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Abstract

Over half of the recent mass loss from the Greenland ice sheet, and its associated contribution to
global sea level rise, can be attributed to increased surface meltwater runoff, with the remainder a
result of dynamical processes such as calving and ice discharge. It is therefore important to quan-
tify the distribution of melting on the ice sheet if we are to adequately understand past ice sheet
change and make predictions for the future. In this article, we present a novel semi-empirical
approach for characterising ice sheet surface conditions using high-resolution synthetic aperture
radar (SAR) backscatter data from the Sentinel-1 satellite. We apply a state-space model to nine
sites within North-East Greenland to identify changes in SAR backscatter, and we attribute these
to different surface types with reference to optical satellite imagery and meteorological data. A set
of decision-making rules for labelling ice sheet melting states are determined based on this ana-
lysis and subsequently applied to previously unseen sites. We show that our method performs
well in (1) recognising some of the ice sheet surface types such as snow and dark ice and (2)
determining whether the surface is melting or not melting. Sentinel-1 SAR data are of high spatial
resolution; thus, in developing a method to identify the state of the surface from these data, we
improve our capability to understand the variation of ice sheet melting across time and space.

1. Introduction

Between 1992 and 2018, the Greenland ice sheet lost enough mass to raise global sea level by
10.8 ± 0.9 mm (Shepherd and others, 2020). As global warming continues to accelerate,
increased melting of the ice sheets and – as a corollary – rising global sea levels, are expected
to continue. Of particular concern is that just this past decade has seen the two highest melt
years on record – in 2012 and 2019. In fact in July 2012, almost the entire ice sheet surface
exhibited melting (Nghiem and others, 2012). As such, it is increasingly important that we
are able to monitor ice sheet surface melting with a high degree of fidelity, if we are to under-
stand the current contribution of the Greenland ice sheet to global sea level rise and to con-
strain future predictions. To monitor melting at the ice sheet scale, microwave and optical
remote sensing is often employed (e.g. Ashcraft and Long, 2006; Fettweis and others, 2011).
Optical remote sensing is most often use to map melt features visible to the eye, e.g. supragla-
cial lakes and streams (Vandecrux and others, 2022). Microwave remote sensing includes the
use of passive sensors including the Special Sensor Microwave/Imager (SSM/I) (Abdalati and
Steffen, 2001) and active sensors including the advanced scatterometer (Colbeck, 1982).
Current methods to identify melting in data acquired by these sensors exploit the fact that
the presence of liquid water changes the dielectric properties of snow and ice, and thus its sig-
nature in brightness temperature and backscatter images (Colbeck, 1982). In fact, as little as
3% water content in snow can have a large enough impact on these properties for the differ-
ence to be discernible in microwave imagery (Golden and others, 1998). Several methods have
been proposed to classify image pixels in synthetic aperture radar (SAR) imagery into melting
and nonmelting based on brightness temperature (with thresholding based on optical data
Miles and others, 2017), and backscatter values (interpreted using simple physical models
or binary thresholding techniques McFeeters, 1996). Recent advances have been made in a var-
iety of surface ice/snow-related applications. Rotschky and others (2006) found that SAR data
can be used to map mass-balance changes for certain snow pack regimes, retrieving snowpack
properties, within a limited area. Liang and others (2021) used Sentinel-1 SAR images for
detecting snowmelt over the Antarctic, focusing on assessing surface material loss and albedo
change. Winsvold and others (2018) also used SAR satellite data, but for mapping glaciers in
Norway, correlating SAR with optical images (Landsat 8) and additional data from local
meteorological stations. Schröder and others (2020) studied the surface condition using
SAR ground range detected product for differentiating liquid water from other surface condi-
tions for better recognition of lakes. We note that current studies focus on certain surface types
and certain melt stages, identifying only melt on ice/snow or identifying only lakes through the
presence of liquid water. We explore further stages of melting for more surface conditions,
including ice, snow and lakes.
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Here, we use an advanced statistical method known as state-
space modelling as the backbone to a data-driven classification
system that can capture the state-switching process of the ice
sheet pixels throughout both melt and nonmelt seasons. The
use of Sentinel-1 SAR offers two main advantages over other sen-
sors: (1) as an active sensor, SAR is largely insensitive to weather
and can penetrate cloud cover (Nagler and others, 2016; Winsvold
and others, 2018) and (2) backscatter values comprise both a sur-
face and a subsurface backscattering components (Fahnestock and
others, 1993), thus potentially providing information as to the
underlying ice surface type (ice, snow and open water) as well
as surface melting state. In developing our classification system,
we use optical images (Landsat 8) to help identify the surface
types and the regional climate model MAR (Modèle
Atmosphérique Régional) (Franco and others, 2013) to interpret
the state-switching estimates. Since the melting process differs
across the surface types, the two classifications can help to
reinforce each other. Current methods using thresholding tech-
nique or other modelling technique focus on identifying either
melt (for ice/snow) or liquid water (for lake). Our approach auto-
matically partitions SAR backscatter data into snow, dark ice and
ice/lake pixels, and assigns a melting, nonmelting or transit state
to each pixel. Our method thus provides a comprehensive
representation of the entire process and requires no prior knowl-
edge of surface conditions (ice, snow and lakes). In Section 2, we
provide the background of the study area and describe the main
auxiliary data; in Section 3, we explain the method developed
based on nine selected sites, covering three scenarios, for recog-
nising the state-switching process on the ice sheet surface; in
Section 4, we present testing results at unseen locations on the
ice sheet. Section 5 provides a conclusion to this work.

2. Study area and data

2.1. Study area

We focus on a northeast sector of the Greenland ice sheet cover-
ing Nioghalvfjerdsbræ, or 79 N° glacier (79 N°) and Zachariae
Isstrøm (ZI) (Fig. 1). The 79 N° glacier has a floating ice tongue
extending 70 km into 79 N° fjord and has thinned by 30% since
1999 (Lindeman and others, 2020). ZI covers a region 100 km
from north to south and up to 50 km from east to west.
Together, 79 N° and ZI comprise the end of the northeast
Greenland Ice Stream, which drains about 12% of the interior
of the ice sheet (Davies and others, 2022). Evaluating surface
melt in this region is of particular interest for several reasons.
The Greenland Ice Sheet now contributes over 25% of observed
global sea level rise (Ryan and others, 2019) and has become
the single largest contributor to sea level rise (Velicogna and
others, 2014). Mass loss in this northeast sector is accelerating

(Zwally and others, 2002). The estimated runoff was 357 ± 58
Gt yr−1 on average during a 9-year period prior to 2020 (Slater
and others, 2021). It is also now thought to be the region of the
ice sheet undergoing the greatest inland expansion of supraglacial
lakes (Ignéczi and others, 2016; Turton and others, 2021). This
suggests that this region is experiencing large changes in melting
(Selmes and others, 2011), and is ideal as a study area to investi-
gate ice sheet surface melt.

To build an automatic classification system, we select nine sep-
arate point locations from across the study area, covering ice,
snow and lake surfaces, for use as training sites. The sites were
selected to cover a range of surface types based on their appear-
ance in a Landsat-8 image acquired in 2019. Three points below
the snow line were chosen (sites 7–9), on the assumption that
they represent the ice surface, three points above the snow line
were chosen on the assumption that they represent the snow sur-
face (sites 1–3), where site 1 is the furthest inland and site 3 is the
closest to the snowline, and three points were chosen from within
supraglacial lakes, visible as open water in the Landsat image
(sites 4–6).

Of the supraglacial lake sites, site 4 is a large lake that appears
to remain frozen in some summers, when cross referenced with
optical satellite imagery. Site 5 is a small lake in the percolation
zone of the ice sheet that appears to freeze over and is snow cov-
ered each winter. Site 6 is also a small lake, but located closer to
the ice margin. This lake also appears to freeze over and become
snow covered in winter. Of the ice sites, two points are located on
clean ice and one point (site 7) is located in the dark ice zone that
appears each summer on Greenland. The ice here is characterised
by high amounts of embedded debris, and is also thinner than the
clean ice upstream.

2.2. Sentinel-1 SAR backscatter data

Here, we use single look complex SAR backscatter data acquired
from Sentinel-1 between December 2015 and May 2020. The
2-satellite constellation, Sentinel-1a and Sentinel-1b satellites,
provides data every 6 days. Sentinel-1 SAR has a central frequency
of 5.405 GHz and the pixel spacing of the backscatter image is
46.5 × 55.5 m. We re-sample the SAR images at a regular grid,
and the spatial resolution is 6 × 6 km after re-sampling.
Preprocessing has been applied to the dataset following the ESA
protocol, including speckle reduction, geocoding, noise filtering
and coregistration.

The SAR pixel values range from 0 to 1.5 dB, which is a loga-
rithmic unit. Since the distribution of the SAR data points appears
to be left truncated at 0, the assumption of a normal distribution
in our following state-space model would otherwise be inappro-
priate. Thus, we apply a log-normal transformation to the SAR

Figure 1. (a) Greenland ice sheet. Left panel box on the northeast shows a backscatter image of the target area, and right panel shows the map with the snowline
determined by ESA using Sentinel-3 data in 2021 (https://www.esa.int/ESA˙Multimedia/Images/2022/05/Greenland˙snowline˙retreat˙and˙rainfall). (b) A SAR
image of the northeast Greenland with prelabelled sites. (c) A Landsat optical image acquired 2017-07-30; the shaded region is the SAR image overlaid.
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data. State-space models with normal error distributions are then
fitted to these data. We note that the log-transformation is often
used in statistics to combat this truncation issue.

2.3. Climate data

To establish a link between surface melt behaviour and SAR back-
scatter variations, we mainly use total daily snowfall, total daily
meltwater production, daily surface mass balance (SMB) and
daily rainfall simulated by the MARv3.11.5 regional climate
model (Fettweis and others, 2020) , run at a resolution of 6 km
and 6 hourly forced by the ERA5 reanalysis at its lateral bound-
aries. MAR is a regional climate model that can be used for simu-
lation from km-scale to continental-scale (Fettweis and others,
2020). For each of the nine training sites, and all of the testing pix-
els in the 6 × 6 km grid, we extract a time series for each of these
variables from the MAR data using the MAR grid cell with centre
closest to the training/testing point location. A list of the training
and testing site locations is given in Appendix A. Further MAR
variables are explored and included in Appendix B.

3. Methods

Our method can be summarised as follows: (1) We extract time
series data from SAR backscatter images at our nine training loca-
tions. (2) After log-transforming the data, we use a state-space
model to partition each time series into a number of separate
states, based purely on their statistical properties. (3) Through vis-
ual inspection of long-term optical images and with reference to
the climate model output (Fettweis and others, 2020), we charac-
terise these states as being associated with ice, snow or open water,
melting or nonmelting and with weather events such as rainfall
and snowfall. (4) We use this analysis to develop a set of decision
rules, by which unseen pixels can be classified according to their
surface properties.

3.1. State-space model

State-space models have been widely used for analysing time ser-
ies data (see Fahrmeir and Tutz, 2001 for an introduction). A
state-space model relates responses to an unobserved state by a
probabilistic model, and the states are assumed to follow a latent
or hidden Markov model (HMM) (Fahrmeir and Tutz, 2001). The
state-space model, also known as HMM, is fitted in the frequentist
framework with no prior information (see Visser and
Speekenbrink, 2010 for an R package).

In a discrete-time state-space model, for time series data {yt},
e.g. log-SAR values, where t denotes the time at which the obser-
vation is taken. The latent, or hidden, model for the states {xt}, e.g.
melt or nonmelt, follows a Markov process with a discrete state
space. Figure 2 gives an illustration of a state-space model,

which links the observations yt to a hidden or latent (unobserved)
state process, xt.

The purpose of fitting state-space models to time series SAR
data is to discover the unobserved hidden states that explain the
variations in the SAR measurements and decode the melting pro-
cess over the ice sheet. The most-likely state sequence is recovered
via the Viterbi algorithm (Forney, 1973). The state process is
assumed to be a Markov process, which means that the future
and the past values are independent conditional on the present
values, i.e. P (xt|x1, ⋅ ⋅ ⋅ , xt−1) = P (xt|xt−1). The observations yt
are assumed to be independent of one another given the states
xt and the observations at time t are distributed as
Yt|Xt = xt � N (m, S), where μ and Σ represent the mean and
co-variance of a normal distribution, respectively. The main
motivation for using state-space models is that the distribution
of the observations at time t are specified by the value of the hid-
den state at time t.

In the context of modelling SAR data, our state-space model is
specified by the set of states S = {s1, s2, ⋅ ⋅ ⋅ , sN}, corresponding to
the possible ice sheet surface melt conditions, and a set of model
parameters Θ = {π, A, B}, given a hidden state sequence Xt = {x1,
x2, ⋅ ⋅ ⋅ , xt}, xt∈ S, and the observation sequence Yt = {y1, y2, ⋅ ⋅ ⋅ , yt},
the log-SAR values. The initial state probability πi = P(x1 = si),
for i = 1, . . . , N denotes the probability of the first observation
being in state si. The transition probabilities, aij in matrix A, are
the probabilities of hidden state i transitioning to state j, i.e. aij =
P(xt = sj|xt−1 = si). The emission probabilities bit, in matrix B, char-
acterise the likelihood of an observation at time t, given a state si, i.e.
bit = P(yt|xt = si). For each state si, bit � N (mi, si

2).
To build the state-space model, we must assume a maximum

number of hidden states and the possible transitions among
states. Given the sampling frequency of the observed data, it is
reasonable to build an initial model that includes five stages.
This is also reasonable from a glaciological perspective, since it
is possible for a lake pixel to transition from dry snow to melting
snow to melting ice to open water to dry ice. Since not all of these
states will be observed in all locations, we build several state-space
models, varying the total number of states, and select the best fit-
ting number of states based on the properties of the time series
SAR data. We obtain a sequence of discrete states xt = si, si∈
{1, 2, 3, 4, 5}, five being the maximum best fitting number of states
across the training sites, from the fitted state-space models.
Further details about our state-space model can be found in
Appendix C.

3.2. Site characteristic classification

The state-space model captures the temporal variation in the
physical processes of ice sheet melt. To consider spatial variations,
we sample pixels in different regions. For example, the top panel
in Fig. 3 shows the temporal variation in ‘snow’ regions. We chose
these three sites because they span the range of conditions

Figure 2. A state-space model with an unobserved state process xt and an observation sequence yt. The dependence among the observations is generated by the
states: yt is conditionally independent from all other variables given the state xt; and xt is conditionally independent from x1, ⋅ ⋅ ⋅ , xt−2 given xt−1.
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experienced above the ‘snowline’ in Greenland. Site 1 is situated in
the ‘dry snow zone’, where no melt generally occurs and sites 2
and 3 are situated in the upper and lower ‘percolation zone’,
respectively, and so experience different amounts of melt. It was
important to choose this range of sites to robustly test our
method. The ‘lake’ and ‘ice’ sites are chosen similarly.

The next step is to relate the states to specific characteristics of
the ice sheet surface. To do this, we examine temporal variability
in our numbered states (Fig. 3) in combination with MAR climate
model output (Fig. 4).

The nine sites exhibit three different backscatter modes, high
(snow sites 1− 3), low (snow sites 4− 6 and 8 and 9) and very
low (snow site 7), which is consistent with what would be
expected from sites with different surface types (Nagler and
others, 2016). Winter backscatter values at snow sites range
from 0.8 to 1.4 dB and do not exceed 0.05 dB at site 7. Site 7 is
located on the part of the Greenland ice sheet which is charac-
terised by embedded dust and debris and thus appears dark
both to the eye and to SAR (Humbert and others, 2020). The
other five sites all exhibit winter mean backscatter values between
0.05 dB and 0.8 dB; we see no statistically significant difference
between the other ice and lake sites.

All nine sites exhibit a drop in backscatter values in the sum-
mer, with the lowest values in each year being picked up by our
state-switching model as a distinct state. The presence of liquid
water is known to lower the backscatter values on a glaciated sur-
face (e.g. Golden and others, 1998), and considering the time
(summer) during which the state-switching occur, we assume
that this state corresponds to surface melt. Our assumption is

validated by comparing with temporal variation in melt (Fig. 4),
albedo and surface density from MAR model (Fig. 9 and 10),
which clearly show that these low-backscatter states occur when
MAR predicts surface melting in summer.

Winter backscatter at snow sites is partitioned into two states by
our state-switching model (Fig. 3), with backscatter values that are
slightly lower than the average winter (Dec–Jan–Feb) mean in
some years, e.g. 2018/2019. If we cross reference with rainfall data
from MAR, we can see that this lower backscatter state occurs
after a nonnegligible rainfall event (i.e. rainfall above 1mmw.e. d−1)
and in the absence of significant snowfall. Rainfall on snow on
Greenland is likely to alter the snow grain structure and refreeze
between grains. This would increase the near-surface density of
the snowpack and thus reduce SAR backscatter (Liu and others,
2006). An exception to this in our data appears to be at site 2
where rainfall in the summer of 2019/2020 does not result in
lower backscatter the following winter. We hypothesise that this is
because the rainfall event happened at the beginning of the melt sea-
son, and so any impact on the snow surface is likely to have been
removed by subsequent melting. Two of the lake sites (5 and 6)
and two of the ice sites (8 and 9) also exhibit winter backscatter
values that take one of two states in our model, with the winter
of 2018/2019 exhibiting a slightly higher mean backscatter than
the winters before or since. Again, from cross-referencing with the
regional climate model data (Fig. 4), we see this is likely because
the summer of 2018 was characterised by lower melt and higher
snowfall than usual. This would result in higher backscatter because
volume scattering in snow (one of the components of the backscat-
ter signal) increases with snow depth (Singh and others, 2020).

Figure 3. Time series of SAR backscatter values (log-scale) at nine study sites. States are represented by different colours and different number of states are recog-
nised at each site. Most sites have a total number of 3 states. Site 8 has the highest number of 5 states. The orange states in each plot indicate the melt during
summer, and the grey vertical shades highlight summer seasons. The two horizontal lines are the log(0.8) (red) and log(0.05) (black). During nonmelt season, snow
sites (1–3) have values above the red dashed lines. Site 7 is a black ice site and has value lower than the black dashed line.

4 Qingying Shu and others

https://doi.org/10.1017/jog.2023.64 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2023.64


Figure 10 further illustrates that the snow cover states coincide with
high accumulative snowfall and changes in snow height.

Our model predicts one additional state at two of the lake sites
(4 and 6) and one of the ice sites (8). This occurs during the spring
and autumn as the system transitions from nonmelting to melting,
and back again. For the lakes sites 4 and 6, it is reasonable that this
is predicted to be a distinct state since supraglacial lakes exhibit
complex phase change behaviour; they freeze over in the autumn
forming an ice lid which melts through in the spring (Law and
others, 2020). The transitional states captured by our model there-
fore likely correspond to lakes freezing over in the autumn/winter
and unfreezing in the spring/summer. It is interesting to note that
the ‘refreezing’ transition is smoother and lasts longer than the
‘unfreezing’ transition. This is in keeping with findings from
other studies which use geophysical modelling to show that lakes
unfreeze faster in spring than they freeze over in the autumn
(Law and others, 2020). Site 8 is located in the ‘ablation zone’ of
the ice sheet; the area which experiences net mass loss (i.e. negative
SMB) at the end of the melting season over most of the years. The
transitional states modelled here therefore presumably reflect the
surface transition from being snow-covered ice in the winter to
bare ice in the summer. Our model does not identify transitional
states at sites 5 and 9, likely because these are located in the perco-
lation zone of the ice sheet, and so the surface is always snow cov-
ered there. The recognised states from our study can be further
supported by the MAR model as explained in Appendix B.

3.3. Decision-making framework

Our aim is to create an automatic approach to label the states
without needing to look at each series in turn or comparing to

climate models. Thus, we use the analysis described in the previ-
ous section to establish a set of decision-making rules for recog-
nising the melting states as identified by the state-space models.
Figure 5 describes the steps for labelling the ice sheet surface
states.

The state-space models recognise five states in total. We name
the five states as (1) melt, which refers to the summer melt event,
(2) transit, i.e. the intermediate state between two other states, (3)
wet (rain-refreezing), which relates to large rainfall events as the
surface may start off wet after a rainfall event but it quickly
refreezes, (4) nonmelt, which refers to the condition that the sur-
face is not melt and (5) snow cover (large snowfall), which relates
to high snowfall or deep snow, as the snow density changes after
particularly large snowfall event.

The five states describe temporal variation in the melting pro-
cess, and the process differs across space as the surface type varies.
Here, we consider three surface types ‘snow’ – snow-covered pix-
els in all seasons in all years, ‘lake’ – open water bodies that appear
each spring/summer and ‘ice’ – which may be snow-covered in
winter but is bare ice in summer. We also consider ‘dark ice’,
which refers to the area of ice with embedded dust and debris
making it appear dark.

We evenly sampled pixels across the three surface type to test
our method. Based on our analysis of the training sites, the snow
pixels are those with mean SAR values higher than 0.8 during
nonmelt states. In most of the cases, the nonmelt state has the
highest SAR values compared to the other states at the same
pixels. A pixel can be characterised as a dark ice pixel if within
the corresponding SAR time series, the nonmelt state has mean
SAR values lower than 0.05. Pixels that do not fit the snow or
black ice criteria are categorised as ice or lake.

Figure 4. Comparison of the SAR states and the MAR climate model output. Positive blue lines: cumulative snowfall mm w.e. d−1; negative dark red lines: cumu-
lative meltwater production mm w.e. d−1; light green bars: cumulative SMB mm w.e. d−1; dashed vertical lines: rainfall threshold above 1 mm w.e. d−1; coloured
horizontal lines: SAR states from the fitted state-space models.
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Pixels of each type have a different number of states. The
three-state snow pixels are viewed as nonmelt, wet and melt states;
the four-state ice or lake pixels have an additional transit or snow
cover state; and the five-state pixels have the transit states split
into before and after melt states. By implementing the state iden-
tification algorithm, we manage to identify two of the four surface
types sampled, namely, snow and dark ice, while automatically
recognising melting patterns at any location regardless of the sur-
face type.

4. Results and discussion

We have used the nine sites to train our state-space model and
create the decision framework in Fig. 5. We now apply this deci-
sion framework to the study area, at pixels sampled at 6 km spa-
cing. At these pixels, we use the modelling approach to capture
the state-switching in the SAR time series values and apply the
decision rules to label the pixel surface states. Without any
prior information of the selected locations, the algorithm can be
used to recognise the surface type, and also changes in the time
series are sampled at each location. Results are then verified,
post decision, by visual inspection of Landsat optical images
and by comparison with MAR output.

This algorithm performs well in identifying ‘snow’ and ‘dark
ice’ regions in this sector of Greenland (Fig. 6). From (i) to (l),
the contoured regions with solid line denotes snow and the
regions with dashed line outline the dark ice. Indeed, from inspec-
tion of optical satellite imagery, it seems that ‘snow’ pixels are
associated with the dry snow zone, suggesting that our algorithm
is able to identify specific melt facies on the ice sheet. Our algo-
rithm also performs well in picking up temporal variability in sur-
face characteristics. In the dry snow zone, we see a shift from snow
cover (high snowfall or deep snow) to wet (rain-refreezing) condi-
tions in the summer of 2018; this corresponds to a widespread
rainfall event in this region of Greenland (Fig. 8). In the ‘ice’ or
‘lake’ region of the study area, we see the surface evolve through
time from mainly nonmelt and snow cover conditions in April,
to transit and melt in July, more extensive melting in August,
and then snow cover again in October (Fig. 6). This is the type
of behaviour we would expect to see for this part of the ice
sheet and indeed correlates well with the pattern of melt spread-
ing up the ice sheet from the margin, as simulated by MAR.

In addition to comparison at the four selected scenes, we cal-
culate the area of the melt state as a percentage of the total study
area as a time series to represent temporal variation throughout

the whole study period. Figure 7 shows the temporal variability
in the surface characteristics. We cross-compare this with the
MAR daily melt time series and the figure shows excellent agree-
ment between the two datasets, in terms of both variability and
magnitude (with correlation coefficient r = 0.86).

We select five specific testing sites picked at equal spacing from
a transect running down the centre of the study area from inland
to the coast, to evaluate our method in terms of its ability to cor-
rectly classify the evolution of the ice sheet surface over multiple
years (Fig. 8). The locations of the five test sites are marked in
Figs. 6(i)–(l) as five red dots. The number 1–5 goes from the
lower left to the upper right. Test locations 1 and 2 are identified
by our algorithm as being snow sites (Fig. 6). From visual inspec-
tion of optical satellite imagery (Figs. 6(a)–(d)), it seems reason-
able that this is the case, since these sites are located far inland
and above the permanent snow line. Test locations 3 and 4 are
identified by our algorithm as being either ice or lake sites – it
is not yet possible to differentiate between the two using our
method. From the optical satellite imagery, this seems reasonable,
both sites look like they are below the permanent snow line. Test
location 5 is identified as a dark ice site, and indeed from the
optical satellite imagery, we can see that this site is located on
the debris-covered trunk of the 79 N° glacier.

At test location 1, our algorithm identifies a transition from
snow cover (high snowfall or deep snow) to wet (rain-refreezing)
in 2018 which, as previously discussed, corresponds well to a
widespread rainfall event. Our method identifies melt in the sum-
mers of 2017, 2018 and 2019 but misses melt simulated by MAR
in 2016. This is likely either due to the time interval of 6-day in
the SAR backscatter (the surface may melt between two observa-
tions) or because melting in 2016 was insufficient to affect the
dielectric properties of the ice sheet surface. The melt period is
identified each year (2016–2020) at test location 2, though on
some days at the start and the end of the melt season, our algo-
rithm identifies wet (rain-refreezing) conditions which from the
MAR data seem more likely to be transit states – as the snowpack
starts to melt and as the melted snow surface refreezes. Transit
states are identified at test site 3, and melt periods are identified
in each year except for the summer of 2018. Here, our method
suggests that the surface does not progress beyond a transit
state – i.e. it does not fully melt. From MAR, we can see that melt-
ing in this year was unusually low at this site, which suggests that
an appreciable amount of melting has to occur, before it is iden-
tified by our model as a distinct state. At test sites 3 and 4, snow
cover states are modelled in winter – from the MAR data, it seems

Figure 5. The chart shows the process of recognising the auto-numbered states as melt, transit, wet, nonmelt and snowfall states. For xt∈ {1, 2, 3, 4, 5}, find t for
which xt = i. Compute the averages of yt. Label xt, based on the values of yt, as melt, transit, wet (rain-refreezing), nonmelt or snow cover (high snowfall). Winter
mean refers the average from October to March during nonmelting seasons.
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Figure 6. (a)–(p) show the following plots across the four dates throughout 2018: 04/04/2018, 15/07/2018, 08/08/2018 and 01/10/2018.Top row (a)–(d) shows the
Landsat tiles collected 3 days within the selected dates. The red polygon in (a)–(d) indicates the study area covered by the SAR images. Row 2 (e)–(h) contains SAR
images; row 3 (i)–(l) provides maps of the classified state with snow/black ice contours. The five classified states are coloured in dark blue (snow cover), yellow
(transit), blue (nonmelt), green (wet) and orange (melt). Row 4 (m)–(p) shows the daily melt from MAR.

Figure 7. The MAR daily melt (black dots) data, which are threshold above 1 mm d−1 for removing noise, are calculated as the percentage of total study area. The
melt state (red stars) is the melt state spatial proportion at each time point.
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that these are associated with winters where snowfall is high. The
performance of our classification algorithm at test site 5 is less
convincing; however, this is likely because changes to backscatter
at the dark ice site are more subtle and thus harder to differentiate
as separate states. Summarising the comparison between results
from the five test sites and results from MAR, Fig. 8 shows that
our melt states and snow cover states correspond to MAR cumu-
lative melt and cumulative snowfall increases respectively, and the
wet (rain-refreezing) states coincide with to MAR rainfall events.

5. Conclusion

In this study, we have proposed a method of modelling SAR
backscatter time series to understand the melt/state-switching
process on the ice sheet surface. After scrutinising the estimated
states with optimal images, which inform on the surface type,
and the MAR model that provided variables to explain the
state-switching process, we established the procedure of identi-
fied the melting states while recognising the surface type. The
identification of surface types, i.e. snow and dark ice, explains
the varying patterns observed at different regions and helps
with understanding and recognising the state-switching process
throughout the seasons. We show, as a proof of concept, that
our algorithm can successfully identify melt facies and dark
ice, though at present it is less skilled at differentiating between
ice and lake pixels. We show that our algorithm can successfully
classify the temporal evolution of the ice surface, and in particu-
lar that it can identify seasonal surface melting across a wide
area. Finally, we show that our method can recognise changes
in the surface ice sheet condition resulting from weather events,
such as rainfall or snowfall.

The classification of melt/nonmelt and other additional states
were well supported by multiple variables from the MAR models.
The classification of the surface type was compared with a limited
number of optical images by visual inspection. So far, we con-
clude our method performs well in recognising the melting pro-
cess, and the qualitative comparison with optical images shows
our method has the potential of recognising the surface type.
To achieve accurate classification of the surface type, i.e. snow,
ice and lakes, more validation data are needed. The ground
truth data for ice sheet surface type are not directly available
but there have been recent advances of using optical images to
recognise the ice sheet surface, which might be of use to future
studies (Vandecrux et.al. 2022). Obtaining the ground truth
data is essential for quantifying model uncertainty

Further work is needed to refine the model to develop the
method such that it can distinguish between lake and ice pixels.
At present, the classification is somewhat noisy, and the temporal
evolution of surface characteristics in the dark ice region in par-
ticular seems to be poorly captured. Averaging neighbouring pix-
els in the data preprocessing step may effectively smooth out some
of the noise and help achieve better classification results. We also
consider incorporating spatial correlation into the state-space
model such that neighbouring pixels can share information and
introducing temporal and spatial covariates in the model. To fur-
ther extend our analysis, a hierarchical model structure with a pri-
mary level associating with surface type and a secondary level for
state-switching process is worth considering. In addition, a
semi-Markov model, which estimates a state at every given time
instead of just at the state-switching time, may help with improv-
ing the results. We would also consider relaxing the state-space
model, allowing the number of states to change across sites, for

a b

Figure 8. Comparison of SAR state and MAR model output at the five testing sites. (a) Time series of log-SAR backscatter at each of the testing sites with classified
state labels; Horizontal lines: red – log (0.8); black – log (0.05). (b) MAR model outputs: proxies for cumulative snowfall (positive) and cumulative melt (negative),
rainfall (threshold above 1 mm w.e. d−1) – dashed vertical lines.
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a better representation at some sites where fewer changes occur.
This can be achieved by allowing some transition probabilities
to be 0 in the state-space model. As a proof of concept, however,
and compared to conventional ice sheet melt classification
approaches, we show that our method has the potential to yield
deeper understanding about the melting process through identify-
ing a wide range of ice sheet surface states. Our method is particu-
larly valuable since Sentinel-1 SAR data are of a high spatial
resolution (higher resolution than climate models). Thus in devel-
oping a method to identify the state of the surface from these data,
we improve our capability to understand the spatial distribution
of ice sheet melting and how this varies through time.

Data. Raw data were generated at ESA https://sentinel.esa.int/web/sentinel/
sentinel-data-access. Derived data supporting the findings of this study are
available from the corresponding author Q.S on request.
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Appendix A.

The time series of SAR backscatter we analyzed are taken at nine pre-labelled
training sites and five testing sites. The longitude and latitude of the training
and testing sites are listed in Table 1. State-space model parameters, including
the state mean and the state variance, are estimated across sites. Table 2 lists
the model parameters from the nine training sites.

Appendix B.

The additional meteorological variable obtained from the MAR climate
model include albedo and 0–10 cm surface snow density (kg m−3) in
Fig. 9, for comparing with the melt and nonmelt states detected from the
SAR data at the nine training sites. The orange melt states occur at albedo
trough and density peak. Snow height evolution, obtained from the MAR
accumulated snowheight change variable, is shown in Fig. 10 together with
the SAR snow states, indicated by the grey vertical lines. The variable is plot-
ted together with the cumulative snowfall in light blue. This suggests that the
snow states can be detected after a sufficient amount of snowfall, regardless
of snow height change.

Table 1. Longitude and latitude of the nine training sites and the five testing
sites in decimal degrees (DD)

Site No. Longitude (DD) Latitude (DD)

Training 1 (snow) −31.9979 79.2383
Training 2 (snow) −28.7454 78.6344
Training 3 (snow) −27.7755 79.01282
Training 4 (lake) −25.6312 78.96729
Training 5 (lake) −26.3981 78.93563
Training 6 (lake) −24.7273 79.1308
Training 7 (ice) −24.0643 79.64114
Training 8 (ice) −24.6545 79.69221
Training 9 (ice) −25.598 79.60458
Testing 1 −30.98285703 78.72298619
Testing 2 −28.88660524 78.9132926
Testing 3 −26.60760123 79.10043046
Testing 4 −24.36879814 79.25873217
Testing 5 −21.82965978 79.4605233

Table 2. State-space model parameters, including the state mean m̂ and the state variance ŝ2. m̂(ŝ2) were estimated for the five states across the 9 training sites

Labels Melt Transit Wet (refreezing) Nonmelt Snow cover

Snow sites
Site 1 0.413 (0.171) NA 1.026 (0.053) 1.172 (0.076) NA
Site 2 0.361 (0.357) NA NA 1.237 (0.073) 1.366 (0.074)
Site 3 0.033 (0.040) NA 1.040 (0.078) 1.165 (0.046) 1.256 (0.066)

Lake sites
Site 4 0.043 (0.056) NA 0.308 (0.044) 0.400 (0.024) 0.461 (0.036)
Site 5 0.036 (0.038) NA 0.201 (0.042) 0.301 (0.027) 0.463 (0.040)
Site 6 0.013 (0.013) NA 0.175(0.046) 0.257 (0.028) 0.358 (0.068)

Ice (black) Site 7 0.021 (0.010) 0.037 (0.003) 0.048 (0.004) NA NA

Ice sites
Site 8 0.017 (0.010) 0.232 (0.155) 0.407 (0.040) 0.571 (0.042)
Site 9 0.017 (0.008) 0.238 (0.111) 0.411 (0.040) 0.570 (0.037)
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Figure 9. Comparison of melt/nonmelt state with MAR albedo/0–10 cm surface density (kg m−3).

Figure 10. Comparison of snow cover state and snow height evolution/cumulative snowfall.
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Appendix C.

C.1. State-space model

Assuming the states, xt, are a Markov chain taking values in a finite state space
{1, ⋅ ⋅ ⋅ , K}, where K = 5 in our context. The hidden state process {xt}, t∈ T is
categorical and can be written as a multinomial vector. Let xkt be a binary indi-
cator for whether xt is in state k∈ {1, ⋅ ⋅ ⋅ , K}. The tth hidden state is k if
xkt = 1. The transition probability P (xt|xt−1) is the probability that the
model is in state xt at time t given that the model was in state xt−1 at time
t− 1. This forms a transition matrix A = {ajk}, j, k∈ {1, ⋅ ⋅ ⋅ , K}, for
describing the probability of xkt = 1, i.e. the tth state is k, conditioned on
xjt−1 = 1, i.e. the t− 1th state is j. The emission probabilities P( yt|xt) specify
the probability distribution for the observation yt, given the model is in state
xt at time t.

C.1.1. Parameter estimation
We fit the hidden Markov state-space model to the time series of the pixel
values using the R package depmixS4. depmixS4 provides a framework for
specifying and fitting hidden Markov models using the expectation–maxi-
misation (EM) algorithm for optimisation. Expectation–maximisation is an
iterative procedure that maximises the model’s likelihood function. Let θ(s)

be the set of parameter estimates from the s-th iteration of the EM algo-
rithm. The computation in the E-step uses information from the observed
data {yt} and the parameter estimates θ(s) from the preceding M-step. The
required expected sufficient statistics for the EM algorithm are E[xk1] and
E[xjtx

k
t+1].

The basic idea behind the EM algorithm is that directly maximising the
log-likelihood log p(Y|u) is intractable as there is no explicit form for
p(Y|u). However, the joint log-likelihood log p(Y, X|u) is available and can
be maximised iteratively as follows:

Iterate:

E-step: Find Q(u|u(l)) = E[ log p(Y, X)|u(l)]
M-step: Find u(l+1) = argmaxuQ(u|u(l))

C.1.2. Model selection and optimal number of states
At a random location, the time series of pixel SAR values could range from two
to five states, representing a switch in the ice sheet surface properties. In fitting
the state-space model to each time series, the number of states can take the
values of 2, 3, 4 or 5. Four models each with a different number of states
are fitted to time series at each location.

We do not know the number of states in advance, and so we fit the state
space model with different n, where n represents the number of hidden states,
and use the Bayesian information criterion (BIC) (Van Erven and others,
2012), a criterion for model selection among a finite set of models and the
model with the lowest BIC is preferred, to select the best fit and determine n.
BIC is defined as follows:

BIC = −2 log L+ K logN (C1)
where L is the likelihood, K is the number of model parameters and N is the
number of data points used to train the model.

Based on the lowest BIC score, the best-fit model for SAR time series at
each site is selected. The optimal number of states is subsequently recognised
as indicated by the best fitting model.
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