowly increased until Newton’s method fails to produce a
residual with a specified relative tolerance (10−6) within a certain number of
iterations, at which point the time step is reduced by half and the solver
tries again until convergence is achieved, after which time-stepping proceeds.

Appendix C Manifold Metropolis-adjusted Langevin
algorithm

MCMC methods operate by performing a random walk in parameter space,
with candidate for the next position m̂t+1 determined according to a proposal

distribution Q( · | · )

m̂t+1 � Q(m̂t+1|mt). (C1)

A given candidate parameter vector is accepted or rejected according to its
posterior probability relative to the current position in parameter space:

a = min 1,
P(m̂t+1|d)Q(mt |m̂t+1

P(mt |d)Q(m̂t+1|mt)

( )
, (C2)

where a is the probability of acceptance. If a proposal is accepted, then
mt+1 := m̂t+1; otherwise, mt+1 := mt . In the limit as t � 1 (and under
some restrictions on the proposal distribution), the set of samples produced
by this procedure converges to the true posterior distribution P(m|d).

Because of the potential for highly correlated parameters, a simple appli-
cation of (e.g.) the Metropolis–Hastings algorithm (which utilizes an isotropic
Gaussian distribution centered around the current position as a proposal dis-
tribution) is unlikely to efficiently explore the space. However, because of the
availability of automatic differentiation for the surrogate model we have easy
access to the gradient of the log-posterior. This allows for a sampler that
can efficiently steer itself toward probable regions of parameter space.
Furthermore, because this inference problem is low dimensional, it is straight-
forward to compute the gradient of the gradient (i.e. the Hessian matrix),
which allows for an efficient scaling of the proposal distribution.

One method which allows us to capitalize on this availability of derivatives
is the manifold-Metropolis adjusted Langevin algorithm (mMALA, Girolami
and Calderhead, 2011). mMALA operates as described above, but with pro-
posal distribution given by

Q(m̂t+1|mt) = N (mt − DĤ−1∇ logP(d|mt , ve), 2DĤ
−1), (C3)

where Ĥ is a an approximation to the Hessian that is regularized to be posi-
tive definite. This method is very similar to the stochastic Newton MCMC

Fig. 10. Three Markov chains over the base-10 logarithm of parameter values (left,
RGB), each for a different random value of ve. The ‘fuzzy caterpillar’ pattern indicates
good mixing. The right plot shows histogram of the blue sample, after being divided
into three disjoint sub-chains. The very similar histograms indicate a converged
chain.
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method proposed by Petra and others (2014), but with the use of an analyt-
ical (rather than numerically approximated) Hessian and a generalization to
step size D = 1, which we have found to be critical for numerical stability.
For each summand in Eqn (53), we initialize the sampler from the maximum
a posteriori point, which is computed via Newton’s method (again, trivial to
implement due to the availability of the Hessian), initialized from a random
draw from the prior distribution. We run the sampler for 2× 105 iterations,
with a step size selected by a simple moving average scheme that aims to keep
the sampler’s acceptance rate at �0.56, the theoretically optimal value for
mMALA (Roberts and others, 2001). Performing this process for each

summand leads to N = 100 randomly initialized chains, which helps to min-
imize the likelihood that any individual chain is stuck in a local minimum.
We discard the first 104 samples as burn-in. The resulting chains are
shown parameter-wise in Figure 10. From a qualitative perspective, the
chains exhibit good mixing, as indicated by the ‘fuzzy caterpillar’ pattern.
We ensure that the distributions are approximately stationary by dividing
each chain into thirds, and overlaying the resulting histograms; we find
that the histograms are very similar, indicating approximate MCMC conver-
gence. Remaining MCMC error is further ameliorated by taking the expect-
ation over independent chains.
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