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Abstract

Ice-crystal fabric can induce mechanical anisotropy that significantly affects flow, but ice-flow
models generally do not include fabric development or its effect upon flow. Here, we incorporate
a new spectral expansion of fabric, and more complete description of its evolution, into the ice-
flow model Elmer/Ice. This approach allows us to model the effect of both lattice rotation and
migration recrystallization on large-scale ice flow. The fabric evolution is coupled to flow
using an unapproximated non-linear orthotropic rheology that better describes deformation
when the stress and fabric states are misaligned. These improvements are most relevant for simu-
lating dynamically interesting areas, where recrystallization can be important, tuning data are
scarce and rapid flow can lead to misalignment between stress and fabric. We validate the
model by comparing simulated fabric to ice-core and phase-sensitive radar measurements on
a transect across Dome C, East Antarctica. With appropriately tuned rates for recrystallization,
the model is able to reproduce observations of fabric. However, these tuned rates differ from
those previously derived from laboratory experiments, suggesting a need to better understand
how recrystallization acts differently in the laboratory compared to natural settings.

Introduction and background

The crystal orientation fabric of ice (or simply fabric) refers to the ensemble of grain c-axis
orientations (basal plane normal directions) making up the polycrystal. Ice displays a strong
mechanical anisotropy; for an individual grain, shear is ∼104 times easier perpendicular to
the c-axis than parallel to it (Duval and others, 1983). At the polycrystal scale, grain interac-
tions reduce this effect, but single-maximum fabrics (i.e. polycrystals with a strong alignment
of c-axes in one direction) have been found to shear more easily by an order of magnitude
compared to isotropic fabrics (Pimienta and Duval, 1987). This induced anisotropy can
have significant implications for ice flow by localizing shear near the bed (Thorsteinsson,
2001; Rathmann and Lilien, 2022a) or in the margins of ice streams (Minchew and others,
2018; Grinsted and others, 2022). Despite the strong effect that fabric can have upon flow,
large-scale models of ice flow generally neglect the fabric-induced mechanical anisotropy.
In part, the effects are neglected due to unknown fabrics in the dynamic regions where fabric
may most affect flow, since challenging conditions have limited direct measurements of fabric
in such areas (Jackson and Kamb, 1997; Thomas and others, 2021). Active and passive seis-
mics (e.g. Bentley, 1971; Smith and others, 2017; Lutz and others, 2022) and phase-sensitive
radar (pRES) (e.g. Brisbourne and others, 2019; Jordan and others, 2019) provide some con-
straints if surface access is possible, though depth resolution and precision are limited. In the
fastest flowing regions, new methods have only recently allowed inference of fabric from
airborne radar data (Young and others, 2021), thus allowing the first continuous, spatially
extensive inferences of fabric. Models of fabric development can potentially be used to estimate
the fabric between sparse measurements, particularly in dynamically interesting areas such as
ice streams.

Modeling crystal processes

Fabric-evolution models range from small-scale (sub-meter) models that track individual ice
grains to large-scale (kilometer or greater) models that rely on statistical descriptions of fabric
(e.g. Gillet-Chaulet and others, 2006; Llorens and others, 2016). These models broadly include
two processes: deformation that mechanically affects the distribution of grain orientations, a
process termed lattice rotation, and mass movement between grains, termed recrystallization.

The effect of lattice rotation (the apparent rotation of c-axes) has been suggested to depend
linearly on the deformation gradient (e.g. Svendsen and Hutter, 1996), assuming most deform-
ation occurs as slip on the basal planes. However, this simple form does not apply at the poly-
crystal scale. The bulk fabric evolution depends on how the bulk stress and strain transfer to
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the smaller grain scale; though simple assumptions about uniform
stress and strain are often used, the reality is more complex than
can currently be represented by large-scale models (Castelnau and
others, 1996; Rathmann and Lilien, 2022a). Nevertheless, models
of fabric evolution that account for lattice rotation alone, under
the assumption of homogeneous strain or stress over the polycrys-
tal scale, are able to do a good job reproducing ice-core measure-
ments in some locations (Gillet-Chaulet and others, 2006;
Rathmann and Lilien, 2022a), suggesting that this process is well-
described at least near ice divides and domes where such ice cores
are drilled.

Recrystallization dominates fabric development in some
regimes (e.g. Alley, 1988), but is generally neglected in large-scale
fabric models. Recrystallization encompasses three processes:
normal grain growth, rotation recrystallization (also called
continuous dynamic recrystallization, or CDRX), and migration
recrystallization (also called discontinuous dynamic recrystalliza-
tion, or DDRX). Normal grain growth refers to the orientation-
independent enlargement of grains near the surface of the ice
sheet, and does not strongly affect fabric (Montagnat and
Duval, 2000). Rotation recrystallization refers to the division of
grains into subgrains during deformation, and has been found
to occur in relatively shallow parts of ice sheets (e.g. Weikusat
and others, 2009). However, since the new grains are split from
their parents gradually, they do not lead to a significantly different
preferred orientation, but rather cause a slowing of fabric develop-
ment (Montagnat and Duval, 2000), which is sometimes modeled
as a diffusive process on the orientation of the grains (Gödert,
2003; Placidi and others, 2010; Richards and others, 2021).
Migration recrystallization refers to the movement of mass to
(possibly new) grains well-oriented for the in situ stress
(Chapelle and others, 1998). Though early evidence (Alley,
1988; Duval and Castelnau, 1995) suggested that migration
recrystallization only affects warm (≥ −10◦C), deep ice, some ice-
core evidence has indicated that the process occurs shallower
(Diprinzio and others, 2005; Kipfstuhl and others, 2006, 2009).
These observations led to a proposal of a new paradigm for the
activation of migration recrystallization at sufficient stress, even
if ice is cold (Faria and others, 2014). The bulk effect of migration
recrystallization on fabric can be simulated as a production/decay
process that leads to grains well-oriented for the in situ stress or
strain rate (Gödert and Hutter, 1998; Faria and others, 2003;
Placidi and others, 2010) and the necessary model parameters
have recently been tuned to experimental data (Richards and
others, 2021).

Current anisotropic ice-flow models

Models of fabric development are, with few exceptions, separate
from ice-flow models. Only a few large-scale ice-flow models con-
sider the effect of fabric on flow, let alone track its development
explicitly. To the extent that the effect of fabric is included, it is
often as a strain-rate enhancement factor, which can be isotropic
or anisotropic (i.e. the material response may or may not be
invariant to rotations from a reference state) depending on how
the scalar factor is calculated (Seddik and others, 2008; Graham
and others, 2018). Since, in practice, much ice-flow modeling
infers a scalar enhancement factor prior to prognostic simulations
(e.g. Larour and others, 2005; Arthern and Gudmundsson, 2010),
the influence of fabric may be subsumed into the bulk viscosity
along with other factors causing enhancements, e.g. variations
in mechanical damage or temperature. Such scalar compensation
may successfully account for the instantaneous effect of anisot-
ropy on strain in the dominant direction (Rathmann and Lilien,
2022a), but by definition cannot accurately describe the viscosity
in all directions; if conditions change or if multiple deformation

modes are active, scalar compensation may lead to incorrect tran-
sient results.

Other models account for anisotropy by assuming that fabric
adjusts instantaneously to the steady state fabric pattern consist-
ent with in situ stress and strain (Graham and others, 2018),
and thus obviate the need for a time-evolving fabric model.
However, this assumption is poorly supported for many parts
of ice-sheet interiors, where fabric is thought to develop slowly
by lattice rotation (Alley, 1988). For example, the stress state is
unconfined compression at all depths beneath a perfect dome,
but fabric varies from isotropic at the surface to a single max-
imum at depth (e.g. Durand and others, 2009). To determine fab-
ric accurately everywhere, lattice rotation and recrystallization
must both be accounted for, which necessitates a model of fabric
development that includes transient and advective effects (e.g.
Thorsteinsson and others, 2003).

Finally, one large-scale model, Elmer/Ice, is capable of simulat-
ing fabric evolution explicitly and couples that evolution to flow
(Gillet-Chaulet and others, 2006; Seddik and others, 2008). In
that module, fabric is assumed to develop solely due to lattice
rotation, and the closure approximation, which relieves the need
to track infinitely detailed information about fabric orientation,
contains implicit site-specific tuning; the effect of this closure
approximation is essentially untested due to the lack of
closure-approximation-free model for comparison. The fabric
evolution module is not commonly used despite the widespread
applications of Elmer/Ice. This limited use stems from the
added computational cost of simulating the fabric, more free
model parameters typically unconstrained by observations, and
violation of the lattice-rotation-only assumption in fast-flowing
areas where the ice-flow model is most commonly applied.

Fabric representation

To model fabric development and its effect on bulk directional ice
viscosities, a mathematical description of grain orientations is
needed. A full description of the fabric would contain information
about the orientation, size, shape and number of grains that
makes up the polycrystal, properties that can be simulated expli-
citly using small (sub-meter scale) microstructural models (e.g.
Durand, 2004). In practice, large-scale fabric models generally
ignore the size and shape of grains, and explicitly track the orien-
tation alone (Gillet-Chaulet and others, 2006; Seddik and others,
2008; Richards and others, 2021). Large-scale models of fabric
development rely on the distribution of preferred grain orienta-
tions in order to construct grain-weighted-average quantities
such as directional viscosities (e.g. Rathmann and Lilien,
2022b). Different weights can be used to construct average quan-
tities, such as the distribution of number of grains or their mass in
orientation space, S2 (surface of the unit sphere).

Orientation distribution functions
In the simplest approach, the orientation distribution gives equal
weight to all grains, defined as the orientation distribution func-
tion (ODF):

ODF = c(u, f)
N

, (1)

where ψ is the c-axis orientation density, θ and ϕ are the polar and
azimuth angles, respectively, N = �

S2 c dV is the total number of
grains and the differential of the solid angle is dΩ = sin (θ) dθ dϕ.

An alternative orientation distribution may be defined by
regarding the grain mass density as a function of orientation, ϱ*
(θ, ϕ), termed the orientation mass density, a concept that arises
from the theory of mixtures of continuous diversity (Faria, 2001).
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By analogy to the ODF, we define a mass orientation distribution
function (MODF), which is ϱ* normalized:

MODF = @∗(u, f)
ri

, (2)

where ri =
�
S2 @

∗ dV is simply the density of ice.

Structure tensors and closure
An arbitrary (M)ODF will not necessarily have a closed form, so
large-scale models have previously proposed several mathematical
representations of fabric, perhaps the simplest of which is the
cone- and girdle-angle model (e.g. Thorsteinsson, 2001). More
complex models have relied on the fact that any (M)ODF can
be expanded in terms of a structure-tensor series (e.g. Svendsen
and Hutter, 1996), useful for directly calculating bulk directional
viscosities. The structure tensors are the moments of the fabric
orientation distribution, defined as the sum of the weighted
m-fold outer product of grain c-axes with themselves. For a
discrete set of N grains with c-axis denoted ci, it is defined as

a(m) =
∑N
i

wi (ci ⊗ )m, (3)

where (ci⊗ )m is them-repeated outer product, andm is the (even)
order of the tensor (Advani and Tucker, 1987). The weights wi are
normalized such that

∑N
i wi = 1. If no shape/size information is

available, then all grains are typically weighted equally (wi = 1/
N) so (3) becomes the arithmetic mean, and the a (m) are moments
of the ODF. If the wi are taken to be the volume or mass fraction
(i.e. the MODF itself), then the a (m) are the moments of the
MODF.

In practice, the structure-tensor series representation of fabric
is often truncated at the second-order contribution a (2)

(i.e. excluding a (m) for m > 2) (Gillet-Chaulet and others, 2006;
Seddik and others, 2008). a (2) alone is sufficient to represent sim-
ple yet common fabrics such as single-maximum and girdle fab-
rics found in deep ice cores (Gow and Williamson, 1976; Advani
and Tucker, 1987; Weikusat and others, 2017; Bauer and Böhlke,
2021). Such ice-core measurements often discard (or cannot
recover) the principal directions and retain only the eigenvalues
of a (2), here ordered such that λ3≥ λ2≥ λ1 (though conventions
differ).

Complicated fabrics that cannot be expressed in terms of a (2)

alone have also been observed. For example, ice cores from
dynamic areas (Jackson and Kamb, 1997; Gerbi and others,
2021) and laboratory experiments (Journaux and others, 2019;
Fan and others, 2020) show multi-maxima and ‘diamond’ fabrics;
a (2) cannot capture such structure. Tracking higher-order struc-
ture tensors would allow more complex fabrics to be modeled,
but this quickly becomes challenging for technical reasons,
including degeneracy of the tensors (e.g. the information con-
tained in a (2) is included in a (4); Bauer and Böhlke, 2021), com-
plications of tracking moments of the fabric rather than the fabric
itself, and the lack of closure for lattice rotation (the evolution of
a (2) depends on a (4), that of a (4) on a (6), etc.).

Expansion series approach
Some of the issues of the structure-tensor approach can be
avoided by describing the fabric as a series of increasingly finer
anomalies from isotropy in spectral space. Richards and others
(2021) and Rathmann and others (2021) independently proposed
using a spherical harmonic expansion of ϱ* or ψ for polycrystal-
line viscoplastic problems. This approach has long been used for
elastic problems (Turner, 1999), but is new to glaciology. In this

formulation, an arbitrary ϱ* can be described by a harmonic series
expansion

@∗(u, f) =
∑L
l=0

∑l

m=−l

@̂m
l Y

m
l (u, f), (4)

where L is the order of the approximation (spectral truncation),
@̂m
l are the complex expansion coefficients and Ym

l the spherical
harmonic functions. Since ϱ* is antipodally symmetric, @̂m

l = 0
if l is odd. This approach describes the MODF (ϱ*/ρi) directly,
without parameterization and has recently been applied to
model individual ice parcels (Rathmann and others, 2021;
Richards and others, 2021) and to a simplified, slab model of
ice flow (Rathmann and Lilien, 2022a).

Physical and technical advantages are discussed below. Here, it
is sufficient to note that, for a given L, expansion (4) contains the
same information as structure tensors up to order L (Rathmann
and others, 2021).

Modeling the ODF or MODF
Here, like Richards and others (2021), we consider ϱ*, since it
provides a framework where recrystallization can naturally be
modeled as the transfer of mass between grains with different
orientations. Indeed, when recrystallization is active, the total
number of grains is not conserved (i.e. ∂N/∂t≠ 0) unlike total
mass (per unit volume). However, Rathmann and Lilien
(2022a) proposed using the same DDRX model math for repre-
senting the effect on the ODF, in which case grains (orientations)
are understood to spontaneously decay and nucleate in equal pro-
portion so that N is conserved. Since, ψ and ϱ* are mathematically
identical up to their normalization in these two models, the
MODF and ODF are identical, and hence modeled a (m), too,
although by formulating the model in terms of ϱ* it rests on
stronger physical grounds.

Motivation: the need for a higher-order model

In this work, we adopt the spherical harmonic expansion of ϱ*,
allowing arbitrary grain orientation distributions to be repre-
sented. Before proceeding, we demonstrate that such an approach
is necessary because the existing structure-tensor-based represen-
tations (and closure schemes) are inadequate for modeling
migration recrystallization. Although such models are usually for-
mulated in terms of the ODF, the limitations described next
would persist even if the models were reinterpreted in terms of
the MODF.

When lattice rotation dominates fabric evolution, the evolution
of a (2) can be written in closed form by parameterizing a (4) in
terms of a (2). Figure 1 makes this clear, showing the relationship
between the unique lowest-order expansion coefficients of the
MODF, @̂0

2 and @̂0
4 , derived from ice cores and lab experiments

(shown by hollow markers), in a frame where fabric is approxi-
mately rotationally symmetry around the vertical axis (by first
rotating the fabric before comparison, no generality is lost by con-
sidering such a reference frame). Since the corresponding unique
lowest-order tensorial components are linearly related to @̂0

2 and
@̂0
4 , a tensorial correlation between a (4) and a (2) likewise exists.

Gillet-Chaulet and others (2005) noted this by considering an
analytical model of fabric development, for multiple types of
deformation, leading to the tensorial closure function a (4)(a (2))
currently used by Elmer/Ice’s anisotropic flow solver. Indeed,
the colored lines in Figure 1 show that a zero-dimensional
model (Rathmann and others, 2021) considering only lattice rota-
tion produces a single consistent relationship between second-
and fourth-order terms of the fabric under simple shear,
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unconfined extension or unconfined compression, confirming
that there is a function a (4)(a (2)) that applies regardless of the
type of deformation. Thus, if one is concerned only with the evo-
lution of second-order moments of the fabric under lattice rota-
tion, the closure approximation of Gillet-Chaulet and others
(2005) is sufficient and higher-order fabric representations pro-
vide little benefit.

Migration recrystallization makes the correlation function
multi-valued, preventing use of a closure approximation.
Figure 1 demonstrates this, showing that DDRX-affected fabrics
measured in the lab (red and gray markers) and an existing
DDRX model (red lines) cause fabric-state trajectories to diverge
from the approximate correlation found for lattice-rotation-
induced fabrics. Hence, @̂0

4 is not always uniquely defined by @̂0
2

(or a (4) by a (2)). Thus, since the evolution of a (2) depends on
a (4), a (4) must be allowed to freely evolve, too, when migration
recrystallization is active.

To some degree, the spread in fabric observed in laboratory
and ice-core data suggests that the effect of recrystallization is
always present (Fig. 1). These data thus suggest that migration
recrystallization should always be included in fabric-evolution
models, even if lattice rotation is the primary control on fabric
development in many areas. Including this effect is particularly
important for understanding the implications of the fabric upon
ice flow, since the directional viscosities are thought to depend
on both a (2) and a (4) (e.g. Gillet-Chaulet and others, 2006;
Rathmann and Lilien, 2022b). The gray contours in Figure 1

show the modeled compressional/extensional enhancement
factor, Ezz, along the z-axis (the viscosity model is introduced
below), indicating fabric-induced hardness may be overestimated
by �40% if DDRX is active (red and gray markers) but a correl-
ation based on lattice rotation is assumed (green model line). In
such a case, using a model of fabric development to constrain dir-
ectional viscosity is only useful if the model considers migration
recrystallization as well as lattice rotation; otherwise, an isotropic
ice-flow model has similar error.

Including fourth-order terms, and consequently modeling
recrystallization, requires either including higher-order tensors
in structure-tensor-based models, and thus a closure approxima-
tion of a (4) in terms of a (6) or a similar higher-order closure, or a
switch to another approach. Here, we incorporate the above spec-
tral description of fabric as a new module in Elmer/Ice (Zwinger
and others, 2007; Gagliardini and others, 2013), a state-of-the-art
ice-flow model, providing an alternative to the current structure-
tensor-based fabric representation. In coupling to flow, we also
implement the recently derived, unapproximated nonlinear
orthotropic rheology, validated against Dye-3 deformation tests
(Rathmann and Lilien, 2022b), which is expected to be important
when fabric and stress are misaligned.

We consider a higher-order approximation of the fabric (L = 6,
but not limited thereto), and model the (transient) effect of both
lattice rotation and migration recrystallization on large-scale
fabric development and ice flow, while removing any closure
approximations and resulting error in the viscosity. Using rates

Figure 1. Relationship between normalized expansion coefficients @̂0
2 /@̂

0
0 and @̂0

4 /@̂
0
0 in zero-dimensional modeling (lines) and from observations (markers). All

fabric states are rotated into a (nearly) vertically symmetric reference frame. The two components fully capture the second- and fourth-order fabric strength in
the case of vertical symmetry, where the white/colored region represents the space of possible fabric states (MODFs) with a vertical symmetry. Lines show modeled
fabric evolution using SpecFab (Rathmann and others, 2021) with lattice rotation alone (brown/green) and with DDRX alone (red). Increasing the strength of recrys-
tallization causes greater deviation from the lattice rotation trajectories, eventually resulting in a steady relationship between @̂0

2 and @̂0
4 regardless of deformation

amount (solid red circle). Hollow markers show fabrics observed in the laboratory and in ice cores. The marker shape indicates the deformation regime: triangles
for extension, diamonds and crosses for compression and squares for simple shear. Color indicates source for each dataset: blue from Thorsteinsson and others
(1997), pink from Treverrow and others (2016), purple from Westhoff and others (2021), orange from Voigt (2017), green from Thomas and others (2021) and yellow
from Qi and others (2019). Crosses indicate DDRX-affected fabrics during relatively warm deformation tests: red markers from Fan and others (2020), and gray
markers from Hunter and others (2023). Ball plots show the corresponding MODFs at different points in the state space. Gray contours show modeled enhancement
factors for vertical compression/extension, Ezz. Any vertical spread in observations at a single @̂0

2 /@̂
0
0 cannot be captured by a traditional closure approximation.
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of rotation and migration recrystallization tuned to laboratory mea-
surements and ice-core data, we apply the new nonlinear, tenso-
rially anisotropic, thermally coupled ice-flow model to a realistic
geometry. While the added complexity of this model is most rele-
vant for more dynamic areas, the dearth of data prevents meaning-
ful validation in such regions. Instead, we model a transect across
Dome C, East Antarctica and compare to ice-core (Durand and
others, 2009) and phase-sensitive radar (Corr and others, 2021;
Ershadi and others, 2022) measurements of fabric there.

Notation

Throughout, bold symbols indicate tensors and vectors. The oper-
ator ∇S2 denotes the gradient in orientation space (S2), while ∇ is
the gradient in Cartesian space. The subscript g denotes a grain
parameter. Other operators follow standard conventions; a full
list of symbols is given in Table 1.

Model

We are interested in modeling fabric development and its effect
upon ice flow. This is a coupled problem since the fabric evolution
depends on the stress and strain rates, and vice versa. Moreover,
since recrystallization and the isotropic part of the viscosity are
temperature dependent, the temperature field must be simulated
or specified. Finally, the ice geometry (i.e. a free surface) must
be updated based on mass conservation. We first present the
model equations, then describe the application to Dome C.

Fabric model

We account for the combined effects of lattice rotation, migration
recrystallization and rotation recrystallization in a single model of
fabric development. Specifically, we follow Placidi and others
(2010); Rathmann and Lilien (2022a) and Richards and others
(2021) by modeling the rate-of-change of ϱ*(x, t, θ, ϕ) as

D@∗

Dt
= −∇S2 ·(@∗ċ)︸�����︷︷�����︸

Lattice Rotation

+ G@∗︸︷︷︸
DDRX

+L0∇2
S2@

∗︸���︷︷���︸
CDRX

, (5)

where

D@∗

Dt
= ∂@∗

∂t
+ u ·∇@∗ (6)

is the material derivative, u(x, t) is the bulk velocity, ċ(u, f, u) is
the rate-of-change in orientation of an individual c-axis due to lat-
tice rotation (c-axis angular velocity field on S2), Γ(θ, ϕ, τ) is an
orientation-dependent mass production/loss rate describing the
effect of migration recrystallization given the deviatoric stress ten-
sor τ and Λ0 is the scalar rate of rotation recrystallization. We
address each of these terms in turn.

Lattice rotation
Let ė = (∇u+∇u)/2 be the bulk strain-rate tensor, and
W = (∇u− ∇u)/2 the bulk spin tensor. If lattice rotation is
regarded as a kinematic process (i.e. grains reorient passively),
the apparent rotation of an individual c-axis can be modeled as

ċ = W· c − i ėg· c − (c·ėg· c)c
[ ]

, (7)

where c = [sin (θ)cos (ϕ), sin (θ)sin (ϕ), cos (θ)], ėg is the strain
rate at the grain scale, and i is a parameter determining the ratio
of basal slip to rigid body rotation (e.g. Svendsen and Hutter,
1996). As discussed in the section on calibration below, we take

i = 1, equivalent to assuming that the deformation in simple
shear behaves like a deck of cards (following, e.g. Gagliardini
and Meyssonnier, 1999). In practice, only ė is known/computed,
while individual grains are subject to a heterogeneous strain-rate
field, ėg, where ėg = ė is not guaranteed. This heterogeneity is not
easily modeled, so two assumptions are common: the Sachs
hypothesis, that stress is homogeneous, and the Taylor hypoth-
esis, that the strain rate is homogeneous. Here, we use an inter-
mediate approximation following Gillet-Chaulet and others
(2006), namely

ėg = (1− aLR)ė+ aLR
1
h0

t, (8)

Table 1. Notation used in the text

Operators

· Inner product (a·b = ∑
j aijbjk)

: Double inner product (sum over last 2 indices):
e.g. A :B = ∑

l

∑
k Aij...klBnm...lk)

⊗ Outer (dyadic) product ([a⊗ b]ij = aibj)
∇S2 Gradient on the surface of the unit sphere
D
Dt Material derivative
tr Trace of a tensor
dev Deviatoric portion of a tensor
* Complex conjugate
T Transpose
˜ Quantity used in the GOLF law only

Symbols
αLR Interaction parameter for lattice rotation
αRheo Interaction parameter for rheology
ψ c-axis orientation density
σ Cauchy stress
τ 3×3 deviatoric stress tensor
τE Effective stress
ė 3×3 strain-rate tensor
ėE Effective strain rate
Γ DDRX operator
Γ0 Rate of DDRX
i Ratio of basal slip to rotation
Λ CDRX operator
Λ0 Rate of CDRX
η0 The isotropic part of the viscosity
ηi A directional viscosity (i = 1, 2, …, 6)
ρi Density of ice
ϱ* Orientation mass density
@̂m
l Harmonic expansion coefficients of ϱ*

ξ Strain heating
ζ0 Rate of (spatial) artificial fabric diffusion
λi Eigenvalue of a (2) (with λ3≥ λ2≥ λ1)
ω Flowband width
a (m) mth-order structure tensor
QG Exponent in Arrhenius activation of DDRX
ḃ Accumulation rate (m a−1)
bL Intercept in linear activation of CDRX
AG Prefactor in Arrhenius activation of DDRX
c Heat capacity of ice
c Arbitrary c-axis (radial unit vector)
d′ Depth relative to modern surface (m)
Eij Enhancement factor in the i, j direction
g Gravity vector
I Identity matrix
Ii The ith invariant of a tensor
k Heat conductivity of ice
mL Slope in linear activation of CDRX
mi Material symmetry axis (i = 1, 2, 3)
N Total number of grains
S Surface elevation (m)
t Time (years)
T Temperature (K)
u Velocity field
W 3 × 3 spin tensor
g Subscript for grain-scale quantities
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where αLR∈ [0; 1] is an interaction parameter dictating the com-
promise between the Taylor and Sachs hypotheses and η0 is the
nonlinear viscosity (defined in Eqn (18)). We take αLR = 0.06 fol-
lowing previous work (Ma and others, 2010; Lilien and others,
2021), though we expect the results to be insensitive to this choice
for αLR < 0.1 (Martín and others, 2009).

Migration recrystallization
Migration recrystallization is modeled as an orientation-
dependent production/decay process proportional to the square
of the shear stress resolved on basal planes, similar to Placidi
and others (2010). In effect, this parameterization compares the
fabric state to the state most favorable for deformation, causing
the MODF to decrease in directions that are unfavorable (little
basal-plane resolved shear stress) and increase in favorable direc-
tions (high basal-plane resolved shear stress). The production/
decay rate, Γ, is taken to be

G(u, f, t) = G0 D(u, f, t)− 〈D(u, f, t)〉( )
, (9)

where Γ0 is a rate factor, and the deformability, D, is given by
(Placidi and others, 2010; Richards and others, 2021)

D(u, f, t) = (t : t) : c(2) − t : c(4) : t
t : t

. (10)

D describes the favorable/unfavorable c-axis directions and is dic-
tated solely by the stress, while 〈D〉 describes how favorably the
current fabric configuration is, which depends on the local
second- and fourth-order structure tensors and τ.

This formulation differs slightly from previous work (Placidi
and others, 2010; Richards and others, 2021) by using the stress
tensor, rather than the strain-rate tensor, to determine the
deformability (and thus the directions in which grain growth
occurs). This is simply an alternative parameterization of the
underlying process, which is thought to depend on a number of
microphysical parameters including dislocation density in add-
ition to τ and ė (Faria, 2006a, 2006b). Since previous work con-
sidered a scalar viscosity, τ and ė were co-axial, and hence
using either in Eqn (10) was equivalent. Because migration recrys-
tallization is thought to depend on stress rather than the strain
rate (e.g. Duval and Castelnau, 1995; Chapelle and others,
1998), the distinction is relevant when coaxiality cannot be
assumed, such as is the case for the bulk flow law we introduce
below. However, we note that while the using τ versus ė in Eqn
(10) will have an effect on the fabric development, neither choice
is superior to the other, and a more complete treatment would
likely require a full microstructural model (e.g. Faria, 2006b).

Finally, we are left to determine an overall rate for this process.
While the rate as well as the direction in orientation space of
migration recrystallization is thought to depend on several micro-
physical properties (Faria, 2006a, 2006b), we retain the assump-
tion of previous work (Richards and others, 2021) that the total
amount of recrystallization is related only to the total strain, not
rate or stress at which the strain occurred. We thus parameterize
the overall rate factor as

G0 = ėEAGe
−QG/(RT), (11)

where AG and QG are tunable parameters, ėE is the effective strain
rate and R is the universal gas constant. This differs slightly from
Richards and others (2021), which used a linear dependence on
temperature, based upon laboratory experiments, while we use
an Arrhenius relationship based on ice-core data indicating
rapid activation above −10◦C (Alley, 1988; Duval and

Castelnau, 1995). The Arrhenius activation is used to make the
model applicable closer to the melting point; within the regime
of temperatures considered by Richards and others (2021), the
Arrhenius relationship is close to linear and the approaches are
essentially equivalent.

Rotation recrystallization
Rotation recrystallization is modeled as a diffusive process in
orientation space (Placidi and others, 2010) with diffusion coeffi-
cient (or rate factor) Λ0. This is a phenomenological description,
consistent with the definition of rotation recrystallization in that
new grains are created by splitting off from parent grains with
similar orientations. Since ice-core evidence indicates a gradual
activation of rotation recrystallization compared to migration
recrystallization, we follow Richards and others (2021) exactly
by setting

L0 = ėE mLT + bL( ), (12)

where mL and bL are the slope and intercept of the temperature
relationship.

Fabric numerics
Numerically, we represent ϱ* using the spectral expansion in Eqn
(4) with L = 6, leading to 28 @̂m

l [ C. The problem is solved on a
finite-element mesh, in two or three dimensions. The model mesh
is Eulerian, so the fabric evolution has an advective component
(last term in Eqn (6)) and a reactive component (right-hand
side of Eqn (5)). In our implementation, these two contributions
are handled separately. Dϱ*/Dt at each node is determined from
the current fabric state, ϱ*, using the SpecFab code of
Rathmann and Lilien (2022a). The advective term is handled
using the existing code in Elmer/Ice with using residual-free bub-
ble elements for stabilization.

We treat the real and imaginary components of @̂m
l separately,

leading to 56 values to track per computational node. However,
not all coefficients are independent; we leverage the Hermitian
(anti)symmetry of the spectral expansion

@̂−m
l = (− 1)m @̂m

l

( )∗
, (13)

which allows direct calculation of the coefficients m < 0 from
those with m > 0. Moreover, the fabric model (Eqn (5)) conserves
mass, and we assume incompressibility, so ρi is constant and thus
@̂0
0 is constant as well since ri =

����
4p

√
@̂0
0 . Taking the above con-

siderations into account, 27 unique coefficients are left (though
this discussion focuses on L = 6, our Elmer/Ice implementation
automatically handles arbitrary L while only computing the
unique, independent components). Finally, when ∂u/∂y = 0 (gen-
erally equivalent to when the domain is two dimensional (2-D)), a
further 12 components are identically zero (although this does
not mean that the fabric is 2-D, only that it has useful symmetries,
which cause some coefficients to be null). Thus, for L = 6, there
are 15 fabric components to consider in 2-D and 27 in three-
dimensional (3-D).

Fabric evolution is determined using an implicit timestepping
scheme, iterating coefficient-wise. The key difference compared to
small-scale spectral models (Rathmann and others, 2021;
Richards and others, 2021) is that advection greatly increases
the problem dimension. That issue is manifest most strongly in
3-D, where a large number of coefficients, combined with many
neighbors for a node in the mesh, means that the matrix problem
to be solved has a prohibitively wide bandwidth if all fabric coef-
ficients are solved for simultaneously. In order to set up a scheme
that would allow an arbitrary L, we thus found it necessary to use
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a coefficient-wise solution similar to the existing structure-tensor-
based fabric module in Elmer/Ice (Gillet-Chaulet and others,
2006).

We find that artificial diffusion is necessary in both orienta-
tion space (when lattice rotation is active) and in Cartesian
space (when migration recrystallization is active) to regularize
the problem. For stabilization in orientation space, we use
hyper diffusion, which reduces noise in higher-order harmonics
while having less effect on lower-order coefficients; the diffu-
sion coefficients were tuned for L = 6 so that, in the steady
state, @̂m

2 are unaffected, whereas @̂m
4 are up to 40% smaller com-

pared to L≥ 20 when subject to unconfined compression. How this
affects the ability to simulate strong single maxima, thus limiting
the magnitude of simulated bulk directional enhancement factors,
is treated in Appendix A. For the stabilization in Cartesian
space, we introduce a diffusion term of the form z0∇2@̂m

l , where
ζ0 = 5.0 × 10−3 a−1 m−1, to the left-hand side of Eqn (5). In theory,
this diffusion limits the maximum spatial gradient in fabric, but
since fabric transitions slowly this is not a problem in practice;
the term only serves to prevent numerical noise in near-zero coeffi-
cients from growing during long simulations. Demonstrations of
fabric evolution in simple cases, and comparison to existing models,
are shown in Appendix A.

Calibration of model parameters
Before applying the model, it is necessary to constrain the rate fac-
tors for migration and rotation recrystallization. In order to evalu-
ate the suitability of different rate factors, we compare the fabric
predicted by a simplified zero-dimensional model with that
observed in the EPICA Dome C (EDC) core (Durand and others,
2009). In this calibration, the core was assumed to be drilled at a
perfect dome (undergoing unconfined compression), with con-
stant pure shear from surface to bed (i.e. a Nye model of dome
strain; Nye, 1963). We assumed steady state, so that the fabric evo-
lution of a single, zero-dimensional ice parcel at increasing depth
gives the modeled fabric profile of the core. At the surface, the
downward velocity was set to be 1.53 cm a−1, the mean accumu-
lation throughout the ice core (Bazin and others, 2013), with
zero velocity at the bed. Borehole temperature measurements
were used to determine T in order to calculate Λ0 and Γ0

(Buizert and others, 2021). The fabric was assumed to be a
weak single maximum with a(2)zz = 0.44 at 214 m depth, matching
the first measurement of EDC (Durand and others, 2009). Below,
fabric evolution followed Eqn (5), under the assumption that the
stress and strain are coaxial so that migration recrystallization can
be modeled without knowing the rheology. For this purpose, we
must assume that αLR = 0 (i.e. the Taylor hypothesis), since τ can-
not be calculated in this zero-dimensional model. The model was
implemented purely using SpecFab (Rathmann and others, 2021),
and solved for all complex fabric coefficients simultaneously using
forward-Euler timestepping with 200–3200 year time steps.

For evaluation, the modeled fabric was compared to fabric
measured on vertical thin sections cut every 11–50 m along the
EDC core (Durand and others, 2009). Although the orientation
of the core and therefore the thin sections are unknown, we can
still compare the three fabric eigenvalues and identify the vertical
component. Moreover, for this simple model, the two horizontal
eigenvalues are equal, so there is no need to identify the orienta-
tion of the core. For this comparison, we assume that the ODF
and MODF are equivalent, i.e. that the grain size distribution is
independent of c-axis direction.

We consider two sets of model parameters: one tuned to
laboratory data and one to ice-core data (Fig. 2). For the ‘labora-
tory’ values, we calibrated to the same data as Richards and others
(2021), and used their calibrated Λ0 = 0.001 × T + 0.21, but took
i = 1, and assumed that Γ0 is defined by Eqn 11. To find AG

and QG, the parameters for this relationship, we used the observa-
tions from Richards and others (2021), Table 1, but fit an expo-
nential relationship rather than a linear one. The resulting
values are AG = 1.91× 107 and QG = 3.36× 104 J mol−1. This
set of parameters leads to an RMSE of 0.19 (27% error) in the lar-
gest eigenvalue compared to observations (Fig. 2, full blue line).
Next, again assuming i = 1, we found a set of ‘ice-core’-calibrated
parameters by brute-force optimizing bL and AG to minimize the
misfit to the EDC data. To do so, we assumed that the tempera-
ture dependence of rotation and migration recrystallization are
accurately described by the laboratory-calibrated dependencies
(i.e. mL = 1.26× 10−3 (◦C)−1 and QG = 3.36× 104◦ as above).
A 2-D grid of values for bL and AG was then explored, first vary-
ing by orders of magnitude around the laboratory values and sub-
sequently refining once the order of magnitude was determined.
We note that, in this scheme, if bL was small, Λ0 could be nega-
tive; since this is physically implausible, Λ0 was assumed to be
zero under such conditions. The optimized value for AG was
AG = 4.3× 107, which is of the same order as the laboratory-
derived value. The optimal value of bL, however, was 0.02, leading
to Λ0 being 0 in the top 1000 m and negligible below that.
Physically, rotation recrystallization is thought to be most import-
ant in the upper portions of the ice sheet, so the parameterization
makes little sense with this recalibrated value. For the
‘ice-core’-calibrated parameters, we thus took Λ0 = 0. These para-
meters led to an RMSE of 0.08 in the largest eigenvalue (11% mis-
fit; dashed blue line in Fig. 2), substantially better than that from
the laboratory-calibrated values. Moreover, this misfit was highest
near the bottom of the ice core, where substantial spread in the
measurements prevents better fitting (Fig. 2).

For completeness, we also modeled the ice-core fabric using
the calibration provided by Richards and others (2021) without
modification: i = 0.026× T + 1.95, Λ0 = 0.001 × T + 0.21, and
Γ0 = 0.176 × T + 6.09. This leads to an RMSE of 0.18 in the largest
eigenvalue (27% error; dotted blue line in Fig. 2), similar to using
the ‘laboratory’ calibration. The difference between this and our
‘laboratory’ calibration stems almost exclusively from the differ-
ence in i; the exponential dependence of Γ0 on temperature has
a relatively minor effect. This third set of parameters was not
used for large-scale modeling, since it did not produce a good
fit to the data and our implementation of the large-scale model
assumes i = 1.

In addition to the calibration discussed above, we tested sensi-
tivity to three alternative calibration schemes: one restricting the
depths at which the model was tuned to <3000 m and two
using a Dansgaard–Johnsen model of strain (Dansgaard and
Johnsen, 1969) rather than a Nye model, also tuned to data
<3000 m depth. The restriction in depth avoids possible issues
due to a non-dome-like stress state that arguably exists near
the bed beneath Dome C (Durand and others, 2007). The
Dansgaard–Johnsen model uses a somewhat more realistic
description of deformation beneath the divide (specifically that
the strain rate goes linearly to zero below a certain depth, dubbed
the ‘kink height’). Since the height of the kink is poorly con-
strained, we tested both 0.2 and 0.4 times the ice thickness.
Restricting calibration to shallow depths resulted very similar mis-
fit in those depths to the full-depth inference, and rate factors dif-
fered by <5%. With either kink height, the Dansgaard–Johnsen
model resulted in a smaller model-data misfit (�7%) than the
Nye model, but the inferred parameters did not differ significantly
from those obtained using the Nye model (difference of ,5%).
The results of the additional calibrations are shown in
Supplementary Figure S1. While there may be benefits to using
one of these alternative calibrations, the full-depth Nye calibration
arguably relies on the fewest assumptions, and thus it is what we
use in subsequent simulations.
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Ice flow

Ice flow is an incompressible Stokes flow

∇ · u = 0, (14)

governed by the momentum balance

∇ ·s+ rig = 0, (15)

where u is the bulk velocity, σ is the Cauchy stress tensor, ρi the
density of ice and g the gravity vector.

For a constitutive relation, we adopt an unapproximated non-
linear extension of the orthotropic flow law (Rathmann and
Lilien, 2022b), which, following plastic potential theory, has a
nonlinear viscosity that depends on all orthotropic strain-rate ten-
sor invariants:

I1 = ė : (m2 ⊗m2 −m3 ⊗m3)/2,
I2 = ė : (m3 ⊗m3 −m1 ⊗m1)/2,
I3 = ė : (m1 ⊗m1 −m2 ⊗m2)/2,
I4 = ė : (m2 ⊗m3 +m3 ⊗m2)/2,
I5 = ė : (m3 ⊗m1 +m1 ⊗m3)/2,
I6 = ė : (m1 ⊗m2 +m2 ⊗m1)/2,

(16)

where the mi’s are the three reflection-symmetry directions that
the fabric is presumed to have (taken to be coincident with the
eigenvectors of a (2)).

Posed in inverse form (i.e. the deviatoric stress as a function of
strain rate) the constitutive relation is

t = h0

∑3
i=1

[
hi(I ji − Iki )

I− 3mi ⊗mi

2

+ hi+3Ii+3
mji ⊗mki +mki ⊗mji

2

]
, (17)

where j = (2, 3, 1) and k = (3, 1, 2) are index variables, I is the

identity and the nonlinear, isotropic part of the viscosity is

h0 = A−1/n
∑3
i=1

hi(I ji − Iki )
2 + hi+3I

2
i+3

[ ]( )(1−n)/2n
, (18)

where n is the flow law exponent (taken to be the canonical n = 3).
Let

g =
∑3
i=1

2E2/(n+1)
jiji E2/(n+1)

kiki
− E4/(n+1)

ii

[ ]
, (19)

then the six dimensionless, relative directional viscosities are (for
i = 1, 2, 3)

hi =
4
3g

E2/(n+1)
ji ji + E2/(n+1)

kiki
− E2/n+1)

ii

( )
, (20)

hi+3 = 2E−2/(n+1)
jiki

, (21)

which depend on the eigenenhancements, Eij, defined as the bulk
directional enhancement factors (induced by fabric) in the direc-
tions of the fabric symmetry axes, mi.

Directional enhancement factors
We are left to provide a mechanism to calculate the directional
enhancement factors induced by an anisotropic fabric, defined as

Eij ;
mi · ė(t̂) ·mj

mi · ėiso(t̂) ·mj
for i, j = 1, 2, 3, (22)

where ė is the corresponding forward form of Eqn (17), ėiso is the
strain-rate assuming isotropy (ϱ* = const.), and

t̂ = t0
I/3−mi ⊗mi if i = j

mi ⊗mj +mj ⊗mi if i = j

{
(23)

are idealized longitudinal (i = j) and shear (i≠ j) stress-tensor
states (with some magnitude τ0) aligned with the fabric principal
directions, mi.

Figure 2. Rate factor calibration. (a) Modeled eigenvalues,
using a zero-dimensional model, resulting from different
rate factors. Colors indicate eigenvalue number (blue for
λ3, orange for λ2 and green for λ1). Squares show measured
fabric (Durand and others, 2009). Lines show modeled fab-
ric, using the zero-dimensional model, with lab-calibrated,
ice-core-calibrated and Richards and others (2021) (R2021)
parameters indicated by the solid, dashed and dotted
lines, respectively. (b) Temperature in the EDC borehole,
from Buizert and others (2021).

a b
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If we assume that grains do not interact, determining Eij as a
function of the fabric amounts to constructing a suitable
grain-averaged rheology, over the grains that compose the poly-
crystal. Various interactionless averages have been used; end
members are the Sachs hypothesis (constant stress) and the
Taylor hypothesis (constant strain rate). Here, we follow
Rathmann and Lilien (2022a) and take a linear combination of
the enhancement factors found using the Sachs and Taylor
hypotheses

Eij(ė) = (1− arheo)E
Sachs
ij (ė)+ arheoE

Taylor
ij (ė), (24)

where αrheo is an interaction parameter controlling the relative
weights of the two hypotheses, and ESachs

ij (ė) and ETaylor
ij (ė) are

the enhancement factors assuming constant stress and strain
rates, respectively. We calculate ESachs

ij (ė) and ETaylor
ij (ė) assuming

a linear, transversely isotropic grain rheology; details of the pro-
cedure can be found in Rathmann and Lilien (2022a), but note
that the grain rheology depends on two grain parameters, E′cc
and E′ca, which determine the compressional and shear enhance-
ment of grains, respectively.

For the three required grain parameters, we take αrheo = 0.0125,
E′cc = 1, and E′ca = 103 following Rathmann and Lilien (2022a),
which produces a good match to shear enhancements found in
laboratory deformation tests of approximately perfect single-
maximum fabrics (Shoji and Langway, 1985; Pimienta and
Duval, 1987). Such strong fabrics cannot be reproduced using
L = 6, but require larger L due to regularization not being spec-
trally sharp (i.e. its effect is not concentrated exclusively at the lar-
gest wavenumber modes, l = L). As a result, the greatest possible
shear enhancement is somewhat limited, although less so for
compressional/extensional enhancements (Fig. 1, gray contours)
– see Appendix A for details. We note that while this issue
would be partly relieved by calculating the Eij’s using using a
more realistic nonlinear, transversely isotropic grain rheology,
this introduces dependencies on the eighth-order moments of
ϱ* (Rathmann and others, 2021), prohibitively increasing compu-
tation time as it requires L≥ 8.

Appendix B compares the nonlinear rheology of Rathmann
and Lilien (2022b) (used here) to the nonlinear extension to the
general orthotropic law of flow (GOLF) proposed by Martín
and others (2009) at an ice divide. While Rathmann and Lilien
(2022b) showed a relatively close match between these rheologies
for uncoupled simulations, we use a coupled model of an ice div-
ide to determine whether feedbacks between fabric and flow lead
to larger differences in realistic settings. We find that both the
nonlinear viscosity, η0, and the directional enhancement factors,
Eij, can differ markedly for fabrics produced in the coupled
model, and that these differences grow as the fabric develops.
These differences are most pronounced when the principal direc-
tions of the fabric are misaligned with the deformation axes, sug-
gesting that the full nonlinear rheology used here is more
appropriate for realistic settings, where complex bed topography
inevitably creates misalignment between the fabric and deform-
ation, and differences compound through the fabric–flow coup-
ling. Moreover, the additional computational cost of the full
rheology used here is negligible.

Heat flow

Heat flow is governed by (e.g. Zwinger and others, 2007; Hunter
and others, 2021)

ric
∂T
∂t

+ u · ∇T
( )

= ∇ · (k∇T)+ j, (25)

where constants c and k are the heat capacity and conductivity of
ice, respectively, and j = ė :s is the rate of strain heating.
Equation (25) is solved subject to the limitation that the ice
does not exceed the pressure melting point following Zwinger
and others (2007).

Free surface

For the top surface, we used a kinematic free surface boundary
condition that adds another equation to be solved. Free surface
evolution follows the usual 2-D problem

∂S
∂t

= ḃ+ uz − ux
∂S
∂x

, (26)

where S(x) is the surface elevation and ḃ is the ice-equivalent
accumulation rate.

Model across Dome C

As a first application of the model, we simulate a transect across
Dome C, East Antarctica (Fig. 3). The transect follows a cross sec-
tion acquired with pRES (Corr and others, 2021; Ershadi and
others, 2022), allowing the simulated fabric field to be compared
with radar-inferred fabrics in the top ∼2000 m. The transect also
crosses the EDC core site, which gives direct fabric measurements
through ∼3200 m depth (Durand and others, 2009). Model runs
spanned 250 ka, which is longer than the characteristic timescale
(thickness over accumulation) with as low as ∼1.5 cm a−1 accu-
mulation and up to ∼3400m ice thickness. Even this length simu-
lation may not be sufficient for the fabric to reach steady state,
which could take 10 × the characteristic timescale (Martín and
others, 2009). However, such a long integration time both exceeds
the length of available forcing data and is computationally prohibi-
tive; to mitigate some of this effect we initialize the model with a
simple, non-isotropic fabric profile (see initial conditions below).

Because there is significant lateral convergence and divergence
along flowlines, we modify the flow equations to describe a 2.5-D
flowband. In a coordinate system with x along flow and z vertical,
Eqns (14) and (15) become

∂sxx

∂x
+ ∂sxz

∂z
+ sxx − syy

v(x)
∂v(x)
∂x

= 0 (27)

and

∂sxz

∂x
+ ∂szz

∂z
+ sxz

v(x)
∂v(x)
∂x

= rig (28)

for a flowband with width ω(x) (e.g. Hvidberg, 1996). The model
equations were presented above, so we are left to describe the
domain, and initial and boundary conditions.

Model domain

The model domain is a flowline extending 30 km in each direction
from the EDC core site (Fig. 3). The domain runs through the
pRES sites presented of Corr and others (2021), passing ∼1 km
from the EDC site, and approximately follows the surface gradient
beyond the pRES locations. The size of the domain was chosen to
prevent edge effects from impinging upon our results, and to
ensure that the divide never migrated outside the model domain
(which was not explicitly precluded by the boundary conditions).
Surface elevation is from the REference Mosaic of Antarctica
(REMA; Howat and others, 2019) and bed elevation is from
BedMachine v2 (Morlighem, 2020; Morlighem and others,
2020). The model uses a triangular mesh with 500 m horizontal
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and 125 m vertical resolution, sufficient to capture large vertical
gradients while keeping reasonable aspect ratios for the mesh ele-
ments (20 ka tests were run at double that resolution, and result-
ing fabrics were found to be indistinguishable from the resolution
used here).

Initial conditions

We initialized the model to match present conditions at the EDC
site. We used the EDC borehole temperatures (Buizert and others,
2021) and depth–age scale (Parrenin and others, 2007a) initially.
For the fabric, we crudely approximated the depth profile
(Durand and others, 2009) as a linear transition from the shallowest
measured values in EDC (a(2)zz =0.44), to a vertical single maximum
at 2000m depth (a(2)zz =0.8), and constant from there to the bed.

Boundary conditions

At the surface, ice is assumed to match the shallowest observa-
tions from the EDC core (a(2)zz = 0.44). We use time-varying
boundary conditions for temperature and accumulation based
on data from the EDC core (EPICA community members,
2004). Temperature and accumulation are assumed to vary spa-
tially according to the modern patterns derived from reanalysis
(Mottram and others, 2021) and temporally according to the deu-
terium excess in the core (Jouzel and others, 2007; Parrenin and
others, 2007a) (Fig. 4). The surface temperature and accumulation
at EDC therefore always match the values inferred from the core
at a given time, while they vary in the rest of the domain. Spatially,
the accumulation is scaled by anomaly relative to EDC while the
temperature is offset by the anomaly to EDC. The age of the ice
at the surface is set to zero. At the bed, we assume a spatially
constant 55 mWm−2 of geothermal heat flux and 0.2 mm a−1 of
basal melt (i.e. the bed-perpendicular velocity is set to a constant
0.2 mm a−1) (Passalacqua and others, 2017). We assume that ice
moves solely through internal deformation (so bed-parallel
velocity is zero). The final boundary condition needed is some
constraint on ice flow at the left and right outflows. At these

boundaries, we assume that the pressure is approximately glacio-
static with the form Tr(σ)/3 = ρgd′ where d′ is the depth relative to
the modern surface; tying the pressure to the modern surface
allows us to avoid specifying a velocity and prevents the divide
from migrating outside the domain.

Results

We focus on the results of the model with rate factors calibrated
from the EDC core for simplicity. Figure 5 shows the modeled vel-
ocity, age, and fabric on the transect across Dome C. The modeled
fabric shows a typical divide profile; fabric generally strengthens
toward a vertical single maximum with depth, with varying
strength depending on the horizontal position. The single max-
imum is strongest in the first couple of kilometers to either side
of the modeled divide. Farther away, there is weakening of the ver-
tical component of the fabric. This weakening is associated with
the tilting of the fabric away from vertical near the bed in areas
with significant shear (Fig. 5c). The across-flow horizontal com-
ponent of the fabric, a(2)yy , is generally stronger than the along-flow
component; however, the difference is small enough that by the
classical test (the Woodcock parameter) it is still a vertical single
maximum rather than a girdle near the divide.

The modeled horizontal ice-flow speed is very slow, reaching
only 0.24 m a−1 at the edges of the model domain. These speeds
agree well with GPS measurements of velocity in the area,
which found speeds up to 0.21 m a−1 25 km from the divide
(Vittuari and others, 2004). However, those GPS measurements
were not directly on the transect considered here, so more quan-
titative evaluation of the velocities is precluded.

The modeled ice divide was extremely stable in both position
and thickness (Fig. 4). The ice thickness varied by ∼10 m through
the simulation, significantly <∼250 m inferred from models that
were specifically targeted at reconstructing surface elevations
(Parrenin and others, 2007b), while the divide position moved
by only ∼300 m (which is at the limit of the horizontal mesh reso-
lution). The smaller variation in divide thickness is likely a result
of the boundary conditions; regional ice thickness changes were

Figure 3. Map of Dome C area, showing model domain and location of validation data. Black line indicates model domain. Circles show pRES acquisition sites used
in the text, with letter indicating panel of Figure 7 in which the results are plotted. The green star shows EDC core location. The colors show bed elevation from
BedMachine v2 (Morlighem, 2020), while gray contours show surface elevation from REMA (Howat and others, 2019). Overview map shows location in Antarctica,
with shading showing surface elevation from REMA.
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not captured by the pseudo-pressure conditions used, but actual
ice-thicknesses changes during the last 250 ka likely affected the
entire continent. The lack of thickness change is thus a conse-
quence of using a model domain with a finite width smaller
than that of the continent; a model with no horizontal dimension
can evolve freely as it is subject to only local conditions (e.g.
Parrenin and others, 2007b), and a continental-scale model can
thicken or thin as a whole, but our limited domain depends on
boundary conditions which do not permit such changes.

The modeled age profile shows a very minor double Raymond
bump (maximum bump height 60 m, or 2% of the total thick-
ness). Despite the extremely long characteristic timescale of the
divide, the bump is allowed to form since model divide is so stable
throughout the simulation. The double bump is characteristic of
directional hardening due to fabric development (Martín and
others, 2009), and has been observed over domes with shorter
characteristic timescales (Goel and others, 2020). Though there
is not a Raymond bump in radar data in the area (Cavitte and

Figure 5. Model output along Dome C transect. (a) Horizontal speeds. Contours show ages of the ice. (b) Vertical component of the fabric. Vertical, red lines show
locations of pRES acquisitions plotted in Figure 7; these data are a representative subset from Ershadi and others (2022). (c) Rotation of the fabric from vertical
(degrees counter clockwise). In all panels, dotted black line shows the modeled, modern divide position.

a

b

c

d

Figure 4. Forcing and modeled divide stability: (a) temperature history at EDC (Jouzel and others, 2007), (b) accumulation rate at EDC Parrenin and others, 2007a,
(c) modeled divide position (positive northwestward, toward A′ in Fig. 3) and (d) ice thickness at the modeled divide position.
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others, 2021), given the small amplitude of the modeled bump,
and the overly stable modeled divide, this difference is unsurpris-
ing. Despite the relatively stable modeled divide, the bump amp-
litude is much smaller than the 10% of the ice thickness that
would be expected in steady state (Goel and others, 2020).

Model/data comparison

Ice-core measurements

We evaluate the modeled fabric at the modeled divide position,
which is ∼1 km southeast of the true position in all simulations
(Fig. 6). Comparison at the closest approach to EDC yields similar
results, but any effect of nonlinearity of the viscosity (i.e. the

Raymond bump) is expected at the modeled rather than true div-
ide, so the former provides the more fair comparison. At both the
point of closest approach and at the modeled divide, the modeled
fabric shows a weaker vertical component (λ3) and one stronger
horizontal component (λ2) than was measured in the EDC core
(Durand and others, 2009). This difference is seen in the model
both with laboratory and ice-core-calibrated rate factors, though
it is significantly lessened for the ice-core-calibrated values. The
model-data mismatch could be attributable to imperfect model
physics describing the fabric development (due either to missing
processes or poor parameterization), insufficiency of the simpli-
fied 2.5-D model to capture the stress state, temporal changes
not considered by the model, or some combination of these
(fabric regularization does not affect λi much even for L = 6; see
Appendix A). Diverging flowlines lead to a more dome-like stress
state, and the flow direction is not well constrained right at the
divide, so the assumptions of the 2.5-D model might break
down in the center of the model domain (Passalacqua and others,
2016). Temporal changes in the large-scale flow could signifi-
cantly alter our results; simulations extend back 250 ka, over
which ice thickness is thought to have changed by >250 m
(Parrenin and others, 2007b), and accumulation patterns have
likely changed even over the last 260 years, which suggests that
migration of the divide is possible (Urbini and others, 2008).
While we are able to incorporate local thickness and accumulation
changes, such temporal changes are likely to have affected the
large-scale flow of the ice sheet, and cannot be easily captured
by a local model such as that used here. To further distinguish
among possible causes of the model-data misfit, we compare
our fabric results with pRES data along the model domain.

Phase-sensitive radar

pRES returns are affected by ice-crystal fabric because the dielec-
tric permittivity is different parallel and perpendicular to the
c-axis of a single ice crystal (Fujita and others, 2006). In a typical
radar geometry, returns are insensitive to the vertical component
of the fabric but their strength and phase with azimuth is related
to the horizontal anisotropy (e.g. Rathmann and others, 2022).
From these returns, it is thus possible, with minimal assumptions,
to infer the difference in the horizontal eigenvalues of the fabric
distribution (generally assumed to be the ODF). Recently pub-
lished pRES measurements on a transect of Dome C (Corr and

Figure 6. Comparison of modeled fabric (Elmer/Ice) and measured fabric from the
EDC core (Durand and others, 2009). Data are shown as squares. Colors indicate
eigenvalue number (blue for λ3, orange for λ2 and green for λ1). Model output is
shown as lines, for both laboratory (solid) and ice-core (dashed) calibrated rate fac-
tors, with colors corresponding to the data.

Figure 7. Horizontal eigenvalue difference of modeled and pRES-inferred fabric (Ershadi and others, 2022) at locations shown in Figures 3 and 5. (a–g) are E18, E12,
E3, EPICA, W6, W12 and W18 from Ershadi and others (2022). pRES is shown with black circles, ice-core-calibrated model with dark gray lines, laboratory-calibrated
model with dashed, light gray lines and the EDC core with red (only where the pRES and model coincide with the core). Remaining sites from Ershadi and others
(2022) are shown in Supplementary Figure S2.
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others, 2021; Ershadi and others, 2022) therefore provide a way to
test our modeled fabric field against observations, away from the
ice-core site. Ershadi and others (2022) used these data to infer
the difference between the horizontal eigenvalues and the orien-
tation of the larger eigenvector with depth along the transect
modeled here. Since our model does not capture rotation of the
fabric out of the model plane, the modeled orientation of the lar-
gest eigenvalue is always transverse to flow; this agrees with all
pRES measurements deeper than 500 m within error (shallower
orientations are highly uncertain in the pRES due to weaker
returns). We therefore compare only the difference in horizontal
eigenvalues inferred from pRES and in the model output. We do
so at seven of the sites (comparison at the remaining sites from
Ershadi and others (2022) is shown as Supplementary Fig. S2).

Figure 7 shows the modeled and radar-inferred horizontal
anisotropy at the seven sites marked in Figures 3 and 5. At the
location of EDC, ice-core data are plotted as well (Durand and
others, 2009). Both the ice-core- and laboratory-calibrated models
match the data well near the surface, but systematically find too-
large horizontal anisotropy between 500 and 2000 m throughout
the domain. Simulations with ice-core- and laboratory-calibrated
recrystallization produce very similar horizontal anisotropy (neg-
ligible differences except deeper than 3000 m) despite large differ-
ences in the vertical component of the fabric. Differences
compared to the pRES-inferred values reach a factor of 2.5 for
both simulations. The pRES-inferred values match the EDC
data well overall, although they generally lie at the low end of
the spread in the ice-core data (Fig. 7d). The ice-core data thus
suggest that some of the difference between the pRES-inferred
anisotropy and the modeled anisotropy may be due to the
pRES method slightly underestimating the eigenvalue difference.
The majority of the model-pRES difference is therefore attribut-
able to the model producing fabrics with too much horizontal
anisotropy rather than errors in the pRES measurements.

Discussion

Implications of model-data misfit

Using ice-core- or laboratory-calibrated rate factors, the model
produces slightly too strong horizontal anisotropy throughout
the model domain. Given this difference and the available data
from EDC, it is reasonable to infer that the vertical component
of the modeled fabric is too weak throughout the domain as
well. Although we are unable to attribute the model-data misfit
to a single cause, it seems likely that the differences are, in large
part, due to limitations of the fabric model rather than of the ice-
flow model, time-dependent forcing or boundary conditions.
Since the fabric model considers the processes thought to be
most relevant for fabric development, and the model can qualita-
tively reproduce fabrics found in ice cores and laboratory deform-
ation experiments, we consider assumptions about the rates of
these processes to be the most likely cause of the model-data
misfit.

Although the rate-factor parameterizations (Γ0 and Λ0) of the
different fabric processes are only approximations of the true
physics of fabric development, they are qualitatively able to pro-
duce the diversity of natural and synthetic fabrics (Richards and
others, 2021). We consider it likely that the rate factors are not
accurately described by either set of coefficients (lab- or
ice-core-calibrated coefficients), and that further calibration
against experimental data could yield a closer match to the
data, without large changes to the models of fabric processes
(i.e. the functional form of Eqn (5)). Indeed, laboratory-calibrated
rates were effectively tuned to three data points without uncer-
tainty bounds (Richards and others, 2021). Additional laboratory

measurements, designed to allow the rate factors to be tuned
against data (at different strain rates, temperatures and stresses),
might lead to better constrained coefficient functions of the
recrystallization models, and might clarify whether the model-
data mismatch is due to sparse experimental data.

Similarly, calibrating the coefficient functions by comparing
data from EDC to a one-dimensional, time-varying model with
a better-constrained strain tensor, might change the
ice-core-calibrated values and elucidate whether the model is cap-
able of exactly reproducing the data. For example, it is possible
that further data will clarify whether the rate of migration recrys-
tallization is truly linear in the strain rate or whether a more com-
plicated relationship exists; given the difference in strain rates in
the laboratory and natural settings, a rate factor that depends non-
linearly on the strain rate may reconcile our estimated coefficients.

Calibration to ice cores drilled in more complex flow regimes
could provide additional information about this difference. Fabric
measurements on the EastGRIP core (Westhoff and others, 2021)
could be particularly valuable for calibration, since it samples an
active ice stream moving 50 m a−1. Measurements on NEEM
(Montagnat and others, 2014), drilled on a divide rather than a
dome, and the South Pole ice core (Voigt, 2017), drilled on a
flank moving 10 m a−1 would add two more stress states for cali-
bration. Multi-site calibration requires a more efficient approach
than the brute-force method used here, and the more complex
stress states may not be accurately simulated with the simple
Nye and Dansgaard–Johnsen models used here. Nevertheless,
such multi-site calibration may help elucidate whether site-
specific characteristics of Dome C, for example the cold tempera-
ture and low strain rates, explain some of the difference between
our ice-core- and laboratory-calibrated rate factors.

Large-scale modeling with a spectral fabric description

There are important differences between the spectral and tensorial
representations both in terms of physics and in terms of technical
implementation (Richards and others, 2021; Rathmann and
others, 2021). A clear advantage of the spectral formulation is
that it does not need a closure approximation, while consistency
requires at least a minimal closure for a tensorial representation.
Definitionally, each high-order structure tensor must have a num-
ber of non-zero components leading to the sub-traces taking
values compatible with the lower-order structure tensors (e.g.
Advani and Tucker, 1987). This becomes problematic when the
evolution of lower-order tensors depends on the higher-order
ones, since the higher-order contributions cannot ever be
assumed to be zero. In the spectral representation, harmonics
with l > 0 represent anomalies relative to isotropy, modes >L
can safely be ignored for fabric development (an equivalent
assumption can be made for the tensorial representation, but
since for isotropic fabrics the higher-order tensors are non-zero
it is more complicated than assuming spectral components are
zero).

Perhaps the most important physical disadvantage to the spec-
tral approach is the need to balance regularization (in orientation
space) with the maximum fabric strength that is possible. For
example, using canonical Laplacian regularization with L = 6, λ3
saturates ∼0.8 in unconfined compression, while λ3→ 1 is
expected under sufficient strain; we avoided this problem with
carefully calibrated hyper diffusion that permitted λ3 > 0.99
while keeping the model stable. Such calibration must, however,
be adjusted for different values of L, or else spurious oscillations
or a maximum fabric strength will result.

In addition to physical differences, there are a number of tech-
nical differences between the spectral and tensorial representa-
tions that affect the feasibility of using the two representations
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in a large-scale model. We briefly mention the two that we see as
most important. At the same order of truncation, the spectral and
tensorial representations have the same number of degrees of free-
dom. With no simplifications, the spectral representation always
tracks two times the number of complex, independent compo-
nents (plus the zero-order component), while the tensorial
representation, in native form, tracks a number of degenerate
components that increases proportional to 3m. For example, a (4)

has 81 components, but only nine are unique (assuming a (2) is
known); in order to avoid the computational cost of tracking all
81, however, cumbersome expressions must be derived for each
individual independent component. This rapidly becomes infeas-
ible if yet higher-order structures are desired. Even if only a (2) and
a (4) were explicitly tracked, modeling the evolution of a (4) would
require an approximation of the non-zero elements of a (6), which
has only 15 independent components out of its 729 elements. The
tedious work of determining these relations is avoided with the
spectral representation; the simplifications of Eqn (13) remain
the same at each L, and can be handled automatically to reduce
the problem to only the independent components. Thus, the
lack of degeneracy allows us to increase the order of the fabric
description up to any desired order, so future studies with greater
computational power and some need for highly resolved represen-
tations of the fabric could use arbitrarily large L (we tested up to
L = 12, but expect larger L to be feasible with greater computa-
tional resources).

Another technical difference is that some models of fabric pro-
cess (e.g. DDRX) naturally involve a (m), whereas others (e.g. lat-
tice rotation and CDRX) involve ϱ*, which might influence the
choice of representation. Apart from having to construct structure
tensors when comparing modeled fabrics to ice-core measure-
ments, constructing a (2) and a (4) – even when DDRX is negligible
– is necessary in the spectral approach since the eigenenhance-
ments, Eij, (or fluidity tensor) depend on both a (2) and a (4).
Reconstructing a (2) and a (4) is quick compared to the time
taken to model the evolution of ϱ*(x, t) in 2-D, so does not
add significant computational cost. Relatedly, all a (m) lie between
0 and 1 by definition, but may fall outside this range due to
numerical or truncation errors. Enforcing these bounds by renor-
malizing a (m) (e.g. dividing through by the sum of unnormalized
eigenvalues and setting negative eigenvalues to zero) becomes
increasingly tedious for structure tensors of increasing order m
> 4, as determining eigenvalues becomes increasingly computa-
tionally difficult. In the spectral approach, we found it useful to
cap the angular power spectrum of @̂m

l to ensure the largest eigen-
value is ≤1 for all a (m); to do so, we renormalize the power spec-
trum to that of the delta function if needed (representing a perfect
single maximum). Because of the way the harmonic modes
describe an anomaly from isotropy, this in turn also ensures the
smallest eigenvalue is ≥0. While this does not ensure the smallest
eigenvalues are ≥0 for relatively strong girdle fabrics, such fabrics
do not arise in the present simulations. If renormalization is not
carefully addressed, this can lead to numerical issues – particu-
larly for strong single-maximum fabrics – caused by spectral coef-
ficients resulting in negative directional viscosities (see Appendix
A).

Outlook

The spectral representation of fabric provides a convenient way to
include additional processes in modeling of fabric evolution, and
thus provides a path forward for integrating future small-scale
model development into large-scale ice-flow models. Simply mov-
ing to L > 2 permitted us to model the effect of DDRX, and fur-
ther increases in the order of approximation could allow for use of
nonlinear grain rheologies in deriving the bulk anisotropic

fluidity; such a transition is greatly eased by the spectral represen-
tation of the fabric. The contrast between fabric modeled with
laboratory- and ice-core-calibrated rate factors suggests a discon-
nect between how fabric develops in the laboratory and in natural
settings; presumably this difference stems from the 5–7 orders of
magnitude larger strain rates at which laboratory tests are con-
ducted compared to typical ice-core settings. Some fundamental
differences have been clear before this work; for example, labora-
tory ice-deformation experiments do not seem to produce strong
girdles, despite widespread observations of girdles in natural ice.
This modeling, and the recent work on which it relies (Richards
and others, 2021; Rathmann and Lilien, 2022b), allows direct
comparison of the fabric evolution at laboratory scales/rates and
ice-core scales/rates, potentially providing a path forward for
understanding these differences.

In this work we have avoided areas with rapid ice flow, since
data with which to validate the model are unavailable in such
areas. However, accurately capturing rheology in areas of fast
flow is critical for accurate modeling of outlet glaciers and ice
streams. For example, models that do not include anisotropy
sometimes find that ad-hoc weakening of shear margins (beyond
the weakening expected from temperature alone) produces a bet-
ter match to velocity observations (e.g. Joughin and others, 2012).
Such weakening is often attributed to anisotropy (Minchew and
others, 2018; Grinsted and others, 2022). The complexity of
flow in such areas necessitates a relatively complex fabric model
such as that used here. Shear margins have relatively short resi-
dence times, so fabric cannot be assumed to be in steady state
with its in situ stress state, precluding the use of models that
make such an assumption (Graham and others, 2018), yet recrys-
tallization is thought to be active at the relatively high tempera-
tures and high strain rates found in shear margins (Faria and
others, 2014; Hunter and others, 2021), precluding a (2)-only
approaches. Moreover, the multiple deformation modes active
in shear margins (transition from vertical shear to plug flow coin-
cident with horizontal shear) suggest a need to use a tensorially
anisotropic viscosity. Fabric will evolve through time, and will
do so differently from other potential modes of weakening,
such as crevassing, so the need to capture the full fabric field
and its evolution is compounded in transient simulations. The
model presented here could be applied to areas with multiple
active deformation modes, such as shear margins, to more accur-
ately capture the variations in directional viscosity and the evolu-
tion of flow through time, an application for which existing
anisotropic models are not calibrated. Further calibration of this
model to use in such areas could take advantage of additional geo-
physical constraints, such as seismics (e.g. Lutz and others, 2022),
in order to validate modeled fabric in these areas.

Conclusions

We incorporated a recently developed model of fabric evolution
into a large-scale ice-flow model. The model includes lattice rota-
tion, rotation recrystallization and migration recrystallization, the
three processes thought to be most important for fabric develop-
ment, and couples the fabric to ice flow through a rheology with
fewer approximations than those used previously. We applied this
new, coupled model to simulate ice flow and fabric development
on a transect across Dome C, East Antarctica, where relatively
plentiful validation data exist. At the small scale, previous work
showed that this model does an excellent job reproducing labora-
tory fabric-development experiments (Richards and others, 2021),
but applying it to the large scale, as we have done here, reveals
that the model is less able to reproduce the large-scale fabric
found in the EDC core and inferred from pRES. Calibrating
rate factors to match the EDC core, using a zero-dimensional
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model, reduced, but did not eliminate, this misfit. This discrep-
ancy cannot be firmly attributed to one source, but insufficient
constraints on the relative rates of different processes (migration
recrystallization, rotation recrystallization and lattice rotation)
may be the cause. The difference found between calibrated pro-
cess rate factors using laboratory and ice-core data suggests a
gap exists in our understanding of how ice-crystal fabric develops
differently in laboratory compared to natural (in situ) conditions.
However, this type of modeling allows quantitative comparison
across spatial and temporal scales, and thus provides a potential
path forward for reconciling the differences of fabric development
found in laboratory and natural conditions. The model is one of
the first that is well-suited to simulating the effect of fabric on the
complex deformation experienced in areas such as shear margins,
and may thus allow more accurate simulation of such areas.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2023.78.

Data. All data used in this study are available as part of previously published
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at https://doi.org/10.5281/zenodo.7416060. Code to run all simulations and
produce all figures can is archived at https://doi.org/10.5281/zenodo.8200402.

Acknowledgements. David Lilien, Nicholas Rathmann, Christine Hvidberg,
Aslak Grinsted and Dorthe Dahl-Jensen were supported by the Villum
Foundation through the IceFlow project (No. 16572). David Lilien and
Dorthe Dahl-Jensen were further supported by funding from the Canada
Excellence Research Chairs Program. Reza Ershadi and Reinhard Drews
were supported by German Research Foundation (DFG) Emmy Noether
grant No. DR 822/3-1. The authors thank editors Ralph Greve and Sergio
Faria and two anonymous reviewers for valuable comments that improved
the clarity of the manuscript and robustness of the results.

Author contributions. David Lilien coupled the fabric model to Elmer/Ice,
performed the simulations, and wrote most of the paper. Nicholas
Rathmann developed the spectral model and designed model validation
experiments. Christine Hvidberg, Aslak Grinsted and Dorthe Dahl-Jensen pro-
vided guidance and feedback on model development, validation and simula-
tions. Dorthe Dahl-Jensen also secured funding. Reinhard Drews and Reza
Ershadi provided inverse results from pRES and helped interpret the model/
radar comparison. All authors contributed to editing the final manuscript.

References

Advani SG and Tucker CL (1987) The use of tensors to describe and predict
fiber orientation in short fiber composites. Journal of Rheology 31(8), 751–
784. doi: 10.1122/1.549945

Alley RB (1988) Fabrics in polar ice sheets: development and prediction.
Science 240(4851), 493–495. doi: 10.1126/science.240.4851.493

Arthern RJ and Gudmundsson GH (2010) Initialization of ice-sheet forecasts
viewed as an inverse Robin problem. Journal of Glaciology 56(197), 527–
533. doi: 10.3189/002214310792447699

Bauer JK and Böhlke T (2021) Variety of fiber orientation tensors.
Mathematics and Mechanics of Solids 27(7), 1185–1211. doi: 10.1177/
10812865211057602

Bazin L and 22 others (2013) An optimized multi-proxy, multi-site Antarctic
ice and gas orbital chronology (AICC2012): 120–800 ka. Climate of the Past
9(4), 1715–1731. doi: 10.5194/cp-9-1715-2013

Bentley CR (1971) Seismic anisotropy in the West Antarctic ice sheet. In
Crary A (ed), Antarctic Snow and Ice Studies II, volume 16 of Antarctic
Research Series, American Geophysical Union, Washington, D.C.,
pp. 131–177.

Brisbourne AM, and 5 others (2019) Constraining recent ice flow history at
Korff Ice Rise, West Antarctica, using radar and seismic measurements of
ice fabric. Journal of Geophysical Research: Earth Surface 124(1), 175–194.
doi: 10.1029/2018JF004776

Buizert C, and 39 others (2021) Antarctic surface temperature and elevation
during the Last Glacial Maximum. Science 372(6546), 1097–1101. doi: 10.
1126/science.abd2897

Castelnau O, Duval P, Lebensohn RA and Canova GR (1996) Viscoplastic
modeling of texture development in polycrystalline ice with a self-consistent
approach: comparison with bound estimates. Journal of Geophysical
Research: Solid Earth 101(B6), 13851–13868. doi: 10.1029/96JB00412

Cavitte MGP, and 14 others (2021) A detailed radiostratigraphic data set for
the central East Antarctic Plateau spanning from the Holocene to the
mid-Pleistocene. Earth System Science Data 13(10), 4759–4777. doi: 10.
5194/essd-13-4759-2021

Chapelle SDL, Castelnau O, Lipenkov V and Duval P (1998) Dynamic
recrystallization and texture development in ice as revealed by the study
of deep ice cores in Antarctica and Greenland. Journal of Geophysical
Research: Solid Earth 103(B3), 5091–5105. doi: 10.1029/97JB02621

Corr H, Ritz C and Martin C (2021) Polarimetric ApRES data on a profile
across Dome C, East Antarctica, 2013–2014. NERC EDS UK Polar Data
Centre (doi: 10.5285/634EE206-258F-4B47-9237-EFFF4EF9EEDD).

Dansgaard W and Johnsen S (1969) A flow model and a time scale for the ice
core from Camp Century, Greenland. Journal of Glaciology 8(53), 215–223.
doi: 10.3189/S0022143000031208

Diprinzio C, and 5 others (2005) Fabric and texture at Siple Dome,
Antarctica. Journal of Glaciology 51(173), 281–290. doi: 10.3189/
172756505781829359

Durand G (2004) Microstructure, recristallisation et déformation des glaces
polaires de la carotte EPICA, Dôme Concordia, Antarctique. Ph.D. thesis,
Université Joseph-Fourier-Grenoble.

Durand G, and 8 others (2007) Change in ice rheology during climate
variations – implications for ice flow modelling and dating of the EPICA
Dome C core. Climate of the Past 3(1), 155–167. doi: 10.5194/cp-3-155-2007

Durand G, and 7 others (2009) Evolution of the texture along the EPICA
Dome C ice core. Low Temperature Science 68(Supplement), 91–105.
https://hdl.handle.net/2115/45436.

Duval P, Ashby MF and Anderman I (1983) Rate-controlling processes in the
creep of polycrystalline ice. The Journal of Physical Chemistry 87(21), 4066–
4074. doi: 10.1021/j100244a014

Duval P and Castelnau O (1995) Dynamic recrystallization of ice in polar ice
sheets. Le Journal de Physique IV 5(C3), C3–C3-205. doi: 10.1051/
jp4:1995317

EPICA community members (2004) Eight glacial cycles from an Antarctic ice
core. Nature 429 (6992), 623–628. doi: 10.1038/nature02599

Ershadi MR, and 9 others (2022) Polarimetric radar reveals the spatial distri-
bution of ice fabric at domes and divides in East Antarctica. The Cryosphere
16(5), 1719–1739. doi: 10.5194/tc-16-1719-2022

Fan S, and 7 others (2020) Temperature and strain controls on ice deform-
ation mechanisms: insights from the microstructures of samples deformed
to progressively higher strains at −10, −20 and −30◦C. The Cryosphere 14
(11), 3875–3905. doi: 10.5194/tc-14-3875-2020

Faria S (2001) Mixtures with continuous diversity: general theory and appli-
cation to polymer solutions. Continuum Mechanics and Thermodynamics
13(2), 91–120. doi: 10.1007/s001610100043

Faria SH (2006a) Creep and recrystallization of large polycrystalline
masses. I. General continuum theory. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 462(2069), 1493–1514.
doi: 10.1098/rspa.2005.1610

Faria SH (2006b) Creep and recrystallization of large polycrystalline masses.
III. Continuum theory of ice sheets. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 462(2073), 2797–2816.
doi: 10.1098/rspa.2006.1698

Faria SH, Kremer GM and Hutter K (2003) On the inclusion of recrystalliza-
tion processes in the modeling of induced anisotropy in ice sheets: a ther-
modynamicist’s point of view. Annals of Glaciology 37, 29–34. doi: 10.3189/
172756403781815519

Faria SH, Weikusat I and Azuma N (2014) The microstructure of polar ice.
Part II: state of the art. Journal of Structural Geology 61, 21–49. doi: 10.
1016/j.jsg.2013.11.003

Fujita S, Maeno H and Matsuoka K (2006) Radio-wave depolarization and
scattering within ice sheets: a matrix-based model to link radar and ice-core
measurements and its application. Journal of Glaciology 52(178), 407–424.
doi: 10.3189/172756506781828548

Gagliardini O, and 14 others (2013) Capabilities and performance of Elmer/
Ice, a new generation ice-sheet model. Geoscientific Model Development
Discussions 6(1), 1689–1741. doi: 10.5194/gmd-6-1299-2013

Gagliardini O and Meyssonnier J (1999) Analytical derivations for the behav-
ior and fabric evolution of a linear orthotropic ice polycrystal. Journal of

Journal of Glaciology 15

https://doi.org/10.1017/jog.2023.78 Published online by Cambridge University Press

https://doi.org/10.1017/jog.2023.78
https://doi.org/10.1017/jog.2023.78
https://doi.org/10.5281/zenodo.7415785
https://doi.org/10.5281/zenodo.7415785
https://doi.org/10.5281/zenodo.7415785
https://doi.org/10.5281/zenodo.7416060
https://doi.org/10.5281/zenodo.7416060
https://doi.org/10.5281/zenodo.8200402
https://doi.org/10.5281/zenodo.8200402
https://doi.org/10.1122/1.549945
https://doi.org/10.1126/science.240.4851.493
https://doi.org/10.3189/002214310792447699
https://doi.org/10.1177/10812865211057602
https://doi.org/10.1177/10812865211057602
https://doi.org/10.5194/cp-9-1715-2013
https://doi.org/10.5194/cp-9-1715-2013
https://doi.org/10.5194/cp-9-1715-2013
https://doi.org/10.5194/cp-9-1715-2013
https://doi.org/10.1029/2018JF004776
https://doi.org/10.1126/science.abd2897
https://doi.org/10.1126/science.abd2897
https://doi.org/10.1029/96JB00412
https://doi.org/10.5194/essd-13-4759-2021
https://doi.org/10.5194/essd-13-4759-2021
https://doi.org/10.5194/essd-13-4759-2021
https://doi.org/10.5194/essd-13-4759-2021
https://doi.org/10.5194/essd-13-4759-2021
https://doi.org/10.1029/97JB02621
https://doi.org/10.3189/S0022143000031208
https://doi.org/10.3189/172756505781829359
https://doi.org/10.3189/172756505781829359
https://doi.org/10.5194/cp-3-155-2007
https://doi.org/10.5194/cp-3-155-2007
https://doi.org/10.5194/cp-3-155-2007
https://doi.org/10.5194/cp-3-155-2007
https://hdl.handle.net/2115/45436
https://hdl.handle.net/2115/45436
https://doi.org/10.1021/j100244a014
https://doi.org/10.1051/jp4:1995317
https://doi.org/10.1051/jp4:1995317
https://doi.org/10.1038/nature02599
https://doi.org/10.5194/tc-16-1719-2022
https://doi.org/10.5194/tc-16-1719-2022
https://doi.org/10.5194/tc-16-1719-2022
https://doi.org/10.5194/tc-16-1719-2022
https://doi.org/10.5194/tc-14-3875-2020
https://doi.org/10.5194/tc-14-3875-2020
https://doi.org/10.5194/tc-14-3875-2020
https://doi.org/10.5194/tc-14-3875-2020
https://doi.org/10.1007/s001610100043
https://doi.org/10.1098/rspa.2005.1610
https://doi.org/10.1098/rspa.2006.1698
https://doi.org/10.3189/172756403781815519
https://doi.org/10.3189/172756403781815519
https://doi.org/10.1016/j.jsg.2013.11.003
https://doi.org/10.1016/j.jsg.2013.11.003
https://doi.org/10.3189/172756506781828548
https://doi.org/10.5194/gmd-6-1299-2013
https://doi.org/10.5194/gmd-6-1299-2013
https://doi.org/10.5194/gmd-6-1299-2013
https://doi.org/10.5194/gmd-6-1299-2013
https://doi.org/10.1017/jog.2023.78


Geophysical Research: Solid Earth 104(B8), 17797–17809. doi: 10.1029/
1999JB900146

Gerbi C, and 9 others (2021) Microstructures in a shear margin: Jarvis
Glacier, Alaska. Journal of Glaciology 67(266), 1163–1176. doi: 10.1017/
jog.2021.62

Gillet-Chaulet F, Gagliardini O, Meyssonnier J, Montagnat M and
Castelnau O (2005) A user-friendly anisotropic flow law for ice-sheet
modelling. Journal of Glaciology 51(172), 3–14. doi: 10.3189/
172756505781829584

Gillet-Chaulet F, Gagliardini O, Meyssonnier J, Zwinger T and
Ruokolainen J (2006) Flow-induced anisotropy in polar ice and related ice-
sheet flow modelling. Journal of Non-Newtonian Fluid Mechanics 134, 33–
43. doi: 10.1016/j.jnnfm.2005.11.005

Gödert G (2003) A mesoscopic approach for modelling texture evolution of
polar ice including recrystallization phenomena. Annals of Glaciology 37,
23–28. doi: 10.3189/172756403781815375

Gödert G and Hutter K (1998) Induced anisotropy in large ice shields: theory
and its homogenization. Continuum Mechanics and Thermodynamics 10
(5), 293–318. doi: 10.1007/s001610050095

Goel V, and 5 others (2020) Characteristics of ice rises and ice rumples in
Dronning Maud Land and Enderby Land, Antarctica. Journal of
Glaciology 66(260), 1064–1078. doi: 10.1017/jog.2020.77

Gow AJ and Williamson T (1976) Rheological implications of the internal
structure and crystal fabrics of the West Antarctic ice sheet as revealed by
deep core drilling at Byrd Station. GSA Bulletin 87(12), 1665–1677. doi:
10.1130/0016-7606(1976)87<1665:RIOTIS>2.0.CO;2

Graham FS, Morlighem M, Warner RC and Treverrow A (2018)
Implementing an empirical scalar constitutive relation for ice with
flow-induced polycrystalline anisotropy in large-scale ice sheet models.
The Cryosphere 12(3), 1047–1067. doi: 10.5194/tc-12-1047-2018

Grinsted A, and 8 others (2022) Accelerating ice flow at the onset of the
Northeast Greenland Ice Stream. Nature Communications 13(1), 5589.
doi: 10.1038/s41467-022-32999-2

Howat IM, Porter C, Smith BE, Noh MJ and Morin P (2019) The reference
elevation model of Antarctica. The Cryosphere 13(2), 665–674. doi: 10.5194/
tc-13-665-2019

Hunter P, Meyer C, Minchew B, Haseloff M and Rempel A (2021) Thermal
controls on ice stream shear margins. Journal of Glaciology 67(263), 435–
449. doi: 10.1017/jog.2020.118

Hunter NJR, Wilson CJL and Luzin V (2023) Crystallographic preferred
orientation (CPO) patterns in uniaxially compressed deuterated ice: quan-
titative analysis of historical data. Journal of Glaciology 69(276), 737–748.
doi: 10.1017/jog.2022.95

Hvidberg CS (1996) Steady-state thermomechanical modelling of ice flow
near the centre of large ice sheets with the finite-element technique.
Annals of Glaciology 23, 116–123. doi: 10.3189/S026030550001332X

Jackson M and Kamb B (1997) The marginal shear stress of Ice Stream B,
West Antarctica. Journal of Glaciology 43(145), 415–426. doi: 10.3189/
S0022143000035000

Jordan TM, Schroeder DM, Castelletti D, Li J and Dall J (2019) A polarimet-
ric coherence method to determine ice crystal orientation fabric from radar
sounding: application to the NEEM ice core region. IEEE Transactions on
Geoscience and Remote Sensing 57(11), 8641–8657. doi: 10.1109/TGRS.
2019.2921980

Joughin IR, and 6 others (2012) Seasonal to decadal scale variations in the
surface velocity of Jakobshavn Isbrae, Greenland: observation and model-
based analysis. Journal of Geophysical Research 117(F2), F02030. doi: 10.
1029/2011JF002110

Journaux B, and 6 others (2019) Recrystallization processes, microstructure
and crystallographic preferred orientation evolution in polycrystalline ice
during high-temperature simple shear. The Cryosphere 13(5), 1495–1511.
doi: 10.5194/tc-13-1495-2019

Jouzel J, and 9 others (2007) Orbital and millennial Antarctic climate vari-
ability over the past 800 000 years. Science 317(5839), 793–796. doi: 10.
1126/science.1141038

Kipfstuhl S, and 6 others (2006) Microstructure mapping: a new method for
imaging deformation-induced microstructural features of ice on the grain
scale. Journal of Glaciology 52(178), 398–406. doi: 10.3189/
172756506781828647

Kipfstuhl S, and 8 others (2009) Evidence of dynamic recrystallization in
polar firn. Journal of Geophysical Research: Solid Earth 114(B5), B05204.
doi: 10.1029/2008JB005583

Larour E, Rignot E, Joughin I and Aubry D (2005) Rheology of the Ronne
Ice Shelf, Antarctica, inferred from satellite radar interferometry data using
an inverse control method. Geophysical Research Letters 32(5), L05503. doi:
10.1029/2004GL021693

Lilien DA, Rathmann NM, Hvidberg CS and Dahl-Jensen D (2021)
Modeling ice-crystal fabric as a proxy for ice-stream stability. Journal of
Geophysical Research: Earth Surface 126(9), e2021JF006306. doi:10.1029/
2021JF006306

Llorens MG, and 6 others (2016) Dynamic recrystallisation of ice aggregates
during co-axial viscoplastic deformation: a numerical approach. Journal of
Glaciology 62(232), 359–377. doi: 10.1017/jog.2016.28

Lutz F, and 10 others (2022) Ultrasonic and seismic constraints on crystallo-
graphic preferred orientations of the Priestley Glacier shear margin,
Antarctica. The Cryosphere 16(8), 3313–3329. doi: 10.5194/tc-16-3313-2022

Ma Y, and 5 others (2010) Enhancement factors for grounded ice and ice
shelves inferred from an anisotropic ice-flow model. Journal of Glaciology
56(199), 805–812. doi: 10.3189/002214310794457209

Martín C, Gudmundsson GH, Pritchard HD and Gagliardini O (2009) On
the effects of anisotropic rheology on ice flow, internal structure, and the
age–depth relationship at ice divides. Journal of Geophysical Research 114
(F4), F04001. doi: 10.1029/2008JF001204

Minchew BM, Meyer CR, Robel AA, Gudmundsson GH and Simons M
(2018) Processes controlling the downstream evolution of ice rheology in
glacier shear margins: case study on Rutford Ice Stream, West Antarctica.
Journal of Glaciology 64(246), 583–594. doi: 10.1017/jog.2018.47

Montagnat M, and 9 others (2014) Fabric along the NEEM ice core,
Greenland, and its comparison with GRIP and NGRIP ice cores. The
Cryosphere 8(4), 1129–1138. doi: 10.5194/tc-8-1129-2014

Montagnat M and Duval P (2000) Rate controlling processes in the creep of
polar ice, influence of grain boundary migration associated with recrystal-
lization. Earth and Planetary Science Letters 183(1), 179–186. doi: 10.
1016/S0012-821X(00)00262-4

MorlighemM (2020) MEaSUREs BedMachine Antarctica, Version 2. National
Snow and Ice Data Center (doi: 10.5067/E1QL9HFQ7A8M).

Morlighem M, and 36 others (2020) Deep glacial troughs and stabilizing
ridges unveiled beneath the margins of the Antarctic ice sheet. Nature
Geoscience 13(2), 132–137. doi: 10.1038/s41561-019-0510-8

Mottram R, and 16 others (2021) What is the surface mass balance of
Antarctica? An intercomparison of regional climate model estimates. The
Cryosphere 15(8), 3751–3784. doi: 10.5194/tc-15-3751-2021

Nye JF (1963) Correction factor for accumulation measured by the thickness
of the annual layers in an ice sheet. Journal of Glaciology 4(36), 785–788.
doi: 10.3189/S0022143000028367

Parrenin F, and 26 others (2007a) The EDC3 chronology for the EPICA Dome
C ice core. Climate of the Past 3(3), 485–497. doi: 10.5194/cp-3-485-2007

Parrenin F, and 15 others (2007b) 1-D-ice flow modelling at EPICA Dome C
and Dome Fuji, East Antarctica. Climate of the Past 3(2), 243–259. doi: 10.
5194/cpd-3-19-2007

Passalacqua O, and 5 others (2016) Performance and applicability of a 2.5-D
ice-flow model in the vicinity of a dome. Geoscientific Model Development 9
(7), 2301–2313. doi: 10.5194/gmd-9-2301-2016

Passalacqua O, Ritz C, Parrenin F, Urbini S and Frezzotti M (2017)
Geothermal flux and basal melt rate in the Dome C region inferred from
radar reflectivity and heat modelling. The Cryosphere 11(5), 2231–2246.
doi: 10.5194/tc-11-2231-2017

Pimienta P and Duval P (1987) Rate controlling processes in the
creep of polar glacier ice. Journal de Physique Colloques 48(C1), C1–243–
C1–248.

Placidi L, Greve R, Seddik H and Faria SH (2010) Continuum-mechanical,
anisotropic flow model for polar ice masses, based on an anisotropic flow
enhancement factor. Continuum Mechanics and Thermodynamics 22(3),
221–237. doi: 10.1007/s00161-009-0126-0

Qi C, and 8 others (2019) Crystallographic preferred orientations of ice
deformed in direct-shear experiments at low temperatures. The
Cryosphere 13(1), 351–371. doi: 10.5194/tc-13-351-2019

Rathmann NM, and 5 others (2022) On the limitations of using polarimetric
radar sounding to infer the crystal orientation fabric of ice masses. Geophysical
Research Letters 49(1), e2021GL096244. doi:10.1029/2021GL096244

Rathmann NM, Hvidberg CS, Grinsted A, Lilien DA and Dahl-Jensen D
(2021) Effect of an orientation-dependent non-linear grain fluidity on
bulk directional enhancement factors. Journal of Glaciology 67(263), 569–
575. doi: 10.1017/jog.2020.117

16 David A. Lilien and others

https://doi.org/10.1017/jog.2023.78 Published online by Cambridge University Press

https://doi.org/10.1029/1999JB900146
https://doi.org/10.1029/1999JB900146
https://doi.org/10.1017/jog.2021.62
https://doi.org/10.1017/jog.2021.62
https://doi.org/10.3189/172756505781829584
https://doi.org/10.3189/172756505781829584
https://doi.org/10.1016/j.jnnfm.2005.11.005
https://doi.org/10.3189/172756403781815375
https://doi.org/10.1007/s001610050095
https://doi.org/10.1017/jog.2020.77
https://doi.org/10.1130/0016-7606(1976)87%3C1665:RIOTIS%3E2.0.CO;2
https://doi.org/10.1130/0016-7606(1976)87%3C1665:RIOTIS%3E2.0.CO;2
https://doi.org/10.5194/tc-12-1047-2018
https://doi.org/10.5194/tc-12-1047-2018
https://doi.org/10.5194/tc-12-1047-2018
https://doi.org/10.5194/tc-12-1047-2018
https://doi.org/10.1038/s41467-022-32999-2
https://doi.org/10.1038/s41467-022-32999-2
https://doi.org/10.1038/s41467-022-32999-2
https://doi.org/10.1038/s41467-022-32999-2
https://doi.org/10.5194/tc-13-665-2019
https://doi.org/10.5194/tc-13-665-2019
https://doi.org/10.5194/tc-13-665-2019
https://doi.org/10.5194/tc-13-665-2019
https://doi.org/10.5194/tc-13-665-2019
https://doi.org/10.1017/jog.2020.118
https://doi.org/10.1017/jog.2022.95
https://doi.org/10.3189/S026030550001332X
https://doi.org/10.3189/S0022143000035000
https://doi.org/10.3189/S0022143000035000
https://doi.org/10.1109/TGRS.2019.2921980
https://doi.org/10.1109/TGRS.2019.2921980
https://doi.org/10.1029/2011JF002110
https://doi.org/10.1029/2011JF002110
https://doi.org/10.5194/tc-13-1495-2019
https://doi.org/10.5194/tc-13-1495-2019
https://doi.org/10.5194/tc-13-1495-2019
https://doi.org/10.5194/tc-13-1495-2019
https://doi.org/10.1126/science.1141038
https://doi.org/10.1126/science.1141038
https://doi.org/10.3189/172756506781828647
https://doi.org/10.3189/172756506781828647
https://doi.org/10.1029/2008JB005583
https://doi.org/10.1029/2004GL021693
https://doi.org/10.1029/2021JF006306
https://doi.org/10.1029/2021JF006306
https://doi.org/10.1017/jog.2016.28
https://doi.org/10.5194/tc-16-3313-2022
https://doi.org/10.5194/tc-16-3313-2022
https://doi.org/10.5194/tc-16-3313-2022
https://doi.org/10.5194/tc-16-3313-2022
https://doi.org/10.3189/002214310794457209
https://doi.org/10.1029/2008JF001204
https://doi.org/10.1017/jog.2018.47
https://doi.org/10.5194/tc-8-1129-2014
https://doi.org/10.5194/tc-8-1129-2014
https://doi.org/10.5194/tc-8-1129-2014
https://doi.org/10.5194/tc-8-1129-2014
https://doi.org/10.1016/S0012-821X(00)00262-4
https://doi.org/10.1016/S0012-821X(00)00262-4
https://doi.org/10.1016/S0012-821X(00)00262-4
https://doi.org/10.1016/S0012-821X(00)00262-4
https://doi.org/10.1038/s41561-019-0510-8
https://doi.org/10.1038/s41561-019-0510-8
https://doi.org/10.1038/s41561-019-0510-8
https://doi.org/10.1038/s41561-019-0510-8
https://doi.org/10.5194/tc-15-3751-2021
https://doi.org/10.5194/tc-15-3751-2021
https://doi.org/10.5194/tc-15-3751-2021
https://doi.org/10.5194/tc-15-3751-2021
https://doi.org/10.3189/S0022143000028367
https://doi.org/10.5194/cp-3-485-2007
https://doi.org/10.5194/cp-3-485-2007
https://doi.org/10.5194/cp-3-485-2007
https://doi.org/10.5194/cp-3-485-2007
https://doi.org/10.5194/cpd-3-19-2007
https://doi.org/10.5194/cpd-3-19-2007
https://doi.org/10.5194/cpd-3-19-2007
https://doi.org/10.5194/cpd-3-19-2007
https://doi.org/10.5194/cpd-3-19-2007
https://doi.org/10.5194/gmd-9-2301-2016
https://doi.org/10.5194/gmd-9-2301-2016
https://doi.org/10.5194/gmd-9-2301-2016
https://doi.org/10.5194/gmd-9-2301-2016
https://doi.org/10.5194/tc-11-2231-2017
https://doi.org/10.5194/tc-11-2231-2017
https://doi.org/10.5194/tc-11-2231-2017
https://doi.org/10.5194/tc-11-2231-2017
https://doi.org/10.1007/s00161-009-0126-0
https://doi.org/10.1007/s00161-009-0126-0
https://doi.org/10.1007/s00161-009-0126-0
https://doi.org/10.1007/s00161-009-0126-0
https://doi.org/10.5194/tc-13-351-2019
https://doi.org/10.5194/tc-13-351-2019
https://doi.org/10.5194/tc-13-351-2019
https://doi.org/10.5194/tc-13-351-2019
https://doi.org/10.1029/2021GL096244
https://doi.org/10.1017/jog.2020.117
https://doi.org/10.1017/jog.2023.78


Rathmann NM and Lilien DA (2022a) Inferred basal friction and mass flux
affected by crystal-orientation fabrics. Journal of Glaciology 68(268), 236–
252. doi: 10.1017/jog.2021.88

Rathmann NM and Lilien DA (2022b) On the nonlinear viscosity of the
orthotropic bulk rheology. Journal of Glaciology 68(272), 1243–1248. doi:
10.1017/jog.2022.33

Richards DHM, Pegler SS, Piazolo S and Harlen OG (2021) The evolution of
ice fabrics: a continuum modelling approach validated against laboratory
experiments. Earth and Planetary Science Letters 556, 116718. doi: 10.
1016/j.epsl.2020.116718

Seddik H, Greve R, Placidi L, Hamann I and Gagliardini O (2008)
Application of a continuum-mechanical model for the flow of anisotropic
polar ice to the EDML core, Antarctica. Journal of Glaciology 54(187),
631–642. doi: 10.3189/002214308786570755

Shoji H and Langway CC (1985) Mechanical properties of fresh ice
core from Dye 3, Greenland. In Greenland Ice Core: Geophysics,
Geochemistry, and the Environment, American Geophysical Union
(AGU). pp. 39–48.

Smith EC, and 6 others (2017) Ice fabric in an Antarctic ice stream inter-
preted from seismic anisotropy. Geophysical Research Letters 44(8), 3710–
3718. doi: 10.1002/2016GL072093

Svendsen B and Hutter K (1996) A continuum approach for modelling
induced anisotropy in glaciers and ice sheets. Annals of Glaciology 23,
262–269. doi: 10.3189/S0260305500013525

Thomas RE, and 11 others (2021) Microstructure and crystallographic pre-
ferred orientations of an azimuthally oriented ice core from a lateral
shear margin: Priestley Glacier, Antarctica. Frontiers in Earth Science 9,
702213. doi: 10.3389/feart.2021.702213

Thorsteinsson T (2001) An analytical approach to deformation of anisotropic
ice-crystal aggregates. Journal of Glaciology 47(158), 507–516. doi: 10.3189/
172756501781832124

Thorsteinsson T, Kipfstuhl J and Miller H (1997) Textures and fabrics in the
GRIP ice core. Journal of Geophysical Research: Oceans 102(C12), 26583–
26599. doi: 10.1029/97JC00161

Thorsteinsson T, Waddington ED and Fletcher RC (2003) Spatial and tem-
poral scales of anisotropic effects in ice-sheet flow. Annals of Glaciology 37,
40–48. doi: 10.3189/172756403781815429

Treverrow A, Jun L and Jacka TH (2016) Ice crystal c-axis orientation and
mean grain size measurements from the Dome Summit South ice core,
Law Dome, East Antarctica. Earth System Science Data 8(1), 253–263.
doi: 10.5194/essd-8-253-2016

Turner JA (1999) Elastic wave propagation and scattering in heterogeneous,
anisotropic media: textured polycrystalline materials. The Journal of the
Acoustical Society of America 106(2), 541–552. doi: 10.1121/1.427024

Urbini S, and 6 others (2008) Historical behaviour of Dome C and Talos
Dome (East Antarctica) as investigated by snow accumulation and ice vel-
ocity measurements. Global and Planetary Change 60(3), 576–588. doi: 10.
1016/j.gloplacha.2007.08.002

Vittuari L, and 6 others (2004) Space geodesy as a tool for measuring ice sur-
face velocity in the Dome C region and along the ITASE traverse. Annals of
Glaciology 39, 402–408. doi: 10.3189/172756404781814627

Voigt DE (2017) c-Axis fabric of the South Pole ice core, SPC14. U.S.
Antarctic Program (USAP) Data Center (doi: 10.15784/601057).

Weikusat I, and 10 others (2017) Physical analysis of an Antarctic ice core –
towards an integration of micro- and macrodynamics of polar ice.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 375(2086), 20150347. doi: 10.1098/rsta.2015.0347

Weikusat I, Kipfstuhl S, Faria SH, Azuma N and Miyamoto A (2009)
Subgrain boundaries and related microstructural features in EDML
(Antarctica) deep ice core. Journal of Glaciology 55(191), 461–472. doi:
10.3189/002214309788816614

Westhoff J, and 8 others (2021) A stratigraphy-based method for reconstruct-
ing ice core orientation. Annals of Glaciology 62(85–86), 191–202. doi: 10.
1017/aog.2020.76

Young TJ, and 6 others (2021) Inferring ice fabric from birefringence loss in
airborne radargrams: application to the eastern shear margin of Thwaites
Glacier, West Antarctica. Journal of Geophysical Research: Earth Surface
126(5), e2020JF006023. doi: 10.1029/2020JF006023)

Zwinger T, Greve R, Gagliardini O, Shiraiwa T and Lyly M (2007) A full
Stokes-flow thermo-mechanical model for firn and ice applied to the
Gorshkov Crater Glacier, Kamchatka. Annals of Glaciology 45, 29–37. doi:
10.3189/172756407782282543

Appendix A: Fabric evolution model validation

We performed a number of ‘cube crushing’ experiments to test the perform-
ance of the spectral fabric description in Elmer/Ice. Simulations are split
into two- and three-dimensions; when the velocity gradient in one direction
is uniformly zero (e.g. ∂u/∂z = 0) it is sufficient to use a 2-D model, but
when there are non-zero velocity gradients in all three directions a 3-D
model is required. Model domains were 1 m cubes in 3-D (1m squares in
2-D) with 5 cm mesh resolution. Four types of strain were applied: simple
shear (in x–y), confined compression (compression in y, confined in z),
unconfined compression (in z) and uniform extension (in z). The former
two used 2-D domains and the latter two used 3-D. All used a strain rate of
0.1 a−1, which was uniform across the whole model domain (i.e. the velocity
was fixed rather than simulated). For each strain, seven simulations were run:

(1) Full fabric model (Γ0 = 0.55 a−1 and Λ0 = 2.0 × 10−2 a−1, chosen to
approximate rates at −5◦C).

(2) Lattice rotation only (Γ0 = 0 a−1 and Λ0 = 7 × 10−3 a−1 for regularization).
(3) Migration recrystallization only (Γ0 = 0.55 a−1 and Λ0 = 0 a−1, no lattice

rotation).
(4) Full fabric model (Γ0 = 0.55 a−1 and Λ0 = 2.0 × 10−2 a−1), but replacing the

stress with the strain rate in Eqn (10) for comparison with prior work.
(5) Migration recrystallization only (Γ0 = 0.55 a−1 and Λ0 = 0 a−1, no lattice

rotation), but replacing the stress with the strain rate in Eqn (10) for com-
parison with prior work.

(6) Full fabric model (Γ0 = 0.73 a−1 and Λ0 = 2.0 × 10−2 a−1, chosen to
approximate rates at 0◦C).

(7) Full fabric model (Γ0 = 0.17 a−1 and Λ0 = 1.7 × 10−2 a−1, chosen to
approximate rates at −30◦C).

Pure-shear simulations (extension and compression) were run to 100% strain
using ∼0.09 year time steps, while the simple shear simulations were run to
300% strain using 0.06 year time steps. During the simulations, the mesh
was fixed; this leads to inflow boundaries where we assume that isotropic ice
enters. Results are considered at the center point of the cube or square,
where u = 0 and thus there are no advective effects.

The cube-crushing experiments were matched to simulations using the
tensorial fabric representation in Elmer/Ice (which necessarily considered
only lattice rotation) and simulations of a single, zero-dimensional ice parcel
using SpecFab. Methods for the tensorial representation followed previous
work exactly (Gillet-Chaulet and others, 2006; Lilien and others, 2021), so
model equations are not repeated here. These simulations allow us to isolate
the effect of using the higher-order fabric model, where closure assumptions
do not affect the lower order fabric moments, on lattice rotation. Three
SpecFab simulations were run for each strain-rate experiment: one with the
full fabric model using parameters for −5◦C, one with lattice rotation only
(and rotation recrystallization for regularization) and one with migration
recrystallization only. For migration recrystallization in SpecFab, the strain
rate was used to determine D in Eqn (10) (i.e. the stress and strain rate were
assumed to be coaxial). SpecFab simulations used L = 20, which allows us to
identify the limitations of truncating the fabric description at L = 6. In the
full and lattice rotation simulations, we used hyper diffusion for regularization,
with identical coefficients to those used with Elmer/Ice.

Lattice rotation

Results from the cube-crushing experiments are shown in Figure 8. The model
output closely matches laboratory data for unconfined compression (Hunter
and others, 2021), while it matches less well for simple shear (Qi and others,
2019); however, the laboratory measurements are run to a lower total strain
than used here, which may partially explain this difference. Using the higher-
order, spectral representation of fabric leads to significant differences com-
pared with the tensorial representation in the case of simple shear (middle col-
umn of panel b in Fig. 8). There was a near-perfect match between the spectral
and tensorial representations for pure shear simulations (middle column of
panels a, c and d in Fig. 8). Example fabrics produced by lattice rotation
alone can be seen in Figures 9a, f. For lattice rotation, the SpecFab version
should be thought of as ‘truth’ in the sense that differences between the
other models and the SpecFab version are solely due to the lower-order
representation of the fabric and regularization (for the spectral version). The
spectral implementation in Elmer, despite being lower order and including
spatial regularization, exactly matches the SpecFab version except for confined
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compression. In that case, the very strong single maximum that forms is lim-
ited in strength by the spatial resolution and regularization; because the fabric
gradient here is much stronger than in larger-scale models (isotropy to a single
maximum in 0.5 m), this limitation will not affect realistic, large-scale applica-
tions. The tensorial representation produces results remarkably close to the
SpecFab ‘true’ version except in the case of simple shear; this difference likely
stems from the tuning of the closure approximation in the tensorial approach.
This mismatch implies that even when lattice rotation alone is considered, a
higher-order model may be justified for areas experiencing simple shear.

Migration recrystallization

When only migration recrystallization is active, the model produces the multi-
maxima and 45◦ pseudo-girdle fabrics that are considered indicative of migra-
tion recrystallization (Figs 9e, j). For the cases tested, we find very little sensi-
tivity to whether τ or ė is used to determine the migration recrystallization in
Eqn (10). This is not a guarantee that using ė is always appropriate, though. As
seen in the ‘full’ column of each panel of Figure 8, interplay lattice rotation and
recrystallization can cause subtle differences to emerge based on whether the
migration recrystallization is τ- or ė-dependent.

Full fabric model

The full fabric evolution, including both migration recrystallization and lattice
rotation, is intermediate between the lattice-rotation-only and migration-
recrystallization-only fabrics (Fig. 8). However, the complex, multi-maxima
or 45◦ pseudo-girdle are not seen in the coupled simulations. Nevertheless,
the differences compared with the lattice-rotation only simulations are signifi-
cant (up to 50% difference in eigenvalues, Figs 9k–n), so recrystallization still
has an important effect. However, differences are only notable at high tem-
peratures (Fig. 9). Nonetheless, the effects of recrystallization suggest that its
effects should be considered even at lower temperatures, consistent with
prior work (Richards and others, 2021).

Effect of truncation and regularization

Unless regularization is added to the dynamical model of fabric evolution (5),
a quasi-periodic trajectory is found in the state space of the expansion coeffi-
cients, @̂m

l , that may pass through unphysical states where the resulting eigen-
values of a (m) fall outside their normalized bounds (between 0 and 1). As

noted in the main text, we apply hyper-diffusion with a magnitude sufficiently
large as to guarantee stable states are approached under sustained, constant
modes of deformation with lattice rotation. Laplacian diffusion is a spectrally
broad operator that affects several modes near l = L. When L = 6, this has the
consequence of preventing the coefficients @̂m

2 and @̂m
4 from taking the values

needed to represent concentrated c-axis distributions, such as a strong single
maximum. Like in classical fluid problems posed in spectral space, diffusion
can be spectrally sharpened to affect a minimal number of high-wavenumber
modes (high l). Figure 10 shows the difference between applying an unmodi-
fied Laplacian operator as regularization (light lines) as opposed to hyper dif-
fusion (dark lines). For the same truncation order L, it is clear that unless
hyper diffusion is considered, the largest a (2) eigenvalue (upper x-axis in
Fig. 10) is limited to take values of λ3≤∼0.8, which limits the corresponding
largest and smallest directional enhancement factors (Eij) that can be modeled
(filled and line contours). Similarly, if a higher-order truncation (L = 20) is
considered, Figure 10 shows that the effect of regularization (unmodified or
hyper diffusion) is not felt at the lowest wavenumber coefficients, @̂m

2 and
@̂m
4 . While large L are therefore to be preferred (guaranteeing that the dynam-

ics of the coarsest-scale structure in the MODFs is governed by lattice rotation
and DDRX, and not regularization), computational resources in practice limit
how large L can be taken to be; in our case, the very long simulation prevented
us from considering L > 6. Hyper diffusion was thus necessary for such a
simulation.

Appendix B: Orthotropic rheology validation

We compare the effect of using the full nonlinear orthotropic viscosity of
Rathmann and Lilien (2022b) for using the nonlinear extension to the general
orthotropic linear flow law (GOLF; Gillet-Chaulet and others, 2005) that, by
analogy to the canonical Glen’s flow law, introduces a nonlinear viscosity
depending solely on the second invariant of the deviatoric stress tensor
(Martín and others, 2009). In the GOLF,

t = h̃0

∑3
i=1

[
h̃itr(mi ⊗mi · ė)+ h̃i+3dev(ė ·mi ⊗mi +mi ⊗mi · ė)

]
, (B1)

where h̃0 = A−1/n(e(1−n)/2n
E )/4 is an isotropic effective viscosity related to the

canonical Glen prefactor, h̃i = h̃i(a
(2)) are six dimensionless viscosities (that

differ from Eqn (20)), and dev( ⋅ ) denotes the deviatoric part of a tensor.
The viscosities h̃i(a

(2)) were taken from the visco-plastic self-consistent

Figure 8. Results from cube crushing simulations at −5◦C, showing eigenvalues of the simulated fabric under (a) confined compression, (b) simple shear, (c)
unconfined compression and (d) uniform extension. Within each panel, the three columns indicate which processes are included. Solid lines show laboratory
deformation test results simple shear run to 260% strain at −5◦C) (PIL94; Qi and others, 2019), and unconfined compression to 40% strain at −3◦C at two different
strain rates (MD22 and D5-1; Hunter and others, 2023). Dashed lines show eigenvalues under lattice rotation only using the structure-tensor representation of fabric
in Elmer. Markers show other simulation types (SpecFab, Elmer spectral with DDRX calculated using τ, or Elmer spectral with DDRX calculated using ė). Colors
indicate eigenvalue number (blue for λ3, orange for λ2 and green for λ1).
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Figure 10. Modeled fabric state trajectories (lines) and
the corresponding eigenenhancements (filled and line
contours) for vertically symmetric fabrics similar to
Figure 1. Modeled fabric trajectories are shown for regu-
larization with (dark lines) and without (light lines)
hyper diffusion. Hatched area indicates restricted parts
of the state space, bounded by the angular power spec-
trum not being allowed to exceed that of the delta func-
tion (perfect single maximum); see main text.

Figure 9. Temperature dependence of modeled fabric. (a–e) Fabric under simple shear in x–y with lattice rotation only, at −30◦C, at −5◦C at 0◦C, and with DDRX
only respectively; since recrystallization increases with temperature, pure lattice rotation or DDRX can be seen as end members of a spectrum (although neither is
ever achieved). (f–j) as in (a–e), but for uniform extension in z. (k–n) Dependence of the fabric eigenvalues on temperature under different strains. Colors indicate
eigenvalue number (blue for λ3, orange for λ2 and green for λ1). Lines with squares indicate model results. Diamonds, X’s and circles show laboratory data from
PIL007, PIL94, PIL135 and PIL268 of Qi and others (2019), PIL255 Fan and others (2020) and MD22, D5-3 and D5-1 of Hunter and others (2023), respectively; symbols
with white centers indicate that the total strain used in the laboratory experiment is significantly less than that used in the simulation (<40% compared to 100%
used in the model).
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model of Gillet-Chaulet and others (2006). Note that for an isotropic fabric,
this relation reduces to the ordinary form of Glen’s flow law, just as for the
full nonlinear orthotropic version.

There are two essential differences between the full nonlinear orthotropic
law used here and the GOLF: (1) the nonlinear viscosity differs as a result of
which invariants are considered and (2) the directional enhancement factors
differ as a result of different homogenization schemes (linear combination
of Taylor and Sachs hypotheses for the full nonlinear orthotropic law, visco-
plastic self-consistent model (VPSC) for the GOLF). Rathmann and Lilien
(2022b) showed that the approximated rheology generally does a good job
reproducing the unapproximated form to a small relative error for a given fab-
ric, but did not consider the accumulation of such errors as a coupled simula-
tion progressed.

To assess whether the full nonlinear rheology was likely to be important in
more realistic settings (and thus in parts of the Dome C transect), we ran three
simulations of an idealized ice divide, similar to those in Martín and others
(2009) but using the spectral formulation for the fabric, and including recrys-
tallization and an evolving temperature field. We used the ice-core-calibrated
rates for recrystallization, since this generally produces stronger fabrics and
thus may show a larger difference between the rheologies. The three simulations
differed only in the rheology: one used the canonical Glen’s flow law, one used
the nonlinear extension to the GOLF and the third used the full nonlinear
orthotropic rheology. The model domain was 40 km wide, ice was 2 km thick
at the outflows (with the divide in the center) and mesh resolution was 75m
in the vertical and 300 m in the horizontal. The outflows used the same pseudo-
glaciostatic boundary condition as the Dome C simulations, with d′ = 2000m,

and there was no sliding. The ice surface was held at −40◦C, and there was 75
mWm−2 of geothermal heat. Accumulation was 0.05 m a−1 (making the time-
scale t = H/ḃ = 40 ka). The simulations started with isotropic fabric and ran
for 5τ = 200 ka, which is not long enough to reach steady state but is long
enough to show anisotropic effects (Martín and others, 2009). The full non-
linear rheology produces a result intermediate between Glen’s law and the
GOLF (Fig. 11). Differences compared to the GOLF are most pronounced
near the divide. Because the nonlinear extension to the GOLF closely matches
the full nonlinear orthotropic law (Rathmann and Lilien, 2022b), these differ-
ences are likely due to feedbacks between fabric development and flow that lead
to the small differences slowly accumulating to larger departures. An additional
aspect of the difference may be due to the differences between the VPSC and
the linear combination of the Taylor and Sachs hypotheses; the present work
cannot identify the effect of that difference. We note that the results here differ
significantly from Martín and others (2009), which found a double Raymond
bump and a stronger difference between their anisotropic rheology and
Glen’s flow law. Most of this difference can be attributed to recrystallization;
in our model migration recrystallization introduces other fabric patterns, and
rotation recrystallization causes decay toward isotropy. Both of these prevent
the effects of anisotropy from being as strong under the divide, which combines
with the limits that L = 6 places how hard the ice can become for (vertical)
compression (see Appendix A). In addition, the cold temperatures and low
accumulation in our model contrast with Martín and others (2009), who
were mainly interested in ice rises. Our comparison is relevant for the area at
hand, but other areas with shorter timescales, or where recrystallization is
not thought to be active, may show much larger differences between rheologies.

Figure 11. Effect of different rheologies on an idealized ice divide. (a) Age structure of the divide. Blue, red and brown contours show isochrones at various ages for
Glen’s flow law, the unapproximated nonlinear orthotropic rheology and the nonlinear extension to the GOLF (Martín and others, 2009), respectively. Contours for
Glen’s law are mostly covered by those for the unapproximated nonlinear orthotropic rheology. (b) As in (a), but with contours of |ėxz |.
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