Voice in T_{1b} glottic tumours, intratympanic steroids for salvage in sensorineural hearing loss, intranasal steroids for obstructive sleep apnoea and a new procedure for post-radiation nasal stenosis

Intratympanic drug injection is now a valid alternative to systemic administration and is being widely used for an increasing number of inner-ear disorders. Its importance was highlighted in a recent article published in The Lancet, which compared the outcome of two drugs administered intratympanically for Ménière’s disease.1

Intratympanic steroid administration has also been used as a first-line therapy for sudden sensorineural hearing loss,2 sudden infective sensorineural hearing loss3 and now as a salvage treatment for profound idiopathic sudden sensorineural hearing loss.4 This paper by Dai et al. reports on patients with sudden sensorineural hearing loss in whom conventional treatment had failed.4

The management of nasal stenosis that may follow chemoradiation for nasopharyngeal carcinoma has long been a problem. Apart from patients’ distress associated with this condition, the monitoring of any tumour recurrence may become less obvious. Wilmot and Hathorn describe their endoscopic technique for this difficult condition.5 Their method holds promise, and may avoid the use of nasal stents and auricular grafts.6 The procedure can be conducted as a day case.

Voice is not always the first consideration in the treatment outcomes for tumour (T) stage T_{1b} glottic cancer, and radiotherapy is widely used. In a useful paper with substantial long-term results, Song et al. evaluated the oncological and voice outcomes of transoral laser microsurgery for T_{1b} glottic cancer patients.7 The study revealed relatively high rates of oncological control and acceptable voice outcomes, showing its utility as a primary treatment modality for T_{1b} glottic cancer.

Management of upper airway obstruction in Pierre Robin sequence has at times required a tracheostomy over glossopexy.8 In this issue of The Journal of Laryngology & Otology, Camacho and colleagues show that tongue-lip adhesion and tongue repositioning can improve apnoea-hypopnoea index and oxygenation parameters in affected children.9

Intranasal steroids, by their anti-inflammatory effect of reducing cellular proliferation and the production of pro-inflammatory cytokines, may lead to a reduction in upper airway resistance, which would be of benefit in the management of obstructive sleep apnoea associated with adenotonsillar hypertrophy. This suggestion has been reviewed by Sakarya et al.10 They report a decrease in the number of children requiring surgery for adenotonsillar hypertrophy.

References
3 Heywood RL, Ifeacho SN, Narula AA. Effect of intratympanic steroid administration on sensorineural hearing loss associated with acute otitis media. J Laryngol Otol 2016;130:532–5
5 Wilmot VV, Hathorn I. Surgical management of nasal stenosis following chemoradiation for nasopharyngeal carcinoma. J Laryngol Otol 2017;131:429–32