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These lecture notes and example problems are based on a course given at the
University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is
involved in a very wide range of astrophysical phenomena, such as the formation and
internal dynamics of stars and giant planets, the workings of jets and accretion discs
around stars and black holes and the dynamics of the expanding Universe. Effects that
can be important in astrophysical fluids include compressibility, self-gravitation and
the dynamical influence of the magnetic field that is ‘frozen in’ to a highly conducting
plasma. The basic models introduced and applied in this course are Newtonian gas
dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The
mathematical structure of the governing equations and the associated conservation
laws are explored in some detail because of their importance for both analytical
and numerical methods of solution, as well as for physical interpretation. Linear
and nonlinear waves, including shocks and other discontinuities, are discussed. The
spherical blast wave resulting from a supernova, and involving a strong shock, is
a classic problem that can be solved analytically. Steady solutions with spherical
or axial symmetry reveal the physics of winds and jets from stars and discs. The
linearized equations determine the oscillation modes of astrophysical bodies, as well
as their stability and their response to tidal forcing.
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1. Introduction
1.1. Areas of application

Astrophysical fluid dynamics (AFD) is a theory relevant to the description of the
interiors of stars and planets, exterior phenomena such as discs, winds and jets and
also the interstellar medium, the intergalactic medium and cosmology itself. A fluid
description is not applicable (i) in regions that are solidified, such as the rocky or
icy cores of giant planets (under certain conditions) and the crusts of neutron stars,
and (ii) in very tenuous regions where the medium is not sufficiently collisional (see
§ 2.9.3).

Important areas of application include:

(i) Instabilities in astrophysical fluids
(ii) Convection

(iii) Differential rotation and meridional flows in stars
(iv) Stellar oscillations driven by convection, instabilities or tidal forcing
(v) Astrophysical dynamos

(vi) Magnetospheres of stars, planets and black holes
(vii) Interacting binary stars and Roche-lobe overflow

(viii) Tidal disruption and stellar collisions
(ix) Supernovae
(x) Planetary nebulae

(xi) Jets and winds from stars and discs
(xii) Star formation and the physics of the interstellar medium
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(xiii) Astrophysical discs, including protoplanetary discs, accretion discs in interacting
binary stars and galactic nuclei, planetary rings, etc.

(xiv) Other accretion flows (Bondi, Bondi–Hoyle, etc.)
(xv) Processes related to planet formation and planet–disc interactions

(xvi) Planetary atmospheric dynamics
(xvii) Galaxy clusters and the physics of the intergalactic medium

(xviii) Cosmology and structure formation

1.2. Theoretical varieties
There are various flavours of AFD in common use. The basic model involves a
compressible, inviscid fluid and is Newtonian (i.e. non-relativistic). This is known
as hydrodynamics (HD) or gas dynamics (to distinguish it from incompressible
hydrodynamics). The thermal physics of the fluid may be treated in different ways,
either by assuming it to be isothermal or adiabatic, or by including radiative processes
in varying levels of detail.

Magnetohydrodynamics (MHD) generalizes this theory by including the dynamical
effects of a magnetic field. Often the fluid is assumed to be perfectly electrically
conducting (ideal MHD). One can also include the dynamical (rather than thermal)
effects of radiation, resulting in a theory of radiation (magneto)hydrodynamics.
Dissipative effects such as viscosity and resistivity can be included. All these theories
can also be formulated in a relativistic framework.

(i) HD: hydrodynamics
(ii) MHD: magnetohydrodynamics

(iii) RHD: radiation hydrodynamics
(iv) RMHD: radiation magnetohydrodynamics
(v) GRHD: general relativistic hydrodynamics

(vi) GRRMHD: general relativistic radiation magnetohydrodynamics, etc.

1.3. Characteristic features
AFD typically differs from ‘laboratory’ or ‘engineering’ fluid dynamics in the relative
importance of certain effects. Compressibility and gravitation are often important in
AFD, while magnetic fields, radiation forces and relativistic phenomena are important
in some applications. Effects that are often unimportant in AFD include viscosity,
surface tension and the presence of solid boundaries.

2. Ideal gas dynamics
2.1. Fluid variables

A fluid is characterized by a velocity field u(x, t) and two independent thermodynamic
properties. Most useful are the dynamical variables: the pressure p(x, t) and the mass
density ρ(x, t). Other properties, e.g. temperature T , can be regarded as functions of
p and ρ. The specific volume (volume per unit mass) is v = 1/ρ.

We neglect the possible complications of variable chemical composition associated
with chemical and nuclear reactions, ionization and recombination.

2.2. Eulerian and Lagrangian viewpoints
In the Eulerian viewpoint we consider how fluid properties vary in time at a point that
is fixed in space, i.e. attached to the (usually inertial) coordinate system. The Eulerian
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FIGURE 1. Examples of material line, surface and volume elements.

time-derivative is simply the partial differential operator

∂

∂t
. (2.1)

In the Lagrangian viewpoint we consider how fluid properties vary in time at a point
that moves with the fluid at velocity u(x, t). The Lagrangian time derivative is then

D
Dt
= ∂

∂t
+ u · ∇. (2.2)

2.3. Material points and structures
A material point is an idealized fluid element, a point that moves with the bulk
velocity u(x, t) of the fluid. (Note that the true particles of which the fluid is
composed have in addition a random thermal motion.) Material curves, surfaces and
volumes are geometrical structures composed of fluid elements; they move with the
fluid flow and are distorted by it.

An infinitesimal material line element δx (figure 1) evolves according to

Dδx
Dt
= δu= δx · ∇u. (2.3)

It changes its length and/or orientation in the presence of a velocity gradient. (Since
δx is only a time-dependent vector rather than a vector field, the time derivative could
be written as an ordinary derivative d/dt. The notation D/Dt is used here to remind
us that δx is a material structure that moves with the fluid.)

Infinitesimal material surface and volume elements can be defined from two or three
material line elements according to the vector product and the triple scalar product
(figure 1)

δS= δx(1) × δx(2), δV = δx(1) · δx(2) × δx(3). (2.4a,b)

They therefore evolve according to

DδS
Dt
= (∇ · u) δS− (∇u) · δS,

DδV
Dt
= (∇ · u) δV, (2.5a,b)

as follows from the above equations (exercise). The second result is easier to
understand: the volume element increases when the flow is divergent. These equations
are most easily derived using Cartesian tensor notation. In this notation the equation
for δS reads

DδSi

Dt
= ∂uj

∂xj
δSi − ∂uj

∂xi
δSj. (2.6)
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2.4. Equation of mass conservation
The equation of mass conservation,

∂ρ

∂t
+∇ · (ρu)= 0, (2.7)

has the typical form of a conservation law: ρ is the mass density (mass per unit
volume) and ρu is the mass flux density (mass flux per unit area). An alternative
form of the same equation is

Dρ
Dt
=−ρ∇ · u. (2.8)

If δm= ρδV is a material mass element, it can be seen that mass is conserved in the
form

Dδm
Dt
= 0. (2.9)

2.5. Equation of motion
The equation of motion,

ρ
Du
Dt
=−ρ∇Φ −∇p, (2.10)

derives from Newton’s second law per unit volume with gravitational and pressure
forces. Φ(x, t) is the gravitational potential and g = −∇Φ is the gravitational field.
The force due to pressure acting on a volume V with bounding surface S is

−
∫

S
p dS=

∫
V
(−∇p) dV. (2.11)

Viscous forces are neglected in ideal gas dynamics.

2.6. Poisson’s equation
The gravitational potential is related to the mass density by Poisson’s equation,

∇2Φ = 4πGρ, (2.12)

where G is Newton’s constant. The solution

Φ(x, t)=Φint +Φext =−G
∫

V

ρ(x′, t)
|x′ − x| d

3x′ −G
∫

V̂

ρ(x′, t)
|x′ − x| d

3x′ (2.13)

generally involves contributions from both the fluid region V under consideration and
the exterior region V̂ .

A non-self-gravitating fluid is one of negligible mass for which Φint can be
neglected. More generally, the Cowling approximation1 consists of treating Φ as
being specified in advance, so that Poisson’s equation is not coupled to the other
equations.

1Thomas George Cowling (1906–1990), British.
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2.7. Thermal energy equation
In the absence of non-adiabatic heating (e.g. by viscous dissipation or nuclear
reactions) and cooling (e.g. by radiation or conduction),

Ds
Dt
= 0, (2.14)

where s is the specific entropy (entropy per unit mass). Fluid elements undergo
reversible thermodynamic changes and preserve their entropy.

This condition is violated in shocks (see § 6.3).
The thermal variables (T, s) can be related to the dynamical variables (p, ρ) via an

equation of state and standard thermodynamic identities. The most important case is
that of an ideal gas together with black-body radiation,

p= pg + pr = kρT
µmH

+ 4σT4

3c
, (2.15)

where k is Boltzmann’s constant, mH is the mass of the hydrogen atom, σ is Stefan’s
constant and c is the speed of light. µ is the mean molecular weight (the average
mass of the particles in units of mH), equal to 2.0 for molecular hydrogen, 1.0 for
atomic hydrogen, 0.5 for fully ionized hydrogen and approximately 0.6 for ionized
matter of typical cosmic abundances. Radiation pressure is usually negligible except
in the centres of high-mass stars and in the immediate environments of neutron stars
and black holes. The pressure of an ideal gas is often written in the form RρT/µ,
where R= k/mH is a version of the universal gas constant.

We define the first adiabatic exponent

Γ1 =
(
∂ ln p
∂ ln ρ

)
s

, (2.16)

which is related to the ratio of specific heat capacities

γ = cp

cv
=

T
(
∂s
∂T

)
p

T
(
∂s
∂T

)
v

(2.17)

by (exercise)
Γ1 = χργ , (2.18)

where

χρ =
(
∂ ln p
∂ ln ρ

)
T

(2.19)

can be found from the equation of state. We can then rewrite the thermal energy
equation as

Dp
Dt
= Γ1p

ρ

Dρ
Dt
=−Γ1p∇ · u. (2.20)

For an ideal gas with negligible radiation pressure, χρ = 1 and so Γ1= γ . Adopting
this very common assumption, we write

Dp
Dt
=−γ p∇ · u. (2.21)
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2.8. Simplified models
A perfect gas may be defined as an ideal gas with constant cv, cp, γ and µ.
Equipartition of energy for a classical gas with n degrees of freedom per particle
gives γ = 1+ 2/n. For a classical monatomic gas with n= 3 translational degrees of
freedom, γ = 5/3. This is relevant for fully ionized matter. For a classical diatomic
gas with two additional rotational degrees of freedom, n = 5 and γ = 7/5. This is
relevant for molecular hydrogen. In reality Γ1 is variable when the gas undergoes
ionization or when the gas and radiation pressures are comparable. The specific
internal energy (or thermal energy) of a perfect gas is

e= p
(γ − 1)ρ

[
= n
µmH

1
2

kT
]
. (2.22)

(Note that each particle has an internal energy of kT/2 per degree of freedom, and
the number of particles per unit mass is 1/µmH .)

A barotropic fluid is an idealized situation in which the relation p(ρ) is known in
advance. We can then dispense with the thermal energy equation. e.g. if the gas is
strictly isothermal and perfect, then p= c2

sρ with cs= const. being the isothermal sound
speed. Alternatively, if the gas is strictly homentropic and perfect, then p=Kργ with
K = const.

An incompressible fluid is an idealized situation in which Dρ/Dt = 0, implying
∇ · u = 0. This can be achieved formally by taking the limit γ → ∞. The
approximation of incompressibility eliminates acoustic phenomena from the dynamics.

The ideal gas law itself is not valid at very high densities or where quantum
degeneracy is important.

2.9. Microphysical basis
It is useful to understand the way in which the fluid dynamical equations are derived
from microphysical considerations. The simplest model involves identical neutral
particles of mass m and negligible size with no internal degrees of freedom.

2.9.1. The Boltzmann equation
Between collisions, particles follow Hamiltonian trajectories in their six-dimensional

(x, v) phase space:

ẋi = vi, v̇i = ai =−∂Φ
∂xi
. (2.23a,b)

The distribution function f (x, v, t) specifies the number density of particles in phase
space. The velocity moments of f define the number density n(x, t) in real space, the
bulk velocity u(x, t) and the velocity dispersion c(x, t) according to∫

f d3v = n,
∫

vf d3v = nu,
∫
|v − u|2f d3v = 3nc2. (2.24a−c)

Equivalently, ∫
v2f d3v = n(u2 + 3c2). (2.25)

The relation between velocity dispersion and temperature is kT =mc2.
In the absence of collisions, f is conserved following the Hamiltonian flow in

phase space. This is because particles are conserved and the flow in phase space
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is incompressible (Liouville’s theorem). More generally, f evolves according to
Boltzmann’s equation,

∂f
∂t
+ vj

∂f
∂xj
+ aj

∂f
∂vj
=
(
∂f
∂t

)
c

. (2.26)

The collision term on the right-hand side is a complicated integral operator but has
three simple properties corresponding to the conservation of mass, momentum and
energy in collisions:∫

m
(
∂f
∂t

)
c

d3v= 0,
∫

mv

(
∂f
∂t

)
c

d3v= 0,
∫

1
2

mv2

(
∂f
∂t

)
c

d3v= 0. (2.27a−c)

The collision term is local in x (not even involving derivatives) although it does
involve integrals over v. The equation (∂f /∂t)c = 0 has the general solution

f = fM = (2πc2)−3/2n exp
(
−|v − u|2

2c2

)
, (2.28)

with parameters n, u and c that may depend on x. This is the Maxwellian distribution.

2.9.2. Derivation of fluid equations
A crude but illuminating model of the collision operator is the Bhatnagar–Gross–

Krook (BGK) approximation (
∂f
∂t

)
c

≈−1
τ
( f − fM), (2.29)

where fM is a Maxwellian distribution with the same n, u and c as f and τ is the
relaxation time. This can be identified approximately with the mean free flight time
of particles between collisions. In other words the collisions attempt to restore a
Maxwellian distribution on a characteristic time scale τ . They do this by randomizing
the particle velocities in a way consistent with the conservation of momentum and
energy.

If the characteristic time scale of the fluid flow is much greater than τ , then the
collision term dominates the Boltzmann equation and f must be very close to fM. This
is the hydrodynamic limit.

The velocity moments of fM can be determined from standard Gaussian integrals, in
particular (exercise) ∫

fM d3v = n,
∫
vi fM d3v = nui, (2.30a,b)∫

vivjfM d3v = n(uiuj + c2δij),

∫
v2vi fM d3v = n(u2 + 5c2)ui. (2.31a,b)

We obtain equations for mass, momentum and energy by taking moments of the
Boltzmann equation weighted by (m, mvi, mv2/2). In each case the collision term
integrates to zero because of its conservative properties, and the ∂/∂vj term can be
integrated by parts. We replace f with fM when evaluating the left-hand sides and note
that mn= ρ:

∂ρ

∂t
+ ∂

∂xi
(ρui)= 0, (2.32)
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∂

∂t
(ρui)+ ∂

∂xj

[
ρ(uiuj + c2δij)

]− ρai = 0, (2.33)

∂

∂t

(
1
2
ρu2 + 3

2
ρc2

)
+ ∂

∂xi

[(
1
2
ρu2 + 5

2
ρc2

)
ui

]
− ρuiai = 0. (2.34)

These are equivalent to the equations of ideal gas dynamics in conservative form (see
§ 4) for a monatomic ideal gas (γ = 5/3). The specific internal energy is e= (3/2)c2=
(3/2)kT/m.

This approach can be generalized to deal with molecules with internal degrees of
freedom and also to plasmas or partially ionized gases where there are various species
of particle with different charges and masses. The equations of MHD can be derived
by including the electromagnetic forces in Boltzmann’s equation.

2.9.3. Validity of a fluid approach
The essential idea here is that deviations from the Maxwellian distribution are

small when collisions are frequent compared to the characteristic time scale of the
flow. In higher-order approximations these deviations can be estimated, leading to the
equations of dissipative gas dynamics including transport effects (viscosity and heat
conduction).

The fluid approach breaks down if the mean flight time τ is not much less than
the characteristic time scale of the flow, or if the mean free path λ ≈ cτ between
collisions is not much less than the characteristic length scale of the flow. λ can be
very long (measured in astronomical units or parsecs) in very tenuous gases such as
the interstellar medium, but may still be smaller than the size of the system.

Some typical order-of-magnitude estimates:
Solar-type star: centre ρ ∼ 102 g cm−3, T ∼ 107 K; photosphere ρ ∼ 10−7 g cm−3,

T ∼ 104 K; corona ρ ∼ 10−15 g cm−3, T ∼ 106 K.
Interstellar medium: molecular clouds n ∼ 103 cm−3, T ∼ 10 K; cold medium

(neutral) n ∼ 10 − 100 cm−3, T ∼ 102 K; warm medium (neutral/ionized) n ∼
0.1− 1 cm−3, T ∼ 104 K; hot medium (ionized) n∼ 10−3 − 10−2 cm−3, T ∼ 106 K.

The Coulomb cross-section for ‘collisions’ (i.e. large-angle scatterings) between
charged particles (electrons or ions) is σ ≈ 1× 10−4(T/K)−2 cm2. The mean free path
is λ= 1/(nσ).

Related examples (see appendix A): A.1–A.4.

3. Ideal magnetohydrodynamics
3.1. Elementary derivation of the MHD equations

Magnetohydrodynamics (MHD) is the dynamics of an electrically conducting fluid (a
fully or partially ionized gas or a liquid metal) containing a magnetic field. It is a
fusion of fluid dynamics and electromagnetism.

3.1.1. Galilean electromagnetism
The equations of Newtonian gas dynamics are invariant under the Galilean

transformation to a frame of reference moving with uniform velocity v,

x′ = x− vt, t′ = t. (3.1a,b)
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Under this change of frame, the fluid velocity transforms according to

u′ = u− v, (3.2)

while scalar variables such as p, ρ and Φ are invariant. The Lagrangian time derivative
D/Dt is also invariant, because the partial derivatives transform according to

∇
′ =∇, ∂

∂t′
= ∂

∂t
+ v · ∇. (3.3a,b)

In Maxwell’s electromagnetic theory the electric and magnetic fields E and B are
governed by the equations

∂B
∂t
=−∇×E, ∇ ·B= 0, ∇×B=µ0

(
J+ ε0

∂E
∂t

)
, ∇ ·E= ρe

ε0
, (3.4a−d)

where µ0 and ε0 are the vacuum permeability and permittivity, J is the electric
current density and ρe is the electric charge density. (In these notes we use rationalized
(e.g. SI) units for electromagnetism. In astrophysics it is also common to use Gaussian
units, which are discussed in appendix B.)

It is well known that Maxwell’s equations are invariant under the Lorentz
transformation of special relativity, with c= (µ0ε0)

−1/2 being the speed of light. These
equations cannot be consistently coupled with those of Newtonian gas dynamics,
which are invariant under the Galilean transformation. To derive a consistent
Newtonian theory of MHD, valid for situations in which the fluid motions are
slow compared to the speed of light, we must use Maxwell’s equations without the
displacement current ε0 ∂E/∂t,

∂B
∂t
=−∇×E, ∇ ·B= 0, ∇×B=µ0J. (3.5a−c)

(We will not require the fourth Maxwell equation, involving ∇ ·E, because the charge
density will be found to be unimportant.) It is easily verified (exercise) that these pre-
Maxwell equations2 are indeed invariant under the Galilean transformation, provided
that the fields transform according to

E′ =E+ v×B, B′ =B, J′ = J. (3.6a−c)

These relations correspond to the limit of the Lorentz transformation for electro-
magnetic fields3 when |v| � c and |E| � c|B|.

Under the pre-Maxwell theory, the equation of charge conservation takes the
simplified form ∇ · J = 0; this is analogous to the use of ∇ · u = 0 as the equation
of mass conservation in the incompressible (highly subsonic) limit of gas dynamics.
The equation of energy conservation takes the simplified form

∂

∂t

(
B2

2µ0

)
+∇ ·

(
E×B
µ0

)
= 0, (3.7)

in which the energy density, B2/2µ0, is purely magnetic (because |E| � c|B|), while
the energy flux density has the usual form of the Poynting vector E×B/µ0. We will
verify the self-consistency of the approximations made in Newtonian MHD in § 3.1.4.

2It was by introducing the displacement current that Maxwell identified electromagnetic waves, so it is
appropriate that a highly subluminal approximation should neglect this term.

3This was called the magnetic limit of Galilean electromagnetism by Le Bellac & Lévy-Leblond (1973).
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3.1.2. Induction equation
In the ideal MHD approximation we regard the fluid as a perfect electrical

conductor. The electric field in the rest frame of the fluid therefore vanishes, implying
that

E=−u×B (3.8)

in a frame in which the fluid velocity is u(x, t). This condition can be regarded as the
limit of a constitutive relation such as Ohm’s law, in which the effects of resistivity
(i.e. finite conductivity) are neglected.

From Maxwell’s equations, we then obtain the ideal induction equation,

∂B
∂t
=∇× (u×B). (3.9)

This is an evolutionary equation for B alone, E and J having been eliminated. The
divergence of the induction equation,

∂

∂t
(∇ ·B)= 0, (3.10)

ensures that the solenoidal character of B is preserved.

3.1.3. The Lorentz force
A fluid carrying a current density J in a magnetic field B experiences a bulk Lorentz

force
Fm = J×B= 1

µ0
(∇×B)×B (3.11)

per unit volume. This can be understood as the sum of the Lorentz forces on
individual particles of charge q and velocity v,∑

qv×B=
(∑

qv
)
×B. (3.12)

(The electrostatic force can be shown to be negligible in the limit relevant to
Newtonian MHD; see § 3.1.4.)

In Cartesian coordinates

(µ0Fm)i = εijk

(
εjlm

∂Bm

∂xl

)
Bk

=
(
∂Bi

∂xk
− ∂Bk

∂xi

)
Bk

= Bk
∂Bi

∂xk
− ∂

∂xi

(
B2

2

)
. (3.13)

Thus

Fm = 1
µ0

B · ∇B−∇
(

B2

2µ0

)
. (3.14)

The first term can be interpreted as a curvature force due to a magnetic tension Tm=
B2/µ0 per unit area in the field lines; if the field is of constant magnitude then this
term is equal to Tm times the curvature of the field lines, and is directed towards the
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centre of curvature. The second term is the gradient of an isotropic magnetic pressure

pm = B2

2µ0
, (3.15)

which is also equal to the energy density of the magnetic field.
The magnetic tension gives rise to Alfvén waves4 (see later), which travel parallel

to the magnetic field with characteristic speed

va =
(

Tm

ρ

)1/2

= B
(µ0ρ)1/2

, (3.16)

the Alfvén speed. This is often considered as a vector Alfvén velocity,

va = B
(µ0ρ)1/2

. (3.17)

The magnetic pressure also affects the propagation of sound waves, which become
magnetoacoustic waves (or magnetosonic waves; see later).

The combination

Π = p+ B2

2µ0
(3.18)

is often referred to as the total pressure, while the ratio

β = p
B2/2µ0

(3.19)

is known as the plasma beta.

3.1.4. Self-consistency of approximations
Three effects neglected in a Newtonian theory of MHD are (i) the displacement

current in Maxwell’s equations (compared to the electric current), (ii) the bulk
electrostatic force on the fluid (compared to the magnetic Lorentz force) and (iii)
the electrostatic energy (compared to the magnetic energy). We can verify the
self-consistency of these approximations by using order-of-magnitude estimates or
scaling relations. If the fluid flow has a characteristic length scale L, time scale
T , velocity U ∼ L/T and magnetic field B, then the electric field can be estimated
from (3.8) as E∼UB. The electric current density and charge density can be estimated
from Maxwell’s equations as J ∼ µ−1

0 B/L and ρe ∼ ε0E/L. Hence the ratios of the
three neglected effects to the terms that are retained in Newtonian MHD can be
estimated as follows:

ε0|∂E/∂t|
|J| ∼ ε0UB/T

µ−1
0 B/L

∼ U2

c2
, (3.20)

|ρeE|
|J×B| ∼

ε0E2/L
µ−1

0 B2/L
∼ U2

c2
, (3.21)

ε0|E|2/2
|B|2/2µ0

∼ U2

c2
. (3.22)

Therefore Newtonian MHD corresponds to a consistent approximation of relativistic
MHD for highly subluminal flows that is correct to the leading order in the small
parameter U2/c2.

4Hannes Olof Gösta Alfvén (1908–1995), Swedish. Nobel Prize in Physics (1970) ‘for fundamental work
and discoveries in magnetohydrodynamics with fruitful applications in different parts of plasma physics’.
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3.1.5. Summary of the MHD equations
The full set of ideal MHD equations is

∂ρ

∂t
+∇ · (ρu)= 0, (3.23)

ρ
Du
Dt
=−ρ∇Φ −∇p+ 1

µ0
(∇×B)×B, (3.24)

Ds
Dt
= 0, (3.25)

∂B
∂t
=∇× (u×B), (3.26)

∇ ·B= 0, (3.27)

together with the equation of state, Poisson’s equation, etc., as required. Most of these
equations can be written in at least one other way that may be useful in different
circumstances.

These equations display the essential nonlinearity of MHD. When the velocity
field is prescribed, an artifice known as the kinematic approximation, the induction
equation is a relatively straightforward linear evolutionary equation for the magnetic
field. However, a sufficiently strong magnetic field will modify the velocity field
through its dynamical effect, the Lorentz force. This nonlinear coupling leads to a
rich variety of behaviour. Of course, the purely hydrodynamic nonlinearity of the
u · ∇u term, which is responsible for much of the complexity of fluid dynamics, is
still present.

3.2. Physical interpretation of MHD
There are two aspects to MHD: the advection of B by u (induction equation) and the
dynamical back-reaction of B on u (Lorentz force).

3.2.1. Kinematics of the magnetic field
The ideal induction equation

∂B
∂t
=∇× (u×B) (3.28)

has a beautiful geometrical interpretation: the magnetic field lines are ‘frozen in’ to the
fluid and can be identified with material curves. This is sometimes known as Alfvén’s
theorem.

One way to show this result is to use the identity

∇× (u×B)=B · ∇u−B(∇ · u)− u · ∇B+ u(∇ ·B) (3.29)

to write the induction equation in the form

DB
Dt
=B · ∇u−B(∇ · u), (3.30)

and use the equation of mass conservation,

Dρ
Dt
=−ρ∇ · u, (3.31)
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to obtain
D
Dt

(
B
ρ

)
=
(

B
ρ

)
· ∇u. (3.32)

This is exactly the same equation satisfied by a material line element δx (2.3).
Therefore a magnetic field line (an integral curve of B/ρ) is advected and distorted
by the fluid in the same way as a material curve.

A complementary property is that the magnetic flux δΦ =B · δS through a material
surface element is conserved:

DδΦ
Dt
= DB

Dt
· δS+B ·

DδS
Dt

=
(

Bj
∂ui

∂xj
− Bi

∂uj

∂xj

)
δSi + Bi

(
∂uj

∂xj
δSi − ∂uj

∂xi
δSj

)
= 0. (3.33)

By extension, we have conservation of the magnetic flux passing through any material
surface.

Precisely the same equation as the ideal induction equation,

∂ω

∂t
=∇× (u×ω), (3.34)

is satisfied by the vorticity ω = ∇ × u in homentropic or barotropic ideal fluid
dynamics in the absence of a magnetic field, in which case the vortex lines are
‘frozen in’ to the fluid (see Example A.2). The conserved quantity that is analogous
to the magnetic flux through a material surface is the flux of vorticity through that
surface, which, by Stokes’s theorem, is equivalent to the circulation

∮
u · dx around

the bounding curve. However, the fact that ω and u are directly related by the curl
operation, whereas in MHD B and u are indirectly related through the equation of
motion and the Lorentz force, means that the analogy between vorticity dynamics
and MHD is limited in scope.

Related examples: A.5, A.6.

3.2.2. The Lorentz force
The Lorentz force per unit volume,

Fm = 1
µ0

B · ∇B−∇
(

B2

2µ0

)
, (3.35)

can also be written as the divergence of the Maxwell stress tensor:

Fm =∇ ·M, M = 1
µ0

(
BB− B2

2
I

)
, (3.36)

where I is the identity tensor. (The electric part of the electromagnetic stress tensor
is negligible in the limit relevant for Newtonian MHD, for the same reason that the
electrostatic energy is negligible.) In Cartesian coordinates

(Fm)i = ∂Mji

∂xj
, M ij = 1

µ0

(
BiBj − B2

2
δij

)
. (3.37a,b)
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If the magnetic field is locally aligned with the x-axis, then

M =
Tm 0 0

0 0 0
0 0 0

−
pm 0 0

0 pm 0
0 0 pm

 , (3.38)

showing the magnetic tension and pressure.
Combining the ideas of magnetic tension and a frozen-in field leads to the picture

of field lines as elastic strings embedded in the fluid. Indeed there is a close analogy
between MHD and the dynamics of dilute solutions of long-chain polymer molecules.
The magnetic field imparts elasticity to the fluid.

3.2.3. Differential rotation and torsional Alfvén waves
We first consider the kinematic behaviour of a magnetic field in the presence of a

prescribed velocity field involving differential rotation. In cylindrical polar coordinates
(r, φ, z), let

u= rΩ(r, z) eφ. (3.39)
Consider an axisymmetric magnetic field, which we separate into poloidal (meridional:
r and z) and toroidal (azimuthal: φ) parts:

B=Bp(r, z, t)+ Bφ(r, z, t) eφ. (3.40)

The ideal induction equation reduces to (exercise)

∂Bp

∂t
= 0,

∂Bφ
∂t
= rBp · ∇Ω. (3.41)

Differential rotation winds the poloidal field to generate a toroidal field. To obtain
a steady state without winding, we require the angular velocity to be constant along
each magnetic field line:

Bp · ∇Ω = 0, (3.42)
a result known as Ferraro’s law of isorotation5.

There is an energetic cost to winding the field, as work is done against magnetic
tension. In a dynamical situation a strong magnetic field tends to enforce isorotation
along its length.

We now generalize the analysis to allow for axisymmetric torsional oscillations:

u= rΩ(r, z, t) eφ. (3.43)

The azimuthal component of the equation of motion is (exercise)

ρr
∂Ω

∂t
= 1
µ0r

Bp · ∇(rBφ). (3.44)

This combines with the induction equation to give

∂2Ω

∂t2
= 1
µ0ρr2

Bp · ∇(r2Bp · ∇Ω). (3.45)

This equation describes torsional Alfvén waves. For example, if Bp = Bz ez is vertical
and uniform, then

∂2Ω

∂t2
= v2

a
∂2Ω

∂z2
. (3.46)

This is not strictly an exact nonlinear analysis because we have neglected the force
balance (and indeed motion) in the meridional plane.

5Vincenzo Ferraro (1902–1974), British.
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3.2.4. Force-free fields
In regions of low density, such as the solar corona, the magnetic field may be

dynamically dominant over the effects of inertia, gravity and gas pressure. Under these
circumstances we have (approximately) a force-free magnetic field such that

(∇×B)×B= 0. (3.47)

Vector fields B satisfying this equation are known in a wider mathematical context as
Beltrami fields. Since ∇×B must be parallel to B, we may write

∇×B= λB, (3.48)

for some scalar field λ(x). The divergence of this equation is

0=B · ∇λ, (3.49)

so that λ is constant along each magnetic field line. In the special case λ = const.,
known as a linear force-free magnetic field, the curl of (3.48) results in the Helmholtz
equation

−∇2B= λ2B, (3.50)

which admits a wide variety of non-trivial solutions.
A subset of force-free magnetic fields consists of potential or current-free magnetic

fields for which
∇×B= 0. (3.51)

In a true vacuum, the magnetic field must be potential. However, only an extremely
low density of charge carriers (i.e. electrons) is needed to make the force-free
description more relevant.

An example of a force-free field in cylindrical polar coordinates (r, φ, z) is

B= Bφ(r) eφ + Bz(r) ez,

∇×B=−dBz

dr
eφ + 1

r
d
dr
(rBφ) ez.

 (3.52)

Now ∇×B= λB implies

− 1
r

d
dr

(
r

dBz

dr

)
= λ2Bz, (3.53)

which is the z component of the Helmholtz equation. The solution regular at r= 0 is

Bz = B0J0(λr), Bφ = B0J1(λr), (3.54a,b)

where Jn is the Bessel function of order n (figure 2). (Note that J0(x) satisfies (xJ′0)
′+

xJ0 = 0 and J1(x) = −J′0(x).) The helical nature of this field is typical of force-free
fields with λ 6= 0.

When applied to a infinite cylinder (e.g. as a simplified model of a magnetized
astrophysical jet), the solution could be extended from the axis to the first zero of
J1 and then matched to a uniform external axial field Bz. In this case the net axial
current is zero. Alternatively the solution could be extended from the axis to the first
zero of J0 and matched to an external azimuthal field Bφ ∝ r−1 generated by the net
axial current.
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FIGURE 2. The Bessel functions J0(x) and J1(x) from the origin to the first zero of J1.

FIGURE 3. A buoyant magnetic flux tube.

3.2.5. Magnetostatic equilibrium and magnetic buoyancy
A magnetostatic equilibrium is a static solution (u= 0) of the equation of motion,

i.e. one satisfying

0=−ρ∇Φ −∇p+ 1
µ0
(∇×B)×B, (3.55)

together with ∇ ·B= 0.
While it is possible to find solutions in which the forces balance in this way,

inhomogeneities in the magnetic field typically result in a lack of equilibrium. A
magnetic flux tube (figure 3) is an idealized situation in which the magnetic field is
localized to the interior of a tube and vanishes outside. To balance the total pressure
at the interface, the gas pressure must be lower inside. Unless the temperatures
are different, the density is lower inside. In a gravitational field the tube therefore
experiences an upward buoyancy force and tends to rise.

Related examples: A.7–A.9.
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4. Conservation laws, symmetries and hyperbolic structure
4.1. Introduction

There are various ways in which a quantity can be said to be ‘conserved’ in fluid
dynamics or MHD. If a quantity has a density (amount per unit volume) q(x, t) that
satisfies an equation of the conservative form

∂q
∂t
+∇ ·F= 0, (4.1)

then the vector field F(x, t) can be identified as the flux density (flux per unit area)
of the quantity. The rate of change of the total amount of the quantity in a time-
independent volume V ,

Q=
∫

V
q dV, (4.2)

is then equal to minus the flux of F through the bounding surface S:

dQ
dt
=−

∫
V
(∇ ·F) dV =−

∫
S

F · dS. (4.3)

If the boundary conditions on S are such that this flux vanishes, then Q is constant;
otherwise, changes in Q can be accounted for by the flux of F through S. In this
sense the quantity is said to be conserved. The prototype is mass, for which q = ρ
and F= ρu.

A material invariant is a scalar field f (x, t) for which

Df
Dt
= 0, (4.4)

which implies that f is constant for each fluid element, and is therefore conserved
following the fluid motion. A simple example is the specific entropy in ideal
fluid dynamics. When combined with mass conservation, this yields an equation
in conservative form,

∂

∂t
(ρf )+∇ · (ρf u)= 0. (4.5)

4.2. Synthesis of the total energy equation
Starting from the ideal MHD equations, we construct the total energy equation piece
by piece.

Kinetic energy:

ρ
D
Dt

(
1
2

u2

)
= ρu ·

Du
Dt
=−ρu · ∇Φ − u · ∇p+ 1

µ0
u · [(∇×B)×B] . (4.6)

Gravitational energy (assuming initially that the system is non-self-gravitating and that
Φ is independent of t):

ρ
DΦ
Dt
= ρu · ∇Φ. (4.7)

Internal (thermal) energy (using the fundamental thermodynamic identity de= T ds−
p dv):

ρ
De
Dt
= ρT

Ds
Dt
+ p

D ln ρ
Dt
=−p∇ · u. (4.8)
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Sum of these three:

ρ
D
Dt

(
1
2

u2 +Φ + e
)
=−∇ · (pu)+ 1

µ0
u · [(∇×B)×B] . (4.9)

The last term can be rewritten as

1
µ0

u · [(∇×B)×B]= 1
µ0
(∇×B) · (−u×B)= 1

µ0
(∇×B) ·E. (4.10)

Using mass conservation:

∂

∂t

[
ρ

(
1
2

u2 +Φ + e
)]
+∇ ·

[
ρu
(

1
2

u2 +Φ + e
)
+ pu

]
= 1
µ0
(∇×B) ·E. (4.11)

Magnetic energy:

∂

∂t

(
B2

2µ0

)
= 1
µ0

B ·
∂B
∂t
=− 1

µ0
B · ∇×E. (4.12)

Total energy:

∂

∂t

[
ρ

(
1
2

u2 +Φ + e
)
+ B2

2µ0

]
+∇ ·

[
ρu
(

1
2

u2 +Φ + h
)
+ E×B

µ0

]
= 0, (4.13)

where h= e+ p/ρ is the specific enthalpy and we have used the identity ∇ · (E×B)=
B ·∇×E−E ·∇×B. Note that (E×B)/µ0 is the Poynting vector, the electromagnetic
energy flux density. The total energy is therefore conserved.

For a self-gravitating system satisfying Poisson’s equation, the gravitational energy
density can instead be regarded as −g2/8πG:

∂

∂t

(
− g2

8πG

)
=− 1

4πG
∇Φ ·

∂∇Φ

∂t
(4.14)

∂

∂t

(
− g2

8πG

)
+∇ ·

(
Φ

4πG
∂∇Φ

∂t

)
= Φ

4πG
∂∇2Φ

∂t
=Φ∂ρ

∂t
=−Φ∇ · (ρu) (4.15)

∂

∂t

(
− g2

8πG

)
+∇ ·

(
ρuΦ + Φ

4πG
∂∇Φ

∂t

)
= ρu · ∇Φ. (4.16)

The total energy equation is then

∂

∂t

[
ρ

(
1
2

u2 + e
)
− g2

8πG
+ B2

2µ0

]
+∇ ·

[
ρu
(

1
2

u2 +Φ + h
)
+ Φ

4πG
∂∇Φ

∂t
+ E×B

µ0

]
= 0. (4.17)

It is important to note that some of the gravitational and magnetic energy of an
astrophysical body is stored in the exterior region, even if the mass density vanishes
there.
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4.3. Other conservation laws in ideal MHD
In ideal fluid dynamics there are certain invariants with a geometrical or topological
interpretation. In homentropic or barotropic flow, for example, vorticity (or,
equivalently, circulation) and kinetic helicity are conserved, while, in non-barotropic
flow, potential vorticity is conserved (see Example A.2). The Lorentz force breaks
these conservation laws because the curl of the Lorentz force per unit mass does
not vanish in general. However, some new topological invariants associated with the
magnetic field appear.

The magnetic helicity in a volume V with bounding surface S is defined as

Hm =
∫

V
A ·B dV, (4.18)

where A is the magnetic vector potential, such that B=∇×A. Now

∂A
∂t
=−E−∇Φe = u×B−∇Φe, (4.19)

where Φe is the electrostatic potential. This can be thought of as the ‘uncurl’ of the
induction equation. Thus

∂

∂t
(A ·B)=−B · ∇Φe +A · ∇× (u×B). (4.20)

In ideal MHD, therefore, magnetic helicity is conserved:

∂

∂t
(A ·B)+∇ · [ΦeB+A× (u×B)]= 0. (4.21)

However, care is needed because A is not uniquely defined. Under a gauge
transformation A 7→ A + ∇χ , Φe 7→ Φe − ∂χ/∂t, where χ(x, t) is a scalar field,
E and B are invariant, but Hm changes by an amount∫

V
B · ∇χ dV =

∫
V
∇ · (χB) dV =

∫
S
χB · n dS. (4.22)

Therefore Hm is not uniquely defined unless B · n= 0 on the surface S.
Magnetic helicity is a pseudoscalar quantity: it changes sign under a reflection

of the spatial coordinates. Indeed, it is non-zero only when the magnetic field
lacks reflectional symmetry. It can also be interpreted topologically in terms of the
twistedness and knottedness of the magnetic field (see Example A.10). Since the field
is ‘frozen in’ to the fluid and deformed continuously by it, the topological properties
of the field are conserved. The equivalent conserved quantity in homentropic or
barotropic ideal gas dynamics (without a magnetic field) is the kinetic helicity

Hk =
∫

V
u · (∇× u) dV. (4.23)

The cross-helicity in a volume V is

Hc =
∫

V
u ·B dV. (4.24)
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It is helpful here to write the equation of motion in ideal MHD in the form

∂u
∂t
+ (∇× u)× u+∇

(
1
2

u2 +Φ + h
)
= T∇s+ 1

µ0ρ
(∇×B)×B, (4.25)

using the relation dh= T ds+ v dp. Thus

∂

∂t
(u ·B)+∇ ·

[
u× (u×B)+

(
1
2

u2 +Φ + h
)

B
]
= TB · ∇s, (4.26)

and so cross-helicity is conserved in ideal MHD in homentropic or barotropic flow.
Bernoulli’s theorem follows from the inner product of (4.25) with u. In steady flow

u · ∇
(

1
2

u2 +Φ + h
)
= 0, (4.27)

which implies that the Bernoulli function (1/2)u2 + Φ + h is constant along
streamlines, but only if u · Fm = 0 (e.g. if u ‖B), i.e. if the magnetic field does
no work on the flow.

Related examples: A.10, A.11.

4.4. Symmetries of the equations
The equations of ideal gas dynamics and MHD have numerous symmetries. In the
case of an isolated, self-gravitating system, these include:

(i) Translations of time and space, and rotations of space: related (via Noether’s
theorem) to the conservation of energy, momentum and angular momentum.

(ii) Reversal of time: related to the absence of dissipation.
(iii) Reflections of space (but note that B is a pseudovector and behaves oppositely

to u under a reflection).
(iv) Galilean transformations.
(v) Reversal of the sign of B.

(vi) Similarity transformations (exercise): if space and time are rescaled by
independent factors λ and µ, i.e.

x 7→ λ x, t 7→µ t, (4.28a,b)

then

u 7→ λµ−1 u, ρ 7→µ−2 ρ, p 7→ λ2µ−4 p, Φ 7→ λ2µ−2Φ, B 7→ λµ−2 B.
(4.29a−e)

(This symmetry requires a perfect gas so that the thermodynamic relations are
scale free.)

In the case of a non-isolated system with an external potential Φext, these
symmetries (other than B 7→ −B) apply only if Φext has them. However, in the
approximation of a non-self-gravitating system, the mass can be rescaled by any
factor λ such that

ρ 7→ λ ρ, p 7→ λ p, B 7→ λ1/2 B. (4.30a−c)

(This symmetry also requires a perfect gas.)
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4.5. Hyperbolic structure
Analysing the so-called hyperbolic structure of the equations of AFD is one way
of understanding the wave modes of the system and the way in which information
propagates in the fluid. It is fundamental to the construction of some types of
numerical method for solving the equations. We temporarily neglect the gravitational
force here, because in a Newtonian theory it involves instantaneous action at a
distance and is not associated with a finite wave speed.

In ideal gas dynamics, the equation of mass conservation, the thermal energy
equation and the equation of motion (omitting gravity) can be written as

∂ρ

∂t
+ u · ∇ρ + ρ∇ · u= 0,

∂p
∂t
+ u · ∇p+ γ p∇ · u= 0,

∂u
∂t
+ u · ∇u+ 1

ρ
∇p= 0,


(4.31)

and then combined into the form

∂U
∂t
+ Ai

∂U
∂xi
= 0, (4.32)

where

U=


ρ
p
ux
uy
uz

 (4.33)

is a five-dimensional ‘state vector’ and Ax, Ay and Az are the three 5× 5 matrices
ux 0 ρ 0 0
0 ux γ p 0 0
0 1

ρ
ux 0 0

0 0 0 ux 0
0 0 0 0 ux

 ,


uy 0 0 ρ 0
0 uy 0 γ p 0
0 0 uy 0 0
0 1

ρ
0 uy 0

0 0 0 0 uy

 ,


uz 0 0 0 ρ

0 uz 0 0 γ p
0 0 uz 0 0
0 0 0 uz 0
0 1

ρ
0 0 uz

 .
(4.34a−c)

This works because every term in the equations involves a first derivative with respect
to either time or space.

The system of equations is said to be hyperbolic if the eigenvalues of Aini are real
for any unit vector n and if the eigenvectors span the five-dimensional space. As will
be seen in § 6.2, the eigenvalues can be identified as wave speeds, and the eigenvectors
as wave modes, with n being the unit wavevector, locally normal to the wavefronts.

Taking n= ex without loss of generality, we find (exercise)

det(Ax − vI)=−(v − ux)
3
[
(v − ux)

2 − v2
s

]
, (4.35)

where

vs =
(
γ p
ρ

)1/2

(4.36)
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is the adiabatic sound speed. The wave speeds v are real and the system is indeed
hyperbolic.

Two of the wave modes are sound waves (acoustic waves), which have wave speeds
v = ux ± vs and therefore propagate at the sound speed relative to the moving fluid.
Their eigenvectors are 

ρ

γ p
±vs

0
0

 (4.37)

and involve perturbations of density, pressure and longitudinal velocity.
The remaining three wave modes have wave speed v = ux and do not propagate

relative to the fluid. Their eigenvectors are
1
0
0
0
0

 ,


0
0
0
1
0

 ,


0
0
0
0
1

 . (4.38a−c)

The first is the entropy wave, which involves only a density perturbation but no
pressure perturbation. Since the entropy can be considered as a function of the density
and pressure, this wave involves an entropy perturbation. It must therefore propagate
at the fluid velocity because the entropy is a material invariant. The other two modes
with v = ux are vortical waves, which involve perturbations of the transverse velocity
components, and therefore of the vorticity. Conservation of vorticity implies that these
waves propagate with the fluid velocity.

To extend the analysis to ideal MHD, we may consider the induction equation in
the form

∂B
∂t
+ u · ∇B−B · ∇u+B(∇ · u)= 0, (4.39)

and include the Lorentz force in the equation of motion. Every new term involves a
first derivative. So the equation of mass conservation, the thermal energy equation, the
equation of motion and the induction equation can be written in the combined form

∂U
∂t
+ Ai

∂U
∂xi
= 0, (4.40)

where

U=



ρ

p
ux
uy
uz
Bx
By
Bz


(4.41)
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is now an eight-dimensional ‘state vector’ and the Ai are three 8× 8 matrices, e.g.

Ax =



ux 0 ρ 0 0 0 0 0
0 ux γ p 0 0 0 0 0

0
1
ρ

ux 0 0 0
By

µ0ρ

Bz

µ0ρ

0 0 0 ux 0 0 − Bx

µ0ρ
0

0 0 0 0 ux 0 0 − Bx

µ0ρ

0 0 0 0 0 ux 0 0
0 0 By −Bx 0 0 ux 0
0 0 Bz 0 −Bx 0 0 ux



. (4.42)

We now find, after some algebra,

det(Ax − vI)= (v − ux)
2
[
(v − ux)

2 − v2
ax

] [
(v − ux)

4 − (v2
s + v2

a)(v − ux)
2 + v2

s v
2
ax

]
.

(4.43)
The wave speeds v are real and the system is indeed hyperbolic. The various MHD
wave modes will be examined later (§ 5).

In this representation, there are two modes that have v = ux and do not propagate
relative to the fluid. One is still the entropy wave, which is physical and involves only
a density perturbation. The other is the ‘divB’ mode, which is unphysical and involves
a perturbation of ∇ · B (i.e. of Bx, in the case n = ex). This must be eliminated by
imposing the constraint ∇ ·B= 0. (In fact the equations in the form we have written
them imply that (∇ · B)/ρ is a material invariant and could be non-zero unless the
initial condition ∇ · B = 0 is imposed.) The vortical waves are replaced by Alfvén
waves with speeds ux ± vax.

4.6. Stress tensor and virial theorem
In the absence of external forces, the equation of motion of a fluid can usually be
written in the form

ρ
Du
Dt
=∇ · T or ρ

Dui

Dt
= ∂Tji

∂xj
, (4.44a,b)

where T is the stress tensor, a symmetric second-rank tensor field. Using the equation
of mass conservation, we can relate this to the conservative form of the momentum
equation,

∂

∂t
(ρu)+∇ · (ρuu− T )= 0, (4.45)

which shows that −T is the momentum flux density excluding the advective flux of
momentum.

For a self-gravitating system in ideal MHD, the stress tensor is

T =−p I − 1
4πG

(
gg− 1

2
g2 I

)
+ 1
µ0

(
BB− 1

2
B2 I

)
, (4.46)
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or, in Cartesian components,

Tij =−p δij − 1
4πG

(
gigj − 1

2
g2 δij

)
+ 1
µ0

(
BiBj − 1

2
B2 δij

)
. (4.47)

We have already identified the Maxwell stress tensor associated with the magnetic
field. The idea of a gravitational stress tensor works for a self-gravitating system in
which the gravitational field g=−∇Φ and the density ρ are related through Poisson’s
equation −∇ · g=∇2Φ = 4πGρ. In fact, for a general vector field v, it can be shown
that (exercise)

∇ · (vv − 1
2v

2 I)= (∇ · v)v + v · ∇v −∇ ( 1
2v

2
)= (∇ · v)v + (∇× v)× v. (4.48)

In the magnetic case (v = B) the first term in the final expression vanishes, while
in the gravitational case (v = g) the second term vanishes, leaving −4πGρg, which
becomes the force per unit volume, ρg, when divided by −4πG.

The virial equations are the spatial moments of the equation of motion, and provide
integral measures of the balance of forces acting on the fluid. The first moments are
generally the most useful. Consider

ρ
D2

Dt2
(xixj)= ρ D

Dt
(uixj + xiuj)= 2ρuiuj + xj

∂Tki

∂xk
+ xi

∂Tkj

∂xk
. (4.49)

Integrate this equation over a material volume V bounded by a surface S (with
material invariant mass element dm= ρ dV):

d2

dt2

∫
V

xixj dm =
∫

V

(
2ρuiuj + xj

∂Tki

∂xk
+ xi

∂Tkj

∂xk

)
dV

=
∫

V
(2ρuiuj − Tji − Tij) dV +

∫
S
(xjTki + xiTkj)nk dS, (4.50)

where we have integrated by parts using the divergence theorem. In the case of
an isolated system with no external sources of gravity or magnetic field, g decays
proportional to |x|−2 at large distance, and B decays faster. Therefore Tij decays
proportional to |x|−4 and the surface integral can be eliminated if we let V occupy
the whole of space. We then obtain (after division by 2) the tensor virial theorem

1
2

d2I ij

dt2
= 2K ij − Tij, (4.51)

where
I ij =

∫
xixj dm (4.52)

is related to the inertia tensor of the system,

K ij =
∫

1
2

uiuj dm (4.53)

is a kinetic energy tensor and

Tij =
∫

Tij dV (4.54)
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is the integrated stress tensor. (If the conditions above are not satisfied, there will be
an additional contribution from the surface integral.)

The scalar virial theorem is the trace of this tensor equation, which we write as

1
2

d2I
dt2
= 2K − T . (4.55)

Note that K is the total kinetic energy. Now

−T =
∫ (

3p− g2

8πG
+ B2

2µ0

)
dV = 3(γ − 1)U +W +M, (4.56)

for a perfect gas with no external gravitational field, where U, W and M are the total
internal, gravitational and magnetic energies. Thus

1
2

d2I
dt2
= 2K + 3(γ − 1)U +W +M. (4.57)

On the right-hand side, only W is negative. For the system to be bound (i.e. not fly
apart) the kinetic, internal and magnetic energies are limited by

2K + 3(γ − 1)U +M 6 |W|. (4.58)

In fact equality must hold, at least on average, unless the system is collapsing or
contracting.

The tensor virial theorem provides more specific information relating to the
energies associated with individual directions, and is particularly relevant in cases
where anisotropy is introduced by rotation or a magnetic field. It has been used in
estimating the conditions required for gravitational collapse in molecular clouds. A
higher-order tensor virial method was used by Chandrasekhar and Lebovitz to study
the equilibrium and stability of rotating ellipsoidal bodies (Chandrasekhar 1969).

5. Linear waves in homogeneous media
In ideal MHD the density, pressure and magnetic field evolve according to

∂ρ

∂t
=−u · ∇ρ − ρ∇ · u,

∂p
∂t
=−u · ∇p− γ p∇ · u,

∂B
∂t
=∇× (u×B).


(5.1)

Consider a magnetostatic equilibrium in which the density, pressure and magnetic field
are ρ0(x), p0(x) and B0(x). The above equations are exactly satisfied in this basic state
because u= 0 and the time derivatives vanish. Now consider small perturbations from
equilibrium, such that ρ(x, t) = ρ0(x) + δρ(x, t) with |δρ| � ρ0, etc. The linearized
equations are

∂δρ

∂t
=−δu · ∇ρ0 − ρ0∇ · δu,

∂δp
∂t
=−δu · ∇p0 − γ p0∇ · δu,

∂δB
∂t
=∇× (δu×B0).


(5.2)
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By introducing the displacement ξ(x, t) such that δu= ∂ξ/∂t, we can integrate these
equations to obtain

δρ =−ξ · ∇ρ − ρ∇ · ξ ,
δp=−ξ · ∇p− γ p∇ · ξ ,

δB=∇× (ξ ×B)=B · ∇ξ −B(∇ · ξ)− ξ · ∇B.

 (5.3)

We have now dropped the subscript ‘0’ without danger of confusion.
(The above relations allow some freedom to add arbitrary functions of x. At least

when studying wave-like solutions in which all variables have the same harmonic time
dependence, such additional terms can be discarded.)

The linearized equation of motion is

ρ
∂2ξ

∂t2
=−ρ∇δΦ − δρ∇Φ −∇δΠ + 1

µ0
(δB · ∇B+B · ∇δB), (5.4)

where the perturbation of total pressure is

δΠ = δp+ B · δB
µ0
=−ξ · ∇Π −

(
γ p+ B2

µ0

)
∇ · ξ + 1

µ0
B · (B · ∇ξ). (5.5)

The gravitational potential perturbation satisfies the linearized Poisson equation

∇2δΦ = 4πG δρ. (5.6)

We consider a basic state of uniform density, pressure and magnetic field, in
the absence of gravity. Such a system is homogeneous but anisotropic, because the
uniform field distinguishes a particular direction. The problem simplifies to

ρ
∂2ξ

∂t2
=−∇δΠ + 1

µ0
B · ∇

[
B · ∇ξ −B(∇ · ξ)

]
, (5.7)

with

δΠ =−
(
γ p+ B2

µ0

)
∇ · ξ + 1

µ0
B · (B · ∇ξ). (5.8)

Owing to the symmetries of the basic state, plane-wave solutions exist, of the form

ξ(x, t)=Re[ξ̃ exp(ik · x−iωt)], (5.9)

where ω and k are the frequency and wavevector, and ξ̃ is a constant vector
representing the amplitude of the wave. For such solutions, (5.7) gives

ρω2ξ =
[(
γ p+ B2

µ0

)
k · ξ − 1

µ0
(k ·B)B · ξ

]
k+ 1

µ0
(k ·B)

[
(k ·B)ξ −B(k · ξ)

]
,

(5.10)
where we have changed the sign and omitted the tilde.

For transverse displacements that are orthogonal to both the wavevector and the
magnetic field, i.e. k · ξ =B · ξ = 0, this equation simplifies to

ρω2ξ = 1
µ0
(k ·B)2ξ . (5.11)

https://doi.org/10.1017/S0022377816000489 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000489


30 G. I. Ogilvie

Such solutions are called Alfvén waves. Their dispersion relation is

ω2 = (k · va)
2. (5.12)

Given the dispersion relation ω(k) of any wave mode, the phase and group
velocities of the wave can be identified as

vp = ωk k̂, vg = ∂ω
∂k
=∇kω, (5.13a,b)

where k̂= k/k. The phase velocity is that with which the phase of the wave travels,
while the group velocity is that which the energy of the wave (or the centre of a
wavepacket) is transported.

For Alfvén waves, therefore,

vp =±va cos θ k̂, vg =±va, (5.14a,b)

where θ is the angle between k and B.
To find the other solutions, we take the inner product of (5.10) with k and then

with B to obtain first

ρω2k · ξ =
[(
γ p+ B2

µ0

)
k · ξ − 1

µ0
(k ·B)B · ξ

]
k2 (5.15)

and then
ρω2B · ξ = γ p(k · ξ)k ·B. (5.16)

These equations can be written in the formρω2 −
(
γ p+ B2

µ0

)
k2 1

µ0
(k ·B)k2

−γ p(k ·B) ρω2

 [k · ξ
B · ξ

]
=
[

0
0

]
. (5.17)

The ‘trivial solution’ k · ξ = B · ξ = 0 corresponds to the Alfvén wave that we have
already identified. The other solutions satisfy

ρω2

[
ρω2 −

(
γ p+ B2

µ0

)
k2

]
+ γ pk2 1

µ0
(k ·B)2 = 0, (5.18)

which simplifies to
v4

p − (v2
s + v2

a)v
2
p + v2

s v
2
a cos2 θ = 0. (5.19)

The two solutions

v2
p = 1

2(v
2
s + v2

a)±
[

1
4(v

2
s + v2

a)
2 − v2

s v
2
a cos2 θ

]1/2
(5.20)

are called fast and slow magnetoacoustic (or magnetosonic) waves, respectively.
In the special case θ = 0 (k‖B), we have

v2
p = v2

s or v2
a, (5.21)

together with v2
p = v2

a for the Alfvén wave. Note that the fast wave could be either
v2

p = v2
s or v2

p = v2
a , whichever is greater.
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(a) (b)

(c) (d)

FIGURE 4. Polar plots of the phase velocity (a,c) and group velocity (b,d) of MHD
waves for the cases va = 0.7 vs (a,b) and vs = 0.7 va (c,d) with a magnetic field in the
horizontal direction. (The group velocity plot for the Alfvén wave consists of the two
points (±va, 0).)

In the special case θ =π/2 (k⊥B), we have

v2
p = v2

s + v2
a or 0, (5.22)

together with v2
p = 0 for the Alfvén wave.

The effects of the magnetic field on wave propagation can be understood as
resulting from the two aspects of the Lorentz force. The magnetic tension gives rise
to Alfvén waves, which are similar to waves on an elastic string, and are trivial in the
absence of the magnetic field. In addition, the magnetic pressure affects the response
of the fluid to compression, and therefore modifies the propagation of acoustic waves.

The phase and group velocity for the full range of θ are usually exhibited in
Friedrichs diagrams6 (figure 4).

6Kurt Otto Friedrichs (1901–1982), German–American.
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We can interpret:

(i) the fast wave as a quasi-isotropic acoustic-type wave in which both gas and
magnetic pressure contribute;

(ii) the slow wave as an acoustic-type wave that is strongly guided by the magnetic
field;

(iii) the Alfvén wave as analogous to a wave on an elastic string, propagating by
means of magnetic tension and perfectly guided by the magnetic field.

Related example: A.12.

6. Nonlinear waves, shocks and other discontinuities
6.1. One-dimensional gas dynamics

6.1.1. Riemann’s analysis
The equations of mass conservation and motion in one dimension are

∂ρ

∂t
+ u

∂ρ

∂x
=−ρ ∂u

∂x
,

∂u
∂t
+ u

∂u
∂x
=− 1

ρ

∂p
∂x
.

 (6.1)

We assume the gas is homentropic (s = const.) and perfect. (This eliminates
the entropy wave and leaves only the two sound waves.) Then p ∝ ργ and
v2

s = γ p/ρ ∝ ργ−1. It is convenient to use vs as a variable in place of ρ or p:

dp= v2
s dρ, dρ = ρ

vs

(
2 dvs

γ − 1

)
. (6.2a,b)

Then
∂u
∂t
+ u

∂u
∂x
+ vs

∂

∂x

(
2vs

γ − 1

)
= 0,

∂

∂t

(
2vs

γ − 1

)
+ u

∂

∂x

(
2vs

γ − 1

)
+ vs

∂u
∂x
= 0.

 (6.3)

We add and subtract to obtain[
∂

∂t
+ (u+ vs)

∂

∂x

] (
u+ 2vs

γ − 1

)
= 0, (6.4)

[
∂

∂t
+ (u− vs)

∂

∂x

] (
u− 2vs

γ − 1

)
= 0. (6.5)

Define the two Riemann invariants

R± = u± 2vs

γ − 1
. (6.6)

Then we deduce that R±= const. along a characteristic (curve) of gradient dx/dt= u±
vs in the (x, t) plane. The + and − characteristics form an interlocking web covering
the space–time diagram (figure 5).
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FIGURE 5. Characteristic curves in the space–time diagram.

Note that both Riemann invariants are needed to reconstruct the solution (u and vs).
Half of the information is propagated along one set of characteristics and half along
the other.

In general the characteristics are not known in advance but must be determined
along with the solution. The + and − characteristics propagate at the speed of sound
to the right and left, respectively, with respect to the motion of the fluid.

This concept generalizes to nonlinear waves the solution of the classical wave
equation for acoustic waves on a uniform and static background, which is of the
form f (x− vst)+ g(x+ vst).

6.1.2. Method of characteristics
A numerical method of solution can be based on the following idea:

(i) Start with the initial data (u and vs) for all relevant x at t= 0.
(ii) Determine the characteristic slopes at t= 0.

(iii) Propagate the R± information for a small increment of time, neglecting the
variation of the characteristic slopes.

(iv) Combine the R± information to find u and vs at each x at the new value of t.
(v) Re-evaluate the slopes and repeat.

The domain of dependence of a point P in the space–time diagram is that region
of the diagram bounded by the ± characteristics through P and located in the past
of P. The solution at P cannot depend on anything that occurs outside the domain of
dependence. Similarly, the domain of influence of P is the region in the future of P
bounded by the characteristics through P (figure 6).

6.1.3. A simple wave
Suppose that R− is uniform, having the same constant value on every characteristic

emanating from an undisturbed region to the right. Its value everywhere is that of the
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FIGURE 6. Domains of dependence and of influence.

undisturbed region:

u− 2vs

γ − 1
= u0 − 2vs0

γ − 1
. (6.7)

Then, along the + characteristics, both R+ and R−, and therefore u and vs, must be
constant. The + characteristics therefore have constant slope v = u+ vs, so they are
straight lines.

The statement that the wave speed v is constant on the family of straight lines
dx/dt= v is expressed by the equation

∂v

∂t
+ v ∂v

∂x
= 0. (6.8)

This is known as the inviscid Burgers equation7 or the nonlinear advection equation.
The inviscid Burgers equation has only one set of characteristics, with slope

dx/dt= v. It is easily solved by the method of characteristics. The initial data define
v0(x)= v(x, 0) and the characteristics are straight lines. In regions where dv0/dx> 0
the characteristics diverge in the future. In regions where dv0/dx<0 the characteristics
converge and will form a shock at some point. Contradictory information arrives at
the same point in the space–time diagram, leading to a breakdown of the solution
(figure 7).

Another viewpoint is that of wave steepening. The graph of v versus x evolves
in time by moving each point at its wave speed v. The crest of the wave moves
fastest and eventually overtakes the trough to the right of it. The profile would become
multiple valued, but this is physically meaningless and the wave breaks, forming a
discontinuity (figure 8).

Indeed, the formal solution of the inviscid Burgers equation is

v(x, t)= v0(x0) with x= x0 + v0(x0)t. (6.9)
7Johannes (Jan) Martinus Burgers (1895–1981), Dutch.

https://doi.org/10.1017/S0022377816000489 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000489


Astrophysical fluid dynamics 35

FIGURE 7. Formation of a shock from intersecting characteristics.

FIGURE 8. Wave steepening and shock formation. The dotted profile is multiple valued
and is replaced in practice with a discontinuous profile including a shock.

By the chain rule, ∂v/∂x = v′0/(1 + v′0t), which diverges first at the breaking time
t= 1/max(−v′0).

The crest of a sound wave moves faster than the trough for two reasons. It is partly
because the crest is denser and hotter, so the sound speed is higher (unless the gas
is isothermal), but it is also because of the self-advection of the wave (recall that the
wave speed is u+ vs). The breaking time depends on the amplitude and wavelength
of the wave.
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6.2. General analysis of simple nonlinear waves
Recall the hyperbolic structure of the equations of AFD (§ 4.5):

∂U
∂t
+ Ai

∂U
∂xi
= 0, U= [ρ, p, u,B]T. (6.10)

The system is hyperbolic because the eigenvalues of Aini are real for any unit vector
ni. The eigenvalues are identified as wave speeds, and the corresponding eigenvectors
as wave modes.

In a simple wave propagating in the x-direction, all physical quantities are functions
of a single variable, the phase ϕ(x, t). Then U=U(ϕ) and so

dU
dϕ
∂ϕ

∂t
+ Ax

dU
dϕ
∂ϕ

∂x
= 0. (6.11)

This equation is satisfied if dU/dϕ is an eigenvector of the hyperbolic system and if

∂ϕ

∂t
+ v ∂ϕ

∂x
= 0, (6.12)

where v is the corresponding wave speed. But since v = v(ϕ) we again find

∂v

∂t
+ v ∂v

∂x
= 0, (6.13)

the inviscid Burgers equation.
Wave steepening is therefore generic for simple waves. However, waves do not

always steepen in practice. For example, linear dispersion arising from Coriolis
or buoyancy forces (see § 11) can counteract nonlinear wave steepening. Waves
propagating on a non-uniform background are not simple waves. In addition, waves
may be damped by diffusive processes (viscosity, thermal conduction or resistivity)
before they can steepen.

Furthermore, even some simple waves do not undergo steepening, in spite of
the above argument. This happens if the wave speed v does not depend on the
variables that actually vary in the wave mode. One example is the entropy wave in
hydrodynamics, in which the density varies but not the pressure or the velocity. The
wave speed is the fluid velocity, which does not vary in this wave; therefore the
relevant solution of the inviscid Burgers equation is just v = const. Another example
is the Alfvén wave, which involves variations in transverse velocity and magnetic
field components, but whose speed depends on the longitudinal components and the
density. The slow and fast magnetoacoustic waves, though, are ‘genuinely nonlinear’
and undergo steepening.

6.3. Shocks and other discontinuities
6.3.1. Jump conditions

Discontinuities are resolved in reality by diffusive processes (viscosity, thermal
conduction or resistivity) that become more important on smaller length scales.
Properly, we should solve an enhanced set of equations to resolve the internal
structure of a shock. This internal solution would then be matched on to the external
solution in which diffusion can be neglected. However, the matching conditions can
in fact be determined from general principles without resolving the internal structure.
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FIGURE 9. A shock front in its rest frame.

Without loss of generality, we consider a shock front at rest at x = 0 (making
a Galilean transformation if necessary). We look for a stationary, one-dimensional
solution in which gas flows from left to right. On the left is upstream, pre-shock
material (ρ1, p1, etc.). On the right is downstream, post-shock material (ρ2, p2, etc.)
(figure 9).

Consider any equation in conservative form

∂q
∂t
+∇ ·F= 0. (6.14)

For a stationary solution in one dimension,

dFx

dx
= 0, (6.15)

which implies that the flux density Fx has the same value on each side of the shock.
We write the matching condition as

[Fx]21 = Fx2 − Fx1 = 0. (6.16)

Including additional physics means that additional diffusive fluxes (not of mass but of
momentum, energy, magnetic flux, etc.) are present. These fluxes are negligible outside
the shock, so they do not affect the jump conditions. This approach is permissible
provided that the new physics does not introduce any source terms in the equations.
So the total energy is a properly conserved quantity but not the entropy (see later).

From mass conservation:
[ρux]21 = 0. (6.17)

From momentum conservation: [
ρu2

x +Π −
B2

x

µ0

]2

1

= 0, (6.18)

[
ρuxuy − BxBy

µ0

]2

1

= 0, (6.19)

[
ρuxuz − BxBz

µ0

]2

1

= 0. (6.20)
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From ∇ ·B= 0:
[Bx]21 = 0. (6.21)

From ∂B/∂t+∇×E= 0:

[uxBy − uyBx]21 =−[Ez]21 = 0, (6.22)

[uxBz − uzBx]21 = [Ey]21 = 0. (6.23)

(These are the standard electromagnetic conditions at an interface: the normal
component of B and the tangential components of E are continuous.) From total
energy conservation: [

ρux

(
1
2

u2 + h
)
+ 1
µ0
(EyBz − EzBy)

]2

1

= 0. (6.24)

Note that the conservative form of the momentum equation used above is (cf. 4.45)

∂

∂t
(ρui)+∇ ·

(
ρuiu+Π ei − BiB

µ0

)
= 0. (6.25)

Including gravity makes no difference to the shock relations because Φ is always
continuous (it satisfies ∇2Φ = 4πGρ).

Although the entropy in ideal MHD satisfies an equation of conservative form,

∂

∂t
(ρs)+∇ · (ρsu)= 0, (6.26)

the dissipation of energy within the shock provides a source term for entropy.
Therefore the entropy flux is not continuous across the shock.

6.3.2. Non-magnetic shocks
First consider a normal shock (uy = uz = 0) with no magnetic field. We obtain the

Rankine–Hugionot relations8

[ρux]21 = 0, [ρu2
x + p]21 = 0,

[
ρux

(
1
2 u2

x + h
)]2

1 = 0. (6.27a−c)

The specific enthalpy of a perfect gas is

h=
(

γ

γ − 1

)
p
ρ

(6.28)

and these equations can be solved algebraically (see Example A.13). Introduce the
upstream Mach number (the shock Mach number)

M1 = ux1

vs1
> 0. (6.29)

Then we find

ρ2

ρ1
= ux1

ux2
= (γ + 1)M2

1

(γ − 1)M2
1 + 2

,
p2

p1
= 2γM2

1 − (γ − 1)
(γ + 1)

, (6.30a,b)

8William John Macquorn Rankine (1820–1872), British. Pierre-Henri Hugoniot (1851–1887), French.
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and

M2
2 =

2+ (γ − 1)M2
1

2γM2
1 − (γ − 1)

. (6.31)

Note that ρ2/ρ1 and p2/p1 are increasing functions of M1. The case M1 = 1 is
trivial as it corresponds to ρ2/ρ1= p2/p1= 1. The other two cases are the compression
shock (M1> 1, M2< 1, ρ2>ρ1, p2> p1) and the rarefaction shock (M1< 1, M2> 1,
ρ2 <ρ1, p2 < p1).

It is shown in Example A.13 that the entropy change in passing through the shock
is positive for compression shocks and negative for rarefaction shocks. Therefore only
compression shocks are physically realizable. Rarefaction shocks are excluded by the
second law of thermodynamics. All shocks involve dissipation and irreversibility.

The fact that M1 > 1 while M2 < 1 means that the shock travels supersonically
relative to the upstream gas and subsonically relative to the downstream gas.

In the weak shock limit M1− 1� 1 the relative velocity of the fluid and the shock
is close to the sound speed on both sides.

In the strong shock limit M1� 1, common in astrophysical applications, we have

ρ2

ρ1
= ux1

ux2
→ γ + 1
γ − 1

,
p2

p1
� 1, M2

2→
γ − 1

2γ
. (6.32a−c)

Note that the compression ratio ρ2/ρ1 is finite (and equal to 4 when γ = 5/3). In
the rest frame of the undisturbed (upstream) gas the shock speed is ush =−ux1. The
downstream density, velocity (in that frame) and pressure in the limit of a strong shock
are (as will be used in § 7)

ρ2 =
(
γ + 1
γ − 1

)
ρ1, ux2 − ux1 = 2ush

γ + 1
, p2 = 2ρ1u2

sh

γ + 1
. (6.33a−c)

A significant amount of thermal energy is generated out of kinetic energy by the
passage of a strong shock:

e2 = 2u2
sh

(γ + 1)2
. (6.34)

6.3.3. Oblique shocks
When uy or uz is non-zero, we have the additional relations

[ρuxuy]21 = [ρuxuz]21 = 0. (6.35)

Since ρux is continuous across the shock (and non-zero), we deduce that [uy]21 =[uz]21 = 0. Momentum and energy conservation apply as before, and we recover the
Rankine–Hugoniot relations. (See Example A.14.)

6.3.4. Other discontinuities
The discontinuity is not called a shock if there is no normal flow (ux = 0). In this

case we can deduce only that [p]21 = 0. Arbitrary discontinuities are allowed in ρ, uy
and uz. These are related to the entropy and vortical waves. If there is a jump in ρ
we have a contact discontinuity. If there is a jump in uy or uz we have a tangential
discontinuity or vortex sheet (the vorticity being proportional to δ(x)). Note that these
discontinuities are not produced naturally by wave steepening, because the entropy
and vortical waves do not steepen. However they do appear in the Riemann problem
(§ 6.3.6) and other situations with discontinuous initial conditions.
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6.3.5. MHD shocks and discontinuities
When a magnetic field is included, the jump conditions allow a wider variety of

solutions. There are different types of discontinuity associated with the three MHD
waves (Alfvén, slow and fast), which we will not discuss here. Since the parallel
components of B need not be continuous, it is possible for them to ‘switch on’ or
‘switch off’ on passage through a shock.

A current sheet is a tangential discontinuity in the magnetic field. A classic case
would be where By, say, changes sign across the interface, with Bx = 0. The current
density is then proportional to δ(x).

6.3.6. The Riemann problem
The Riemann problem is a fundamental initial value problem for a hyperbolic

system and plays a central role in some numerical methods for solving the equations
of AFD.

The initial condition at t = 0 consists of two uniform states separated by a
discontinuity at x= 0. In the case of one-dimensional gas dynamics, we have

ρ =
{
ρL, x< 0
ρR, x> 0

, p=
{

pL, x< 0
pR, x> 0

, ux =
{

uL, x< 0
uR, x> 0

, (6.36a−c)

where ‘L’ and ‘R’ denote the left and right states. A simple example is a ‘shock-tube’
problem in which gas at different pressures is at rest on either side of a partition,
which is released at t= 0.

It can be shown that the initial discontinuity resolves generically into three simple
waves. The inner one is a contact discontinuity while the outer ones are shocks or
rarefaction waves (see below).

The initial data define no natural length scale for the Riemann problem, but they
do allow a characteristic velocity scale c to be defined (although not uniquely). The
result is a similarity solution in which variables depend on x and t only through the
dimensionless combination ξ = x/ct.

Unlike the unphysical rarefaction shock, the rarefaction wave (or expansion wave)
is a non-dissipative, homentropic, continuous simple wave in which ∇ · u> 0. If we
seek a similarity solution v = v(ξ) of the inviscid Burgers equation vt + vvx = 0 we
find v= x/t (or the trivial solution v= const.). The characteristics form an expansion
fan (figure 10).

The ‘+’ rarefaction wave has u + vs = x/t and R− = u − 2vs/(γ − 1) = const.,
determined by the undisturbed right-hand state. The ‘−’ rarefaction wave has u− vs=
x/t and R+ = u+ 2vs/(γ − 1)= const., determined by the undisturbed left-hand state.
In each case u and vs are linear functions of x/t and ∇ · u= 2t−1/(γ + 1) > 0.

A typical outcome of a shock-tube problem consists of (from left to right):
undisturbed region, rarefaction wave, uniform region, contact discontinuity, uniform
region, shock, undisturbed region (figure 11).

In Godunov’s method and related computational algorithms, the equations of AFD
are advanced in time by solving (either exactly or approximately) a Riemann problem
at each cell boundary.

Related examples: A.13–A.16.

7. Spherical blast waves: supernovae
Note: in this section (r, θ, φ) are spherical polar coordinates.
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FIGURE 10. Expansion fan of characteristics in a rarefaction wave.

FIGURE 11. Typical outcome of a shock-tube problem. The two uniform regions are
separated by a contact discontinuity. The other discontinuity is a shock.

7.1. Introduction

In a supernova, an energy of order 1051 erg (1044 J) is released into the interstellar
medium. An expanding spherical blast wave is formed as the explosion sweeps up the
surrounding gas. Several good examples of these supernova remnants are observed in
the Galaxy, e.g. Tycho’s supernova of 1572 and Kepler’s supernova of 16049.

The effect is similar to a bomb. When photographs10 (complete with length and
time scales) were released of the first atomic bomb test in New Mexico in 1945, both
Sedov11 in the Soviet Union and Taylor12 in the UK were able to work out the energy
of the bomb (equivalent to approximately 20 kilotons of TNT), which was supposed
to be a secret.

9See http://en.wikipedia.org/wiki/Supernova_remnant
10See http://www.atomicarchive.com/Photos/Trinity
11Leonid Ivanovitch Sedov (1907–1999), Russian.
12Sir Geoffrey Ingram Taylor (1886–1975), British.
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We suppose that an energy E is released at t = 0, r = 0 and that the explosion is
spherically symmetric. The external medium has density ρ0 and pressure p0. In the
Sedov–Taylor phase of the explosion, the pressure p� p0. Then a strong shock is
formed and the external pressure p0 can be neglected (formally set to zero). Gravity
is also negligible in the dynamics.

7.2. Governing equations
The equations governing the spherically symmetric flow of a perfect gas, with radial
velocity ur = u(r, t), may be written as(

∂

∂t
+ u

∂

∂r

)
ρ =− ρ

r2

∂

∂r
(r2u),(

∂

∂t
+ u

∂

∂r

)
u=− 1

ρ

∂p
∂r
,(

∂

∂t
+ u

∂

∂r

)
ln(pρ−γ )= 0.


(7.1)

These imply the total energy equation

∂

∂t

(
1
2
ρu2 + p

γ − 1

)
+ 1

r2

∂

∂r

[
r2

(
1
2
ρu2 + γ p

γ − 1

)
u
]
= 0. (7.2)

The shock is at r = R(t), and the shock speed is Ṙ. The equations are to be solved
in 0< r< R with the strong shock conditions (6.33) at r= R:

ρ =
(
γ + 1
γ − 1

)
ρ0, u= 2Ṙ

γ + 1
, p= 2ρ0Ṙ2

γ + 1
. (7.3a−c)

The total energy of the explosion is

E=
∫ R

0

(
1
2
ρu2 + p

γ − 1

)
4πr2 dr= const., (7.4)

the thermal energy of the external medium being negligible.

7.3. Dimensional analysis
The dimensional parameters of the problem on which the solution might depend are
E and ρ0. Their dimensions are

[E] =ML2T−2, [ρ0] =ML−3. (7.5a,b)

Together, they do not define a characteristic length scale, so the explosion is ‘scale
free’ or ‘self-similar’. If the dimensional analysis includes the time t since the
explosion, however, we can find a time-dependent characteristic length scale. The
radius of the shock must be

R= α
(

Et2

ρ0

)1/5

, (7.6)

where α is a dimensionless constant to be determined.
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7.4. Similarity solution
The self-similarity of the explosion is expressed using the dimensionless similarity
variable ξ = r/R(t). The solution has the form

ρ = ρ0 ρ̃(ξ), u= Ṙ ũ(ξ), p= ρ0Ṙ2 p̃(ξ), (7.7a−c)

where ρ̃(ξ), ũ(ξ) and p̃(ξ) are dimensionless functions to be determined. The meaning
of this type of solution is that the graph of u versus r, for example, has a constant
shape but both axes of the graph are rescaled as time proceeds and the shock expands.

7.5. Dimensionless equations
We substitute these forms into (7.1) and cancel the dimensional factors to obtain

(ũ− ξ)ρ̃ ′ =− ρ̃
ξ 2

d
dξ
(ξ 2ũ),

(ũ− ξ)ũ′ − 3
2

ũ=− p̃′

ρ̃
,

(ũ− ξ)
(

p̃′

p̃
− γ ρ̃

′

ρ̃

)
− 3= 0.


(7.8)

Similarly, the strong shock conditions are that

ρ̃ = γ + 1
γ − 1

, ũ= 2
γ + 1

, p̃= 2
γ + 1

(7.9a−c)

at ξ = 1, while the total energy integral provides a normalization condition,

1= 16π

25
α5
∫ 1

0

(
1
2
ρ̃ũ2 + p̃

γ − 1

)
ξ 2 dξ, (7.10)

that will ultimately determine the value of α.

7.6. First integral
The one-dimensional conservative form of the total energy equation (7.2) is

∂q
∂t
+ ∂F
∂r
= 0, (7.11)

where

q= r2

(
1
2
ρu2 + p

γ − 1

)
, F= r2

(
1
2
ρu2 + γ p

γ − 1

)
u. (7.12a,b)

In dimensionless form,

q= ρ0R2Ṙ2 q̃(ξ), F= ρ0R2Ṙ3 F̃(ξ), (7.13a,b)

with

q̃= ξ 2

(
1
2
ρ̃ũ2 + p̃

γ − 1

)
, F̃= ξ 2

(
1
2
ρ̃ũ2 + γ p̃

γ − 1

)
ũ. (7.14a,b)
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We substitute the forms (7.13) into the energy equation (7.11) to find

−ξ q̃′ − q̃+ F̃′ = 0, (7.15)

which implies
d

dξ
(F̃− ξ q̃)= 0. (7.16)

Thus
F̃− ξ q̃= const.= 0 (7.17)

for a solution that is finite at ξ = 0. This equation can be solved for p̃:

p̃= (γ − 1)ρ̃ũ2(ξ − ũ)
2(γ ũ− ξ) . (7.18)

Note that this solution is compatible with the shock boundary conditions. Having
found a first integral, we can now dispense with (e.g.) the thermal energy equation.

Let ũ= vξ . We now have

(v − 1)
d ln ρ̃
d ln ξ

=− dv
d ln ξ

− 3v, (7.19)

(v − 1)
dv

d ln ξ
+ 1
ρ̃ξ 2

d
d ln ξ

[
(γ − 1)ρ̃ξ 2v2(1− v)

2(γ v − 1)

]
= 3

2
v. (7.20)

Eliminate ρ̃:
dv

d ln ξ
= v(γ v − 1)[5− (3γ − 1)v]
γ (γ + 1)v2 − 2(γ + 1)v + 2

. (7.21)

Invert and split into partial fractions:

d ln ξ
dv
=− 2

5v
+ γ (γ − 1)
(2γ + 1)(γ v − 1)

+ 13γ 2 − 7γ + 12
5(2γ + 1)[5− (3γ − 1)v] . (7.22)

The solution is

ξ ∝ v−2/5(γ v − 1)(γ−1)/(2γ+1)[5− (3γ − 1)v]−(13γ 2−7γ+12)/5(2γ+1)(3γ−1). (7.23)

Now

d ln ρ̃
dv

= − 1
v − 1

− 3v
v − 1

d ln ξ
dv

= 2
(2− γ )(1− v) +

3γ
(2γ + 1)(γ v − 1)

− 13γ 2 − 7γ + 12
(2− γ )(2γ + 1)[5− (3γ − 1)v] .

(7.24)

The solution is

ρ̃ ∝ (1− v)−2/(2−γ )(γ v − 1)3/(2γ+1)[5− (3γ − 1)v](13γ 2−7γ+12)/(2−γ )(2γ+1)(3γ−1). (7.25)
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FIGURE 12. Sedov’s solution for a spherical blast wave in the case γ = 5/3.

For example, in the case γ = 5/3:

ξ ∝ v−2/5

(
5v
3
− 1
)2/13

(5− 4v)−82/195, (7.26)

ρ̃ ∝ (1− v)−6

(
5v
3
− 1
)9/13

(5− 4v)82/13. (7.27)

To satisfy v = 2/(γ + 1)= 3/4 and ρ̃ = (γ + 1)/(γ − 1)= 4 at ξ = 1:

ξ =
(

4v
3

)−2/5 (20v
3
− 4
)2/13 (5

2
− 2v

)−82/195

, (7.28)

ρ̃ = 4 (4− 4v)−6

(
20v

3
− 4
)9/13 (5

2
− 2v

)82/13

. (7.29)

Then, from the first integral,

p̃= 3
4

(
4v
3

)6/5

(4− 4v)−5

(
5
2
− 2v

)82/15

. (7.30)

In this solution (figure 12), ξ ranges from 0 to 1, and v from 3/5 to 3/4. The
normalization integral (numerically) yields α ≈ 1.152.

7.7. Applications
Some rough estimates are as follows:

(i) For a supernova: E ∼ 1051 erg, ρ0 ∼ 10−24 g cm−3. Then R ≈ 6 pc and Ṙ ≈
2000 km s−1 at t= 1000 year.
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(ii) For the 1945 New Mexico explosion: E≈ 8× 1020 erg, ρ0 ≈ 1.2× 10−3 g cm−3.
Then R≈ 100 m and Ṙ≈ 4 km s−1 at t= 0.01 s.

The similarity method is useful in a very wide range of nonlinear problems. In
this case it reduced partial differential equations to integrable ordinary differential
equations.

Related example: A.17.

8. Spherically symmetric steady flows: stellar winds and accretion
Note: in this section (r, θ, φ) are spherical polar coordinates.

8.1. Introduction
Many stars, including the Sun, lose mass through a stellar wind. The gas must be
sufficiently hot to escape from the star’s gravitational field. Gravitating bodies can
also accrete gas from the interstellar medium. The simplest models of these processes
neglect the effects of rotation or magnetic fields and involve a steady, spherically
symmetric flow.

8.2. Basic equations
We consider a purely radial flow, either away from or towards a body of mass M.
The gas is perfect and non-self-gravitating, so Φ = −GM/r. The fluid variables are
functions of r only, and the only velocity component is ur = u(r).

Mass conservation for such a flow implies that the mass flux

4πr2ρu=−Ṁ = const. (8.1)

If u> 0 (a stellar wind), −Ṁ is the mass loss rate. If u< 0 (an accretion flow), Ṁ is
the mass accretion rate. We ignore the secular change in the mass M, which would
otherwise violate the steady nature of the flow.

The thermal energy equation (assuming u 6= 0) implies homentropic flow:

p=Kργ , K = const. (8.2)

The equation of motion has only one component:

ρu
du
dr
=−ρ dΦ

dr
− dp

dr
. (8.3)

Alternatively, we can use the integral form (Bernoulli’s equation):

1
2

u2 +Φ + h= B= const., h=
(

γ

γ − 1

)
p
ρ
= v2

s

γ − 1
. (8.4)

In highly subsonic flow the u2/2 term on the left-hand side of Bernoulli’s equation
is negligible and the gas is quasi-hydrostatic. In highly supersonic flow the h term
is negligible and the flow is quasi-ballistic (freely falling). As discussed below, we
are usually interested in transonic solutions that pass smoothly from subsonic to
supersonic flow.

Our aim is to solve for u(r), and to determine Ṁ if possible. At what rate does
a star lose mass through a wind, or a black hole accrete mass from the surrounding
medium?
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8.3. First treatment
We first use the differential form of the equation of motion. Rewrite the pressure
gradient using the other two equations:

−dp
dr
=−p

d ln p
dr
=−γ p

d ln ρ
dr
= ρv2

s

(
2
r
+ 1

u
du
dr

)
. (8.5)

Equation (8.3), multiplied by u/ρ, becomes

(u2 − v2
s )

du
dr
= u

(
2v2

s

r
− dΦ

dr

)
. (8.6)

A critical point (sonic point) occurs at any radius r= rs where |u| = vs. For the flow
to pass smoothly from subsonic to supersonic, the right-hand side must vanish at the
sonic point:

2v2
ss

rs
− GM

r2
s

= 0. (8.7)

Evaluate Bernoulli’s equation (8.4) at the sonic point:(
1
2
+ 1
γ − 1

)
v2

ss −
GM
rs
= B. (8.8)

We deduce that

v2
ss =

2(γ − 1)
(5− 3γ )

B, rs = (5− 3γ )
4(γ − 1)

GM
B
. (8.9a,b)

There is a unique transonic solution, which exists only for 1 6 γ < 5/3. (The case
γ = 1 can be treated separately or by taking a limit.)

Now evaluate Ṁ at the sonic point:

|Ṁ| = 4πr2
sρsvss. (8.10)

8.4. Second treatment
We now use Bernoulli’s equation instead of the equation of motion.

Introduce the local Mach number M= |u|/vs. Then

4πr2ρvsM= |Ṁ|, v2
s = γKργ−1. (8.11a,b)

Eliminate ρ to obtain

vs = (γK)1/(γ+1)

( |Ṁ|
4πr2M

)(γ−1)/(γ+1)

. (8.12)

Bernoulli’s equation (8.4) is

1
2
v2

sM2 − GM
r
+ v2

s

γ − 1
= B. (8.13)

https://doi.org/10.1017/S0022377816000489 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000489


48 G. I. Ogilvie

(a) (b)

FIGURE 13. Shapes of the functions f (M) and g(r) for the case γ = 4/3. Only if Ṁ is
equal to the critical value at which the minima of f and g coincide (solid line, left panel)
does a smooth transonic solution exist.

Substitute for vs and separate the variables:

(γK)2/(γ+1)

( |Ṁ|
4π

)2(γ−1)/(γ+1) [M4/(γ+1)

2
+M−2(γ−1)/(γ+1)

γ − 1

]
= Br4(γ−1)/(γ+1) +GMr−(5−3γ )/(γ+1). (8.14)

This equation is of the form f (M) = g(r). Assume that 1 < γ < 5/3 and B > 0. (If
B < 0 then the flow cannot reach infinity.) Then each of f and g is the sum of a
positive power and a negative power, with positive coefficients. f (M) has a minimum
at M= 1, while g(r) has a minimum at

r= (5− 3γ )
4(γ − 1)

GM
B
, (8.15)

which is the sonic radius rs identified previously. A smooth passage through the sonic
point is possible only if |Ṁ| has a special value, so that the minima of f and g are
equal. If |Ṁ| is too large then the solution does not work for all r. If it is too small
then the solution remains subsonic (or supersonic) for all r, which may not agree with
the boundary conditions (figure 13).

The (r,M) plane shows an X-type critical point at (rs, 1) (figure 14).
For r� rs the subsonic solution is close to a hydrostatic atmosphere. The supersonic

solution is close to free fall.
For r� rs the subsonic solution approaches a uniform state (p= const., ρ = const.).

The supersonic solution is close to u= const. (so ρ ∝ r−2).

8.5. Stellar wind
For a stellar wind the appropriate solution is subsonic (quasi-hydrostatic) at small
r and supersonic (coasting) at large r. Parker (1958)13 first presented this simplified

13Eugene Newman Parker (1927–), American.
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FIGURE 14. Solution curves for a stellar wind or accretion flow in the case γ = 4/3,
showing an X-type critical point at the sonic radius and at Mach number M= 1.

model for the solar wind. The mass loss rate can be determined from the properties
of the quasi-hydrostatic part of the solution, e.g. the density and temperature at the
base of the solar corona. A completely hydrostatic solution is unacceptable unless the
external medium can provide a significant non-zero pressure. Subsonic solutions with
|Ṁ| less than the critical value are usually unacceptable for similar reasons. (In fact
the interstellar medium does arrest the supersonic solar wind in a termination shock
well beyond Pluto’s orbit.)

8.6. Accretion

In spherical or Bondi (1952)14 accretion we consider a gas that is uniform and at
rest at infinity (with pressure p0 and density ρ0). Then B = v2

s0/(γ − 1) and v2
ss =

2v2
s0/(5−3γ ). The appropriate solution is subsonic (uniform) at large r and supersonic

(freely falling) at small r. If the accreting object has a dense surface (a star rather than
a black hole) then the accretion flow will be arrested by a shock above the surface.

The accretion rate of the critical solution is

Ṁ = 4πr2
sρsvss = 4πr2

sρ0vs0

(
vss

vs0

)(γ+1)/(γ−1)

= f (γ )ṀB, (8.16)

where

ṀB = πG2M2ρ0

v3
s0

= 4πr2
aρ0vs0 (8.17)

is the characteristic Bondi accretion rate and

f (γ )=
(

2
5− 3γ

)(5−3γ )/2(γ−1)

(8.18)

14Sir Hermann Bondi (1919–2005), Austrian–British.
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is a dimensionless factor. Here
ra = GM

2v2
s0

(8.19)

is the nominal accretion radius, roughly the radius within which the mass M captures
the surrounding medium into a supersonic inflow.

Exercise: show that

lim
γ→1

f (γ )= e3/2, lim
γ→5/3

f (γ )= 1. (8.20a,b)

(However, although the case γ = 1 admits a sonic point, the important case γ = 5/3
does not.)

At different times in its life a star may gain mass from, or lose mass to, its
environment. Currently the Sun is losing mass at an average rate of approximately
2× 10−14 M� yr−1. If it were not doing so, it could theoretically accrete at the Bondi
rate of approximately 3× 10−15 M� yr−1 from the interstellar medium.

Related examples: A.17–A.19.

9. Axisymmetric rotating magnetized flows: astrophysical jets
Note: in this section (r, φ, z) are cylindrical polar coordinates.

9.1. Introduction
Stellar winds and jets from accretion discs are examples of outflows in which
rotation and magnetic fields have important or essential roles. Using cylindrical polar
coordinates (r, φ, z), we examine steady (∂/∂t= 0), axisymmetric (∂/∂φ = 0) models
based on the equations of ideal MHD.

9.2. Representation of an axisymmetric magnetic field
The solenoidal condition for an axisymmetric magnetic field is

1
r
∂

∂r
(rBr)+ ∂Bz

∂z
= 0. (9.1)

We may write

Br =−1
r
∂ψ

∂z
, Bz = 1

r
∂ψ

∂r
, (9.2a,b)

where ψ(r, z) is the magnetic flux function (figure 15). This is related to the magnetic
vector potential by ψ = rAφ . The magnetic flux contained inside the circle (r= const.,
z= const.) is ∫ r

0
Bz(r′, z) 2πr′ dr′ = 2πψ(r, z), (9.3)

plus an arbitrary constant that can be set to zero.
Since B · ∇ψ = 0, ψ labels the magnetic field lines or their surfaces of revolution,

known as magnetic surfaces. The magnetic field may be written in the form

B=∇ψ ×∇φ + Bφ eφ =
[
−1

r
eφ ×∇ψ

]
+ [Bφ eφ

]
. (9.4)
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FIGURE 15. Magnetic flux function and poloidal magnetic field.

The two square brackets represent the poloidal (meridional) and toroidal (azimuthal)
parts of the magnetic field:

B=Bp + Bφ eφ. (9.5)

Note that
∇ ·B=∇ ·Bp = 0. (9.6)

Similarly, one can write the velocity in the form

u= up + uφ eφ, (9.7)

although ∇ · up 6= 0 in general.

9.3. Mass loading and angular velocity
The steady induction equation in ideal MHD,

∇× (u×B)= 0, (9.8)

implies
u×B=−E=∇Φe, (9.9)

where Φe is the electrostatic potential. Now

u×B = (up + uφ eφ)× (Bp + Bφ eφ)
= [eφ × (uφBp − Bφup)

]+ [up ×Bp
]
. (9.10)

For an axisymmetric solution with ∂Φe/∂φ = 0, we have

up ×Bp = 0, (9.11)
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i.e. the poloidal velocity is parallel to the poloidal magnetic field15. Let

ρup = kBp, (9.12)

where k is the mass loading, i.e. the ratio of mass flux to magnetic flux.
The steady equation of mass conservation is

0=∇ · (ρu)=∇ · (ρup)=∇ · (kBp)=Bp · ∇k. (9.13)

Therefore
k= k(ψ), (9.14)

i.e. k is a surface function, constant on each magnetic surface.
We now have

u×B= eφ × (uφBp − Bφup)=
(

uφ
r
− kBφ

rρ

)
∇ψ. (9.15)

Taking the curl of this equation, we find

0=∇
(

uφ
r
− kBφ

rρ

)
×∇ψ. (9.16)

Therefore
uφ
r
− kBφ

rρ
=ω, (9.17)

where ω(ψ) is another surface function, known as the angular velocity of the magnetic
surface.

The complete velocity field may be written in the form

u= kB
ρ
+ rωeφ, (9.18)

i.e. the total velocity is parallel to the total magnetic field in a frame of reference
rotating with angular velocity ω. It is useful to think of the fluid being constrained to
move along the field line like a bead on a rotating wire.

9.4. Entropy
The steady thermal energy equation,

u · ∇s= 0, (9.19)

implies that Bp · ∇s= 0 and so
s= s(ψ) (9.20)

is another surface function.
15It is possible to consider a more general situation in which rEφ is equal to a non-zero constant. In this

case there is a steady drift across the field lines and a steady transport of poloidal magnetic flux. However,
such a possibility is best considered in the context of non-ideal MHD, which allows both advective and diffusive
transport of magnetic flux and angular momentum.
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9.5. Angular momentum
The azimuthal component of the equation of motion is

ρ
(

up · ∇uφ + uruφ
r

)
= 1
µ0

(
Bp · ∇Bφ + BrBφ

r

)
1
r
ρup · ∇(ruφ)− 1

µ0r
Bp · ∇(rBφ)= 0

1
r

Bp · ∇

(
kruφ − rBφ

µ0

)
= 0,


(9.21)

and so

ruφ = rBφ
µ0k
+ `, (9.22)

where
`= `(ψ) (9.23)

is another surface function, the angular momentum invariant. This is the angular
momentum removed in the outflow per unit mass, although part of the torque is
carried by the magnetic field.

9.6. The Alfvén surface
Define the poloidal Alfvén number (cf. the Mach number)

A= up

vap
. (9.24)

Then

A2 = µ0ρu2
p

B2
p

= µ0k2

ρ
, (9.25)

and so A∝ ρ−1/2 on each magnetic surface.
Consider the two equations

uφ
r
= kBφ

rρ
+ω, ruφ = rBφ

µ0k
+ `. (9.26a,b)

Eliminate Bφ to obtain

uφ = r2ω− A2`

r(1− A2)
=
(

1
1− A2

)
rω+

(
A2

A2 − 1

)
`

r
. (9.27)

For A� 1 we have
uφ ≈ rω, (9.28)

i.e. the fluid is in uniform rotation, corotating with the magnetic surface. For A� 1
we have

uφ ≈ `r , (9.29)
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FIGURE 16. Acceleration through an Alfvén point along a poloidal magnetic field line,
leading to angular momentum loss and magnetic braking.

i.e. the fluid conserves its specific angular momentum. The point r = ra(ψ) where
A= 1 is the Alfvén point. The locus of Alfvén points for different magnetic surfaces
forms the Alfvén surface. To avoid a singularity there we require

`= r2
aω. (9.30)

Typically the outflow will start at low velocity in high-density material, where A�1.
We can therefore identify ω as the angular velocity uφ/r=Ω0 of the footpoint r= r0
of the magnetic field line at the source of the outflow. It will then accelerate smoothly
through an Alfvén surface and become super-Alfvénic (A > 1). If mass is lost at
a rate Ṁ in the outflow, angular momentum is lost at a rate Ṁ`= Ṁr2

aΩ0. In contrast,
in a hydrodynamic outflow, angular momentum is conserved by fluid elements and
is therefore lost at a rate Ṁr2

0Ω0. A highly efficient removal of angular momentum
occurs if the Alfvén radius is large compared to the footpoint radius. This effect
is the magnetic lever arm. The loss of angular momentum through a stellar wind
is called magnetic braking (figure 16). In the case of the Sun, the Alfvén radius is
approximately between 20 and 30 R�.

9.7. The Bernoulli function
The total energy equation for a steady flow is

∇ ·

[
ρu
(

1
2

u2 +Φ + h
)
+ E×B

µ0

]
= 0. (9.31)

Now since
u= kB

ρ
+ rωeφ, (9.32)

we have
E=−u×B=−rωeφ ×B=−rωeφ ×Bp, (9.33)
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which is purely poloidal. Thus

(E×B)p =E× (Bφ eφ)=−rωBφBp. (9.34)

The total energy equation is therefore

∇ ·

[
kBp

(
1
2

u2 +Φ + h
)
− rωBφ

µ0
Bp

]
= 0

Bp · ∇

[
k
(

1
2

u2 +Φ + h− rωBφ
µ0k

)]
= 0

1
2

u2 +Φ + h− rωBφ
µ0k
= ε,


(9.35)

where
ε= ε(ψ) (9.36)

is another surface function, the energy invariant.
An alternative invariant is

ε̃ = ε− `ω
= 1

2
u2 +Φ + h− rωBφ

µ0k
−
(

ruφ − rBφ
µ0k

)
ω

= 1
2

u2 +Φ + h− ruφω

= 1
2

u2
p +

1
2
(uφ − rω)2 +Φcg + h, (9.37)

where
Φcg =Φ − 1

2ω
2r2 (9.38)

is the centrifugal–gravitational potential associated with the magnetic surface. One can
then see that ε̃ is the Bernoulli function of the flow in the frame rotating with angular
velocity ω. In this frame the flow is strictly parallel to the magnetic field and the field
therefore does no work because J×B⊥B and so J×B⊥ (u− rωeφ).

9.8. Summary
We have been able to integrate almost all of the MHD equations, reducing them
to a set of algebraic relations on each magnetic surface. If the poloidal magnetic
field Bp (or, equivalently, the flux function ψ) is specified in advance, these algebraic
equations are sufficient to determine the complete solution on each magnetic surface
separately, although we must also (i) specify the initial conditions at the source of
the outflow and (ii) ensure that the solution passes smoothly through critical points
where the flow speed matches the speeds of slow and fast magnetoacoustic waves (see
Example A.21).

The component of the equation of motion perpendicular to the magnetic surfaces
is the only piece of information not yet used. This ‘transfield’ or ‘Grad–Shafranov’
equation ultimately determines the equilibrium shape of the magnetic surfaces. It is
a very complicated nonlinear partial differential equation for ψ(r, z) and cannot be
reduced to simple terms. We do not consider it here.

https://doi.org/10.1017/S0022377816000489 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377816000489


56 G. I. Ogilvie

9.9. Acceleration from the surface of an accretion disc
We now consider the launching of an outflow from a thin accretion disc. The angular
velocity Ω(r) of the disc corresponds approximately to circular Keplerian orbital
motion around a central mass M:

Ω ≈
(

GM
r3

)1/2

. (9.39)

If the flow starts essentially from rest in high-density material (A� 1), we have

ω≈Ω, (9.40)

i.e. the angular velocity of the magnetic surface is the angular velocity of the disc at
the footpoint of the field line. In the sub-Alfvénic region we have

ε̃≈ 1
2 u2

p +Φcg + h. (9.41)

As in the case of stellar winds, if the gas is hot (comparable to the escape
temperature) an outflow can be driven by thermal pressure. Of more interest here is
the possibility of a dynamically driven outflow. For a ‘cold’ wind the enthalpy makes
a negligible contribution in this equation. Whether the flow accelerates or not above
the disc then depends on the variation of the centrifugal–gravitational potential along
the field line.

Consider a Keplerian disc in a point-mass potential. Let the footpoint of the field
line be at r= r0, and let the angular velocity of the field line be

ω=Ω0 =
(

GM
r3

0

)1/2

, (9.42)

as argued above. Then

Φcg =−GM(r2 + z2)−1/2 − 1
2

GM
r3

0
r2. (9.43)

In units such that r0 = 1, the equation of the equipotential passing through the
footpoint (r0, z) is

(r2 + z2)−1/2 + r2

2
= 3

2
. (9.44)

This can be rearranged into the form

z2 = (2− r)(r− 1)2(r+ 1)2(r+ 2)
(3− r2)2

. (9.45)

Close to the footpoint (1, 0) we have

z2 ≈ 3(r− 1)2 ⇒ z≈±√3(r− 1). (9.46)

The footpoint lies at a saddle point of Φcg (figure 17). If the inclination of the field
line to the vertical, i, at the surface of the disc exceeds 30◦, the flow is accelerated
without thermal assistance16. This is magnetocentrifugal acceleration.

The critical equipotential has an asymptote at r= r0

√
3. The field line must continue

to expand sufficiently in the radial direction in order to sustain the magnetocentrifugal
acceleration.

16A more detailed investigation (Ogilvie & Livio 1998) shows that the Keplerian rotation of the disc is
modified by the Lorentz force. There is then a potential barrier ∝B4 to be overcome by the outflow, even
when i > 30◦, which means that some thermal assistance is required, especially when the disc is strongly
magnetized.
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FIGURE 17. Contours of Φcg, in units such that r0 = 1. The downhill directions are
indicated by dotted contours. If the inclination of the poloidal magnetic field to the vertical
direction at the surface of the disc exceeds 30◦, gas is accelerated along the field lines
away from the disc.

9.10. Magnetically driven accretion
To allow a quantity of mass 1Macc to be accreted from radius r0, its orbital
angular momentum r2

0Ω01Macc must be removed. The angular momentum removed
by a quantity of mass 1Mjet flowing out in a magnetized jet from radius r0 is
`1Mjet = r2

aΩ01Mjet. Therefore accretion can in principle be driven by an outflow,
with

Ṁacc

Ṁjet
≈ r2

a

r2
0
. (9.47)

The magnetic lever arm allows an efficient removal of angular momentum if the
Alfvén radius is large compared to the footpoint radius.

Related examples: A.20, A.21.

10. Lagrangian formulation of ideal MHD
10.1. The Lagrangian viewpoint

In § 11 we will discuss waves and instabilities in differentially rotating astrophysical
bodies. Here we develop a general theory of disturbances to fluid flows that makes
use of the conserved quantities in ideal fluids and takes a Lagrangian approach.

The flow of a fluid can be considered as a time-dependent map,

a 7→ x(a, t), (10.1)

where a is the position vector of a fluid element at some initial time t0, and x is its
position vector at time t. The Cartesian components of a are examples of Lagrangian
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variables, labelling the fluid element. The components of x are Eulerian variables,
labelling a fixed point in space. Any fluid property X (scalar, vector or tensor) can
be regarded as a function of either Lagrangian or Eulerian variables:

X = XL(a, t)= XE(x, t). (10.2)

The Lagrangian time-derivative is simply

D
Dt
=
(
∂

∂t

)
a
, (10.3)

and the velocity of the fluid is

u= Dx
Dt
=
(
∂x
∂t

)
a
. (10.4)

The aim of a Lagrangian formulation of ideal MHD is to derive a nonlinear
evolutionary equation for the function x(a, t). The dynamics is Hamiltonian in
character and can be derived from a Lagrangian function or action principle. There
are many similarities with classical field theories.

10.2. The deformation tensor
Introduce the deformation tensor of the flow,

F ij = ∂xi

∂aj
, (10.5)

and its determinant
F= det(F ij) (10.6)

and inverse
Gij = ∂ai

∂xj
. (10.7)

We note the following properties. First, the derivative

∂F
∂F ij
= Cij = FGji = 1

2
εik`εjmnF kmF`n (10.8)

is equal to the cofactor Cij of the matrix element F ij. (This follows from the fact that
the determinant can be expanded as the sum of the products of any row’s elements
with their cofactors, which do not depend on that row’s elements.) Second, the matrix
of cofactors has zero divergence on its second index:

∂Cij

∂aj
= ∂

∂aj

(
1
2
εik`εjmn

∂xk

∂am

∂x`
∂an

)
= 0. (10.9)

(This follows because the resulting derivative involves the contraction of the
antisymmetric tensor εjmn with expressions that are symmetric in either jm or jn.)

Now
DF ij

Dt
= ∂ui

∂aj
(10.10)

and, according to (10.8),

D ln F
Dt
=Gji

DF ij

Dt
= ∂aj

∂xi

∂ui

∂aj
= ∂ui

∂xi
=∇ · u. (10.11)
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10.3. Geometrical conservation laws
The equations of ideal MHD comprise the equation of motion and three ‘geometrical’
conservation laws. These are the conservation of specific entropy (thermal energy
equation),

Ds
Dt
= 0, (10.12)

the conservation of mass,
Dρ
Dt
=−ρ∇ · u, (10.13)

and the conservation of magnetic flux (induction equation),

D
Dt

(
B
ρ

)
=
(

B
ρ

)
· ∇u. (10.14)

These equations describe the pure advection of fluid properties in a manner equivalent
to the advection of various geometrical objects. The specific entropy is advected as
a simple scalar, so that its numerical value is conserved by material points. The
specific volume v = 1/ρ is advected in the same way as a material volume element
dV . The quantity B/ρ is advected in the same way as a material line element δx.
Equivalently, the mass element δm= ρδV and the magnetic flux element δΦ =B · δS
satisfy Dδm/Dt = 0 and DδΦ/Dt = 0, where δS is a material surface element. All
three conservation laws can be integrated exactly in Lagrangian variables.

The exact solutions of (10.12)–(10.14) are then

sL(a, t)= s0(a), ρL(a, t)= F−1ρ0(a), BL
i (a, t)= F−1F ijBj0(a), (10.15a−c)

where s0, ρ0, and B0 are the initial values at time t0. The verification of (10.14) is

D
Dt

(
Bi

ρ

)
= D

Dt

(
F ijBj0

ρ0

)
= ∂ui

∂aj

Bj0

ρ0
= ∂ui

∂xk
F kj

Bj0

ρ0
=
(

Bk

ρ

)
∂ui

∂xk
. (10.16)

Note that the advected quantities at time t depend only on the initial values and on
the instantaneous mapping a 7→ x, not on the intermediate history of the flow. The
‘memory’ of an ideal fluid is perfect.

10.4. The Lagrangian of ideal MHD
Newtonian dynamics can be formulated using Hamilton’s principle of stationary action,

δ

∫
L dt= 0, (10.17)

where the Lagrangian L is the difference between the kinetic energy and the potential
energy of the system. By analogy, we may expect the Lagrangian of ideal MHD to
take the form

L=
∫

L dV, (10.18)

where (for a non-self-gravitating fluid)

L= ρ
(

1
2

u2 −Φ − e− B2

2µ0ρ

)
(10.19)
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is the Lagrangian density.
To verify this, we assume that the equation of state can be written in the form

e= e(v, s), where v= ρ−1 is the specific volume. Since de= T ds− p dv, we have(
∂e
∂v

)
s

=−p,
(
∂2e
∂v2

)
s

= γ p
v

(10.20a,b)

(strictly, γ should be Γ1 here).
We then write the action using Lagrangian variables,

S[x] =
∫∫

L̃(x, u, F ) d3a dt, (10.21)

with

L̃= ρ0

[
1
2

u2 −Φ(x)− e(Fρ−1
0 , s0)− F−1F ijBj0F ikBk0

2µ0ρ0

]
. (10.22)

This uses the fact that F is the Jacobian determinant of the transformation a 7→ x,
or, equivalently, that ρ d3x = ρ0 d3a = dm is an invariant mass measure. L̃ is now
expressed in terms of the function x(a, t) and its derivatives with respect to time (u)
and space (F ). The Euler–Lagrange equation for the variational principle δS= 0 is

D
Dt
∂L̃
∂ui
+ ∂

∂aj

∂L̃
∂F ij
− ∂L̃
∂xi
= 0. (10.23)

The straightforward terms are

∂L̃
∂ui
= ρ0ui,

∂L̃
∂xi
=−ρ0

∂Φ

∂xi
. (10.24a,b)

Now

∂L̃
∂F ij
=
(

p+ B2

2µ0

)
∂F
∂F ij
− F−1Bj0F ikBk0

µ0

= Cij

(
p+ B2

2µ0

)
− 1
µ0

CkjBiBk

= −CkjV ik, (10.25)

where

V ik =−
(

p+ B2

2µ0

)
δik + BiBk

µ0
(10.26)

is the stress tensor due to pressure and the magnetic field.
The Euler–Lagrange equation is therefore

ρ0
Dui

Dt
=−ρ0

∂Φ

∂xi
+ ∂

∂aj
(CkjV ik). (10.27)

Using (10.9) we note that

∂

∂aj
(CkjV ik)= Ckj

∂V ik

∂aj
= FGjk

∂V ik

∂aj
= F

∂V ik

∂xk
. (10.28)
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FIGURE 18. The Lagrangian displacement of a fluid element.

On dividing through by F, the Euler–Lagrange equation becomes the desired equation
of motion,

ρ
Du
Dt
=−ρ∇Φ +∇ · V . (10.29)

In this construction, the fluid flow is viewed as a field x(a, t) on the initial state
space. Ideal MHD is seen as a nonlinear field theory derived from an action principle.
When considering stability problems, it is useful to generalize this concept and to view
a perturbed flow as a field on an unperturbed flow.

10.5. The Lagrangian displacement
Now consider two different flows, x(a, t) and x̂(a, t), for which the initial values of
the advected quantities, s0, ρ0 and B0, are the same. The two deformation tensors are
related by the chain rule,

F̂ ij = J ikF kj, (10.30)

where

J ik = ∂ x̂i

∂xk
(10.31)

is the Jacobian matrix of the map x 7→ x̂. Similarly,

F̂= JF, (10.32)

where
J = det(J ij) (10.33)

is the Jacobian determinant. The advected quantities in the two flows are therefore
related by the composition of maps,

ŝL(a, t)= sL(a, t),
ρ̂L(a, t)= J−1ρL(a, t),

B̂L
i (a, t)= J−1J ijBL

j (a, t).

 (10.34)

The Lagrangian displacement (figure 18) is the relative displacement of the fluid
element in the two flows,

ξ = x̂− x. (10.35)
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Thus (with ξi,j = ∂ξi/∂xj)

J ij = δij + ξi,j,

J = 1
6εijkεlmnJ ilJ jmJkn

= 1
6εijkεlmn(δil + ξi,l)(δjm + ξj,m)(δkn + ξk,n)

= 1
6εijkεijk + 1

2εijkεijnξk,n + 1
2εijkεimnξj,mξk,n +O(ξ 3)

= 1+ ξk,k + 1
2(ξj,jξk,k − ξj,kξk,j)+O(ξ 3). (10.36)

From the binomial theorem,

J−1 = 1− ξk,k + 1
2(ξj,jξk,k + ξj,kξk,j)+O(ξ 3). (10.37)

10.6. The Lagrangian for a perturbed flow
We now use the action principle to construct a theory for the displacement as a field
on the unperturbed flow: ξ = ξ(x, t). The action for the perturbed flow is

Ŝ[ξ ] =
∫ ∫

L̂
(
ξ ,
∂ξ

∂t
,∇ξ

)
d3x dt, (10.38)

where

L̂ = ρ

(
1
2

û2 − Φ̂ − ê− B̂2

2µ0ρ̂

)

= ρ

[
1
2

û2 −Φ(x+ ξ)− e(Jρ−1, s)− J−1J ijBjJ ikBk

2µ0ρ

]
, (10.39)

with

û= Dx̂
Dt
= u+ ∂ξ

∂t
+ u · ∇ξ . (10.40)

The Euler–Lagrange equation for the variational principle δŜ= 0 is

∂

∂t
∂L̂
∂ξ̇i
+ ∂

∂xj

∂L̂
∂ξi,j
− ∂L̂
∂ξi
= 0, (10.41)

where ξ̇i = ∂ξi/∂t. We expand the various terms of L̂ in powers of ξ :

1
2
ρû2 = 1

2
ρu2 + ρui

(
∂ξi

∂t
+ uj

∂ξi

∂xj

)
+ 1

2
ρ

(
∂ξi

∂t
+ uj

∂ξi

∂xj

)(
∂ξi

∂t
+ uk

∂ξi

∂xk

)
,

− ρΦ(x+ ξ) = −ρ
[
Φ(x)+ ξi

∂Φ

∂xi
+ 1

2
ξiξj

∂2Φ

∂xi∂xj
+O(ξ 3)

]
,

− ρ
(

ê+ B̂2

2µ0ρ̂

)
= −

(
ρe+ B2

2µ0

)
− V ij

∂ξi

∂xj
− 1

2
V ijk`

∂ξi

∂xj

∂ξk

∂x`
+O(ξ 3).

(10.42)
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This last expression uses the fact that ê, B̂ and ρ̂ depend only on ∇ξ (through J
and J ij) and can therefore be expanded in a Taylor series in this quantity. A short
calculation of this expansion gives

V ij =−
(

p+ B2

2µ0

)
δij + BiBj

µ0
, (10.43)

which is the stress tensor used above, and

V ijk`=
[
(γ − 1)p+ B2

2µ0

]
δijδk`+

(
p+ B2

2µ0

)
δi`δjk+ 1

µ0
BjB`δik− 1

µ0
(BiBjδk`+BkB`δij),

(10.44)
which has the symmetry

V ijk` = Vk`ij (10.45)

necessitated by its function in the Taylor series. We now have

∂L̂
∂ξ̇i
= ρui + ρDξi

Dt
,

∂L̂
∂ξi,j
= ρuiuj + ρuj

Dξi

Dt
− V ij − V ijk`

∂ξk

∂x`
+O(ξ 2),

∂L̂
∂ξi
=−ρ ∂Φ

∂xi
− ρξj

∂2Φ

∂xi∂xj
+O(ξ 2).


(10.46)

Since ξ = 0 must be a solution of the Euler–Lagrange equation, it is no surprise
that the terms independent of ξ cancel by virtue of the equation of motion of the
unperturbed flow,

∂

∂t
(ρui)+ ∂

∂xj
(ρuiuj − V ij)+ ρ ∂Φ

∂xi
= 0. (10.47)

The remaining terms are

∂

∂t

(
ρ

Dξi

Dt

)
+ ∂

∂xj

(
ρuj

Dξi

Dt
− V ijk`

∂ξk

∂x`

)
+ ρξj

∂2Φ

∂xi∂xj
+O(ξ 2)= 0, (10.48)

or (making use of the equation of mass conservation)

ρ
D2ξi

Dt2
= ∂

∂xj

(
V ijk`

∂ξk

∂x`

)
− ρξj

∂2Φ

∂xi∂xj
+O(ξ 2). (10.49)

This equation, which can be extended to any order in ξ , provides the basis for a
nonlinear perturbation theory for any flow in ideal MHD. In a linear theory we would
neglect terms of O(ξ 2).
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10.7. Notes on linear perturbations
The Lagrangian perturbation 1X of a quantity X is the difference in the values of the
quantity in the two flows for the same fluid element,

1X = X̂L(a, t)− XL(a, t). (10.50)

It follows that

1s= 0, 1ρ =−ρ ∂ξi

∂xi
+O(ξ 2), 1Bi = Bj

∂ξi

∂xj
− Bi

∂ξj

∂xj
+O(ξ 2), (10.51a−c)

and

1ui = Dξi

Dt
. (10.52)

In linear theory, ∇ξ is small and terms higher than the first order are neglected.
Thus

1s= 0, 1ρ =−ρ∇ · ξ , 1B=B · ∇ξ − (∇ · ξ)B. (10.53a−c)

In linear theory, 1s= 0 implies

1p= γ p
ρ
1ρ =−γ p∇ · ξ . (10.54)

The Eulerian perturbation δX of a quantity X is the difference in the values of the
quantity in the two flows at the same point in space,

δX = X̂E(x, t)− XE(x, t). (10.55)

By Taylor’s theorem,
1X = δX + ξ · ∇X +O(ξ 2), (10.56)

and so, in linear theory,
δX =1X − ξ · ∇X. (10.57)

Thus
δρ =−ρ∇ · ξ − ξ · ∇ρ,
δp=−γ p∇ · ξ − ξ · ∇p,

δB=B · ∇ξ − ξ · ∇B− (∇ · ξ)B,

 (10.58)

exactly as was obtained in § 5 for perturbations of magnetostatic equilibria.
The relation

δu= Dξ
Dt
− ξ · ∇u (10.59)

can be used to introduce the Lagrangian displacement into a linear theory derived
using Eulerian perturbations. Only in the case of a static basic state, u= 0, does this
reduce to the simple relation δu= ∂ξ/∂t.
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11. Waves and instabilities in stratified rotating astrophysical bodies
11.1. The energy principle

For linear perturbations to a static equilibrium (u= 0), the displacement satisfies

ρ
∂2ξi

∂t2
=−ρ ∂δΦ

∂xi
− ρξj

∂2Φ

∂xi∂xj
+ ∂

∂xj

(
V ijk`

∂ξk

∂x`

)
, (11.1)

where we now allow for self-gravitation through

∇2 δΦ = 4πG δρ =−4πG∇ · (ρξ). (11.2)

We may write (11.1) in the form

∂2ξ

∂t2
=Fξ , (11.3)

where F is a linear differential operator (or integro-differential if self-gravitation is
taken into account). The force operator F can be shown to be self-adjoint with respect
to the inner product,

〈η, ξ〉 =
∫
ρη∗ · ξ dV (11.4)

if appropriate boundary conditions apply to the vector fields ξ and η. Let δΨ be the
gravitational potential perturbation associated with the displacement η, so ∇2δΨ =
−4πG∇ · (ρη). Then

〈η,Fξ〉 =
∫ [
−ρη∗i

∂δΦ

∂xi
− ρη∗i ξj

∂2Φ

∂xi∂xj
+ η∗i

∂

∂xj

(
V ijk`

∂ξk

∂x`

)]
dV

=
∫ [
−δΦ∇

2δΨ ∗

4πG
− ρξiη

∗
j
∂2Φ

∂xi∂xj
− V ijk`

∂ξk

∂x`

∂η∗i
∂xj

]
dV

=
∫ [
∇(δΦ) · ∇(δΨ ∗)

4πG
− ρξiη

∗
j
∂2Φ

∂xi∂xj
+ ξk

∂

∂x`

(
V ijk`

∂η∗i
∂xj

)]
dV

=
∫ [
−δΨ ∗∇

2δΦ

4πG
− ρξiη

∗
j
∂2Φ

∂xi∂xj
+ ξi

∂

∂xj

(
Vk`ij

∂η∗k
∂x`

)]
dV

=
∫ [
−ρξi

∂δΨ ∗

∂xi
− ρξiη

∗
j
∂2Φ

∂xi∂xj
+ ξi

∂

∂xj

(
V ijk`

∂η∗k
∂x`

)]
dV

= 〈Fη, ξ〉. (11.5)

Here the integrals are over all space. We assume that the exterior of the body is a
medium of zero density in which the force-free limit of MHD holds and B decays
sufficiently fast as |x|→∞ that we may integrate freely by parts (using the divergence
theorem) and ignore surface terms. We also assume that the body is isolated and
self-gravitating, so that δΦ =O(r−1), or in fact O(r−2) if δM = 0. We have used the
symmetry properties of ∂2Φ/∂xi∂xj and V ijk`.

The functional

W[ξ ] =−1
2
〈ξ ,Fξ〉 = 1

2

∫ (
−|∇δΦ|

2

4πG
+ ρξ ∗i ξj

∂2Φ

∂xi∂xj
+ V ijk`

∂ξ ∗i
∂xj

∂ξk

∂x`

)
dV (11.6)
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is therefore real and represents the change in potential energy associated with the
displacement ξ .

If the basic state is static, we may consider normal mode solutions of the form

ξ =Re
[
ξ̃(x) exp(−iωt)

]
, (11.7)

for which we obtain
−ω2ξ̃ =F ξ̃ (11.8)

and

ω2 =−〈ξ̃ ,F ξ̃〉〈ξ̃ , ξ̃〉 =
2W[ξ̃ ]
〈ξ̃ , ξ̃〉 . (11.9)

Therefore ω2 is real and we have either oscillations (ω2 > 0) or instability (ω2 < 0).
The above expression for ω2 satisfies the usual Rayleigh–Ritz variational principle

for self-adjoint eigenvalue problems. The eigenvalues ω2 are the stationary values
of 2W[ξ ]/〈ξ , ξ〉 among trial displacements ξ satisfying the boundary conditions.
In particular, the lowest eigenvalue is the global minimum value of 2W[ξ ]/〈ξ , ξ〉.
Therefore the equilibrium is unstable if and only if W[ξ ] can be made negative by
a trial displacement ξ satisfying the boundary conditions. This is called the energy
principle.

This discussion is incomplete because it assumes that the eigenfunctions form a
complete set. In general a continuous spectrum, not associated with square-integrable
modes, is also present. However, it can be shown that a necessary and sufficient
condition for instability is that W[ξ ] can be made negative as described above.
Consider the equation for twice the energy of the perturbation,

d
dt

(〈ξ̇ , ξ̇〉 + 2W[ξ ]) = 〈ξ̈ , ξ̇〉 + 〈ξ̇ , ξ̈〉 − 〈ξ̇ ,Fξ〉 − 〈ξ ,F ξ̇〉
= 〈Fξ , ξ̇〉 + 〈ξ̇ ,Fξ〉 − 〈ξ̇ ,Fξ〉 − 〈Fξ , ξ̇〉
= 0. (11.10)

Therefore
〈ξ̇ , ξ̇〉 + 2W[ξ ] = 2E= const., (11.11)

where E is determined by the initial data ξ0 and ξ̇0. If W is positive definite then the
equilibrium is stable because ξ is limited by the constraint W[ξ ]6 E.

Suppose that a (real) trial displacement η can be found for which

2W[η]
〈η, η〉 =−γ

2, (11.12)

where γ > 0. Then let the initial conditions be ξ0 = η and ξ̇0 = γ η so that

〈ξ̇ , ξ̇〉 + 2W[ξ ] = 2E= 0. (11.13)

Now let

a(t)= ln
( 〈ξ , ξ〉
〈η, η〉

)
(11.14)
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so that
da
dt
= 2〈ξ , ξ̇〉
〈ξ , ξ〉 (11.15)

and

d2a
dt2
= 2(〈ξ ,Fξ〉 + 〈ξ̇ , ξ̇〉)〈ξ , ξ〉 − 4〈ξ , ξ̇〉2

〈ξ , ξ〉2

= 2(−2W[ξ ] + 〈ξ̇ , ξ̇〉)〈ξ , ξ〉 − 4〈ξ , ξ̇〉2
〈ξ , ξ〉2

= 4(〈ξ̇ , ξ̇〉〈ξ , ξ〉 − 〈ξ , ξ̇〉2)
〈ξ , ξ〉2

> 0 (11.16)

by the Cauchy–Schwarz inequality. Thus

da
dt

> ȧ0 = 2γ

a > 2γ t+ a0 = 2γ t.

 (11.17)

Therefore the disturbance with these initial conditions grows at least as fast as exp(γ t)
and the equilibrium is unstable.

11.2. Spherically symmetric star
The simplest model of a star neglects rotation and magnetic fields and assumes a
spherically symmetric hydrostatic equilibrium in which ρ(r) and p(r) satisfy

dp
dr
=−ρg, (11.18)

with inward radial gravitational acceleration

g(r)= dΦ
dr
= G

r2

∫ r

0
ρ(r′) 4πr′2 dr′. (11.19)

The stratification induced by gravity provides a non-uniform background for wave
propagation.

In this case the linearized equation of motion is (cf. § 5)

ρ
∂2ξ

∂t2
=−ρ∇δΦ − δρ∇Φ −∇δp, (11.20)

with δρ=−∇ · (ρξ), ∇2δΦ = 4πG δρ and δp=−γ p∇ · ξ − ξ · ∇p. For normal modes
∝ exp(−iωt),

ρω2ξ = ρ∇δΦ + δρ∇Φ +∇δp
ω2
∫

V
ρ|ξ |2 dV =

∫
V
ξ ∗ · (ρ∇δΦ + δρ∇Φ +∇δp) dV,

 (11.21)
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where V is the volume of the star. At the surface S of the star, we assume that ρ
and p vanish. Then δp also vanishes on S (assuming that ξ and its derivatives are
bounded).

The δp term can be integrated by parts as follows:∫
V
ξ ∗ · ∇δp dV = −

∫
V
(∇ · ξ)∗δp dV

=
∫

V

1
γ p
(δp+ ξ · ∇p)∗δp dV

=
∫

V

[ |δp|2
γ p
+ 1
γ p
(ξ ∗ · ∇p)(−ξ · ∇p− γ p∇ · ξ)

]
dV. (11.22)

The δρ term partially cancels with the above:∫
V
ξ ∗ · (δρ∇Φ) =

∫
V
(−ξ ∗ · ∇p)

δρ

ρ
dV

=
∫

V
(ξ ∗ · ∇p)(∇ · ξ + ξ · ∇ ln ρ) dV. (11.23)

Finally, the δΦ term can be transformed as in § 11.1 to give∫
V
ρξ ∗ · ∇δΦ dV =−

∫
∞

|∇δΦ|2
4πG

dV, (11.24)

where the integral on the right-hand side is over all space. Thus

ω2
∫

V
ρ|ξ |2 dV = −

∫
∞

|∇δΦ|2
4πG

dV

+
∫

V

[ |δp|2
γ p
− (ξ ∗ · ∇p) ·

(
1
γ
ξ · ∇ ln p− ξ · ∇ ln ρ

)]
dV

= −
∫
∞

|∇δΦ|2
4πG

dV +
∫

V

( |δp|2
γ p
+ ρN2|ξr|2

)
dV, (11.25)

where N(r) is the Brunt–Väisälä frequency17 (or buoyancy frequency) given by

N2 = g
(

1
γ

d ln p
dr
− d ln ρ

dr

)
∝ g

ds
dr
. (11.26)

N is the frequency of oscillation of a fluid element that is displaced vertically in a
stably stratified atmosphere if it maintains pressure equilibrium with its surroundings.
The stratification is stable if the specific entropy increases outwards.

The integral expression for ω2 satisfies the energy principle. There are three
contributions to ω2: the self-gravitational term (destabilizing), the acoustic term
(stabilizing) and the buoyancy term (stabilizing if N2 > 0).

If N2 < 0 for any interval of r, a trial displacement can always be found such
that ω2 < 0. This is done by localizing ξr in that interval and arranging the other
components of ξ such that δp=0. Therefore the star is unstable if ∂s/∂r<0 anywhere.
This is Schwarzschild’s criterion18 for convective instability.

17Sir David Brunt (1886–1965), British. Vilho Väisälä (1889–1969), Finnish.
18Karl Schwarzschild (1873–1916), German.
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11.3. Modes of an incompressible sphere
Note: in this subsection (r, θ, φ) are spherical polar coordinates.

Analytical solutions can be obtained in the case of a homogeneous incompressible
‘star’ of mass M and radius R which has

ρ =
(

3M
4πR3

)
H(R− r), (11.27)

where H is the Heaviside step function. For r 6 R we have

g= GMr
R3

, p= 3GM2(R2 − r2)

8πR6
. (11.28a,b)

For an incompressible fluid,
∇ · ξ = 0, (11.29)

δρ =−ξ · ∇ρ = ξr

(
3M

4πR3

)
δ(r− R) (11.30)

and

∇2δΦ = 4πG δρ = ξr

(
3GM

R3

)
δ(r− R), (11.31)

while δp is indeterminate and is a variable independent of ξ . The linearized equation
of motion is

−ρω2ξ =−ρ∇δΦ −∇δp. (11.32)

Therefore we have potential flow: ξ =∇U, with ∇2U = 0 and −ρω2U =−ρδΦ − δp
in r 6 R. Appropriate solutions of Laplace’s equation regular at r = 0 are the solid
spherical harmonics (with arbitrary normalization)

U = r`Ym
` (θ, φ), (11.33)

where ` and m are integers with `> |m|. Equation (11.31) also implies

δΦ =
{

Ar`Ym
` , r< R,

Br−`−1Ym
` , r> R,

(11.34)

where A and B are constants to be determined. The matching conditions from (11.31)
at r= R are

[δΦ] = 0,
[
∂δΦ

∂r

]
= ξr

(
3GM

R3

)
. (11.35a,b)

Thus

BR−`−1 − AR` = 0, −(`+ 1)BR−`−2 − `AR`−1 = `R`−1

(
3GM

R3

)
, (11.36a,b)

with solution

A=− `

2`+ 1

(
3GM

R3

)
, B= AR2`+1. (11.37a,b)
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At r= R the Lagrangian pressure perturbation should vanish:

1p= δp+ ξ · ∇p= 0(
3M

4πR3

) [
ω2R` +

(
`

2`+ 1

)(
3GM

R3

)
R`
]
− 3GM2

4πR5
`R`−1 = 0

ω2 =
(
`− 3`

2`+ 1

)
GM
R2
= 2`(`− 1)

2`+ 1
GM
R3
.


(11.38)

This result was obtained by Lord Kelvin. Since ω2 > 0 the star is stable. Note that
`= 0 corresponds to ξ = 0 and `= 1 corresponds to ξ = const., which is a translational
mode of zero frequency. The remaining modes are non-trivial and are called f modes
(fundamental modes). These can be thought of as surface gravity waves, related to
ocean waves for which ω2= gk. In the first expression for ω2 above, the first term in
brackets derives from surface gravity, while the second derives from self-gravity.

11.4. The plane-parallel atmosphere
The local dynamics of a stellar atmosphere can be studied in a Cartesian (‘plane-
parallel’) approximation. The gravitational acceleration is taken to be constant
(appropriate to an atmosphere) and in the −z direction. For hydrostatic equilibrium,

dp
dz
=−ρg. (11.39)

A simple example is an isothermal atmosphere in which p= c2
sρ with cs = const.:

ρ = ρ0 e−z/H, p= p0 e−z/H. (11.40a,b)

H= c2
s/g is the isothermal scale height. The Brunt–Väisälä frequency in an isothermal

atmosphere is given by

N2 = g
(

1
γ

d ln p
dz
− d ln ρ

dz

)
=
(

1− 1
γ

)
g
H
, (11.41)

which is constant and is positive for γ > 1. An isothermal atmosphere is stably
(subadiabatically) stratified if γ > 1 and neutrally (adiabatically) stratified if γ = 1.

A further example is a polytropic atmosphere in which p∝ρ1+1/m in the undisturbed
state, where m is a positive constant. In general 1 + 1/m differs from the adiabatic
exponent γ of the gas. For hydrostatic equilibrium,

ρ1/m dρ
dz
∝−ρg ⇒ ρ1/m ∝−z, (11.42)

if the top of the atmosphere is located at z= 0, with vacuum above. Let

ρ = ρ0

(
− z

H

)m
, (11.43)

for z< 0, where ρ0 and H are constants. Then

p= p0

(
− z

H

)m+1
, (11.44)
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where
p0 = ρ0gH

m+ 1
(11.45)

to satisfy dp/dz=−ρg. In this case

N2 =
(

m− m+ 1
γ

)
g
−z
. (11.46)

We return to the linearized equations, looking for solutions of the form

ξ =Re
[
ξ̃(z) exp(−iωt+ ikh · x)

]
, etc., (11.47)

where ‘h’ denotes a horizontal vector (having only x and y components). Then

−ρω2ξh =−ikh δp,

−ρω2ξz =−g δρ − d δp
dz
,

δρ =−ξz
dρ
dz
− ρ∆,

δp=−ξz
dp
dz
− γ p∆,


(11.48)

where
∆=∇ · ξ = ikh · ξh + dξz

dz
. (11.49)

The self-gravitation of the perturbation is neglected in the atmosphere: δΦ = 0 (the
Cowling approximation). Note that only two z-derivatives of perturbation quantities
occur: d δp/dz and dξz/dz. This is a second-order system of ordinary differential
equations (ODEs), combined with algebraic equations.

We can easily eliminate ξh to obtain

∆=− k2
h

ρω2
δp+ dξz

dz
, (11.50)

where kh = |kh|, and eliminate δρ to obtain

−ρω2ξz = gξz
dρ
dz
+ ρg∆− d δp

dz
. (11.51)

We consider these two differential equations in combination with the remaining
algebraic equation

δp= ρgξz − γ p∆. (11.52)

A first approach is to solve the algebraic equation for ∆ and substitute to obtain
the two coupled ODEs

dξz

dz
= g
v2

s

ξz + 1
ρv2

s

(
v2

s k2
h

ω2
− 1
)
δp,

d δp
dz
= ρ(ω2 −N2)ξz − g

v2
s

δp.

 (11.53)
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Note that v2
s k2

h is the square of the ‘Lamb frequency’, i.e. the (z-dependent) frequency
of a horizontal sound wave of wavenumber kh. In a short-wavelength (WKB)
approximation, where ξz ∝ exp

[
i
∫

kz(z) dz
]

with kz � g/v2
s , the local dispersion

relation derived from these ODEs is

v2
s k2

z = (ω2 −N2)

(
1− v

2
s k2

h

ω2

)
. (11.54)

Propagating waves (k2
z > 0) are possible when

either ω2 >max(v2
s k2

h,N2) or 0<ω2 <min(v2
s k2

h,N2). (11.55a,b)

The high-frequency branch describes p modes (acoustic waves: ‘p’ for pressure) while
the low-frequency branch describes g modes (internal gravity waves: ‘g’ for gravity).

There is a special incompressible solution in which ∆ = 0, i.e. δp = ρgξz. This
satisfies

dξz

dz
= gk2

h

ω2
ξz,

dξz

dz
= ω

2

g
ξz. (11.56a,b)

For compatibility of these equations,

gk2
h

ω2
= ω

2

g
⇒ ω2 =±gkh. (11.57)

The acceptable solution in which ξz decays with depth is

ω2 = gkh, ξz ∝ exp(khz). (11.58a,b)

This is a surface gravity wave known in stellar oscillations as the f mode (fundamental
mode). It is vertically evanescent.

The other wave solutions (p and g modes) can be found analytically in the case of
a polytropic atmosphere.19 We now eliminate variables in favour of ∆. First use the
algebraic relation to eliminate δp:

∆=−gk2
h

ω2
ξz + v

2
s k2

h

ω2
∆+ dξz

dz
, (11.59)

−ρω2ξz = ρg∆− ρg
dξz

dz
+ d(γ p∆)

dz
. (11.60)

Then eliminate dξz/dz:

−ρω2ξz =−ρg
(

gk2
h

ω2
ξz − v

2
s k2

h

ω2
∆

)
+ d(γ p∆)

dz
. (11.61)

Thus we have
dξz

dz
− gk2

h

ω2
ξz =

(
1− v

2
s k2

h

ω2

)
∆, (11.62)

−ω2

(
1− g2k2

h

ω4

)
ξz = 1

ρ

d(ρv2
s∆)

dz
+ v2

s
gk2

h

ω2
∆. (11.63)

19Lamb (1932), Art. 312.
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Combine, eliminating ξz:(
d
dz
− gk2

h

ω2

) [
v2

s
d∆
dz
+ 1
ρ

d(ρv2
s )

dz
∆+ v2

s
gk2

h

ω2
∆

]
+ω2

(
1− g2k2

h

ω4

)(
1− v

2
s k2

h

ω2

)
∆= 0.

(11.64)
Expand out:

v2
s

d2∆

dz2
+
[

dv2
s

dz
+ 1
ρ

d(ρv2
s )

dz

]
d∆
dz
+
[

d
dz

(
1
ρ

d(ρv2
s )

dz

)
+ dv2

s

dz
gk2

h

ω2
− gk2

h

ω2

1
ρ

d(ρv2
s )

dz

+ω2

(
1− g2k2

h

ω4
− v

2
s k2

h

ω2

) ]
∆= 0. (11.65)

In the case of a polytropic atmosphere, v2
s ∝ z and ρv2

s ∝ zm+1:

v2
s

d2∆

dz2
+ (m+ 2)

v2
s

z
d∆
dz
+
[
−m

gk2
h

ω2

v2
s

z
+ω2

(
1− g2k2

h

ω4
− v

2
s k2

h

ω2

)]
∆= 0. (11.66)

In fact, v2
s /z=−γ g/(m+ 1). Divide through by this factor:

z
d2∆

dz2
+ (m+ 2)

d∆
dz
−
[

m
gk2

h

ω2
+ (m+ 1)

γ g
ω2

(
1− g2k2

h

ω4

)
+ k2

hz
]
∆= 0. (11.67)

Finally,

z
d2∆

dz2
+ (m+ 2)

d∆
dz
− (A+ khz)kh∆= 0, (11.68)

where

A= (m+ 1)
γ

ω2

gkh
+
(

m− m+ 1
γ

)
gkh

ω2
(11.69)

is a dimensionless constant. Let ∆=w(z) ekhz:

z
d2w
dz2
+ (m+ 2+ 2khz)

dw
dz
− (A−m− 2)khw= 0. (11.70)

This is related to the confluent hypergeometric equation and has a regular singular
point at z= 0. Using the method of Frobenius, we seek power-series solutions

w=
∞∑

r=0

arzσ+r, (11.71)

where σ is a number to be determined and a0 6= 0. The indicial equation is

σ(σ +m+ 1)= 0 (11.72)

and the regular solution has σ = 0. The recurrence relation is then

ar+1

ar
= (A−m− 2− 2r)kh

(r+ 1)(r+m+ 2)
. (11.73)
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FIGURE 19. Dispersion relation, in arbitrary units, for a stably stratified plane-parallel
polytropic atmosphere with m= 3 and γ = 5/3. The dashed line is the f mode. Above it
are the first ten p modes and below it are the first ten g modes. Each curve is a parabola.

In the case of an infinite series, ar+1/ar ∼−2kh/r as r→∞, so w behaves like e−2khz

and ∆ diverges like e−khz as z→−∞. Solutions in which ∆ decays with depth are
those for which the series terminates and w is a polynomial. For a polynomial of
degree n− 1 (n > 1),

A= 2n+m. (11.74)

This gives a quadratic equation for ω2:

(m+ 1)
γ

(
ω2

gkh

)2

− (2n+m)
(
ω2

gkh

)
+
(

m− m+ 1
γ

)
= 0. (11.75)

A negative root for ω2 exists if and only if m− (m+ 1)/γ < 0, i.e. N2< 0, as expected
from Schwarzschild’s criterion for stability.

For n� 1, the large root is

ω2

gkh
∼ 2nγ

m+ 1
(p modes, ω2 ∝ v2

s ) (11.76)

and the small root is

ω2

gkh
∼ 1

2n

(
m− m+ 1

γ

)
(g modes, ω2 ∝N2). (11.77)

The f mode is the ‘trivial’ solution ∆ = 0. p modes (‘p’ for pressure) are acoustic
waves, which rely on compressibility. g modes are gravity waves, which rely on
buoyancy. Typical branches of the dispersion relation are illustrated in figure 19.
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(a) (b)

(c) (d)

FIGURE 20. A standard model of the present Sun, up to the photosphere. Density,
temperature, gravity and squared buoyancy frequency are plotted versus fractional radius.

In solar-type stars (see figures 20 and 21) the inner part (radiative zone) is
convectively stable (N2 > 0) and the outer part (convective zone) is unstable (N2 < 0).
However, the convection is so efficient that only a very small entropy gradient is
required to sustain the convective heat flux, so N2 is very small and negative in the
convective zone. Although g modes propagate in the radiative zone at frequencies
smaller than N, they cannot reach the surface. Only f and p modes (excited by
convection) are observed at the solar surface.

In more massive stars the situation is reversed. Then f , p and g modes can be
observed, in principle, at the surface. g modes are particularly well observed in certain
classes of white dwarf.

Related examples: A.22–A.25.

11.5. Tidally forced oscillations
When astrophysical fluid bodies such as stars and planets orbit sufficiently close to
one another, they deform each other in ways that can cause irreversible evolution of
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(a) (b)

(c) (d)

FIGURE 21. The same model plotted on a logarithmic scale. In the convective region
where N2 < 0, the dotted line shows −N2 instead.

their spin and orbital motion over astronomical time scales. We consider here some
of the simplest aspects of this problem.

Consider a binary star (or star–planet or planet–moon system, etc.) with a circular
orbit. Let the orbital separation be a and the orbital (angular) frequency

Ωo =
(

GM
a3

)1/2

, (11.78)

where M=M1+M2 is the combined mass of the two bodies. Let R1(t) and R2(t) be
the position vectors of the centres of mass of the two bodies, and d= R2 − R1 their
separation.

The gravitational potential due to body 2 (treated as a point mass or spherical mass)
at position R1 + x within body 1 is

− GM2

|d− x| = −GM2
(|d|2 − 2d · x+ |x|2)−1/2
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= −GM2

|d|
(

1− 2d · x
|d|2 +

|x|2
|d|2
)−1/2

= −GM2

|d|

[
1− 1

2

(
−2d · x
|d|2 +

|x|2
|d|2
)
+ 3

8

(
−2d · x
|d|2 +

|x|2
|d|2
)2

+ · · ·
]

= −GM2

|d|
[

1+ d · x
|d|2 +

3(d · x)2 − |d|2|x|2
2|d|4 +O

( |x|3
|d|3
)]

. (11.79)

In this Taylor expansion, the term independent of x is a uniform potential that
has no effect. The term linear in x gives rise to a uniform acceleration GM2d/|d|3,
which causes the orbital motion of body 1. The remaining terms constitute the tidal
potential Ψ ; the quadratic terms written here are the tidal potential in the quadrupolar
approximation.

For a circular orbit, the coordinate system can be chosen such that

d= (a cosΩot, a sinΩot, 0). (11.80)

Introduce spherical polar coordinates within body 1 such that

x= (r sin θ cos φ, r sin θ sin φ, r cos φ). (11.81)

Then
d · x= ar sin θ cos(φ −Ωot), (11.82)

Ψ = GM2r2

2a3

[
1− 3 sin2 θ cos2(φ −Ωot)

]
= GM2r2

4a3
[2− 3 sin2 θ − 3 sin2 θ cos(2φ − 2Ωot)]. (11.83)

The first two terms are static; the remaining oscillatory part can be written as

Re
[
−3GM2r2 sin2 θ

4a3
e2i(φ−Ωot)

]
, (11.84)

which involves the spherical harmonic function Y2
2 (θ, φ)∝ sin2 θ e2iφ .

The tidal frequency in a non-rotating frame is 2Ωo. In a frame rotating with the
spin angular velocity Ωs of body 1, the tidal frequency is 2(Ωo −Ωs), owing to an
angular Doppler shift.

If the tidal frequency is sufficiently small, it might be assumed that body 1 responds
hydrostatically to the tidal potential. Under this assumption of an equilibrium tide,
body 1 is deformed into a spheroid with a tidal bulge that points instantaneously
towards body 2, and no tidal torque is exerted.

We can allow for a more general linear response, including dissipation and wave-
like disturbances (a dynamical tide) as follows. The most important aspect of the
tidally deformed body is its exterior gravitational potential perturbation δΦ, because it
is only through gravity that the bodies communicate and exchange energy and angular
momentum. We write the linear response as

δΦ =Re
[
−k

3GM2 sin2 θ

4a3

R5
1

r3
e2i(φ−Ωot)

]
, (11.85)
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where R1 is the radius of body 1 (or some appropriate measure of its radius if it is
deformed by its rotation) and k is the potential Love number, a dimensionless complex
number that describes the amplitude and phase of the tidal response. Note that δΦ
involves the same frequency and the same spherical harmonic Y2

2 (θ, φ), but combined
with r−3 rather than r2 to make it a valid solution of Laplace’s equation in the exterior
of body 1. The factor of R5

1 is introduced so that k is dimensionless and measures the
ratio of δΦ and Ψ at the surface of body 1.

The imaginary part of k determines the part of the tidal response that is out of
phase with the tidal forcing, and which is associated with dissipation and irreversible
evolution. The torque acting on the orbit of body 2 is

− T = M2r sin θ
(
− 1

r sin θ
∂δΦ

∂φ

) ∣∣∣∣
r=a, θ=π/2, φ=Ωot

= Re
(

M2k
3GM2

4a3

R5
1

a3
2i
)

= −Im(k)
3GM2

2R5
1

2a6
. (11.86)

By Newton’s third law, there is an equal and opposite torque, +T , acting on the spin
of body 1.

The orbital angular momentum about the centre of mass is

Lo =µ(GMa)1/2, (11.87)

where µ=M1M2/M is the reduced mass of the system. This result can be obtained
by considering

M1

(
M2a
M

)2

Ωo +M2

(
M1a
M

)2

Ωo = M1M2

M
(GMa)1/2 (11.88)

(see figure 22). It evolves according to

dLo

dt
=−T, (11.89)

which determines the rate of orbital migration:

1
2

M1M2

M
(GMa)1/2

1
a

da
dt
=−Im(k)

3GM2
2R5

1

2a6

−1
a

da
dt
= 3 Im(k)

M2

M1

(
R1

a

)5

Ωo.

 (11.90)

The orbital energy

Eo =−µGM
2a

(11.91)

evolves according to
dEo

dt
=µGM

2a
1
a

da
dt
=−ΩoT. (11.92)
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FIGURE 22. A binary star with two components in circular orbital motion about the centre
of mass.

The spin angular momentum Ls= I1Ωs and spin energy Es= (I1Ω
2
s )/2, where I1 is the

moment of inertia of body 1, evolve according to

dLs

dt
= T,

dEs

dt
=ΩsT. (11.93a,b)

The total energy therefore satisfies

d
dt
(Eo + Es)= (Ωs −Ωo)T =−D, (11.94)

where D> 0 is the rate of dissipation of energy. To ensure D> 0, the sign of Im(k)
should be the same as the sign of the tidal frequency 2(Ωo −Ωs).

In a dissipative spin–orbit coupling, the tidal torque T tries to bring about an
equalization of the spin and orbital angular velocities. Its action, mediated by gravity,
is comparable to a frictional interaction between differential rotating components in
a mechanical system.

In binary stars, and other cases in which the spin angular momentum is small
compared to the orbital angular momentum, there is indeed a tendency towards
synchronization of the spin with the orbital motion (as the Moon is synchronized
with its orbit around the Earth). However, in systems of extreme mass ratio in which
the spin of the large body contains most of the angular momentum, the tidal torque
instead causes orbital migration away from the synchronous orbit at which Ω = Ωs
(figure 23).

This situation applies to the moons of solar-system planets, most of which migrate
outwards, and to extrasolar planets in close orbits around their host stars, where the
migration is usually inward and may lead to the destruction of the planet.
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FIGURE 23. Orbital migration away from the synchronous orbit driven by tidal dissipation
in a system of extreme mass ratio.

11.6. Rotating fluid bodies
Note: in this subsection (r, φ, z) are cylindrical polar coordinates.

11.6.1. Equilibrium
The equations of ideal gas dynamics in cylindrical polar coordinates are

Dur

Dt
− u2

φ

r
=−∂Φ

∂r
− 1
ρ

∂p
∂r
,

Duφ
Dt
+ uruφ

r
=−1

r
∂Φ

∂φ
− 1
ρr
∂p
∂φ
,

Duz

Dt
=−∂Φ

∂z
− 1
ρ

∂p
∂z
,

Dρ
Dt
=−ρ

[
1
r
∂

∂r
(rur)+ 1

r
∂uφ
∂φ
+ ∂uz

∂z

]
,

Dp
Dt
=−γ p

[
1
r
∂

∂r
(rur)+ 1

r
∂uφ
∂φ
+ ∂uz

∂z

]
,



(11.95)

with
D
Dt
= ∂

∂t
+ ur

∂

∂r
+ uφ

r
∂

∂φ
+ uz

∂

∂z
. (11.96)

Consider a steady, axisymmetric basic state with density ρ(r, z), pressure p(r, z),
gravitational potential Φ(r, z) and with differential rotation

u= rΩ(r, z) eφ. (11.97)

For equilibrium we require

−rΩ2 er =−∇Φ − 1
ρ
∇p. (11.98)
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Take the curl to obtain

−r
∂Ω2

∂z
eφ =∇p×∇

(
1
ρ

)
=∇T ×∇s. (11.99)

This is just the vorticity equation in a steady state. It is sometimes called the thermal
wind equation. The equilibrium is called barotropic if ∇p is parallel to ∇ρ, otherwise
it is called baroclinic. In a barotropic state the angular velocity is independent of z:
Ω=Ω(r). This is a version of the Taylor–Proudman theorem20 which states that under
certain conditions the velocity in a rotating fluid is independent of height.

We can also write
1
ρ
∇p= g=−∇Φ + rΩ2 er, (11.100)

where g is the effective gravitational acceleration, including the centrifugal force
associated with the (non-uniform) rotation.

In a barotropic state with Ω(r) we can write

g=−∇Φcg, Φcg =Φ(r, z)+Ψ (r), Ψ =−
∫

rΩ2 dr. (11.101)

Also, since p= p(ρ) in the equilibrium state, we can define the pseudoenthalpy h̃(ρ)
such that dh̃= dp/ρ. An example is a polytropic model for which

p=Kρ1+1/m, h̃= (m+ 1)Kρ1/m. (11.102a,b)

(h̃ equals the true enthalpy only if the equilibrium is homentropic.) The equilibrium
condition then reduces to

0=−∇Φcg −∇h̃ (11.103)

or
Φ +Ψ + h̃=C= const. (11.104)

An example of a rapidly and differentially rotating equilibrium is an accretion
disc around a central mass M. For a non-self-gravitating disc Φ =−GM(r2 + z2)−1/2.
Assume the disc is barotropic and let the arbitrary additive constant in h̃ be defined
(as in the polytropic example above) such that h̃= 0 at the surfaces z=±H(r) of the
disc where ρ = p= 0. Then

−GM(r2 +H2)−1/2 +Ψ (r)=C, (11.105)

from which
rΩ2 =− d

dr

[
GM(r2 +H2)−1/2

]
. (11.106)

For example, if H = εr with ε = const. being the aspect ratio of the disc, then

Ω2 = (1+ ε2)−1/2 GM
r3
. (11.107)

The thinner the disc is, the closer it is to Keplerian rotation. Once we have found
the relation between Ω(r) and H(r), equation (11.104) then determines the spatial
distribution of h̃ (and therefore of ρ and p) within the disc.

20Joseph Proudman (1888–1975), British.
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11.6.2. Linear perturbations
The basic state is independent of t and φ, allowing us to consider linear

perturbations of the form

Re[δur(r, z) exp(−iωt+ imφ)], etc., (11.108)

where m is the azimuthal wavenumber (an integer). The linearized equations in the
Cowling approximation are

−iω̂δur − 2Ωδuφ =− 1
ρ

∂δp
∂r
+ δρ
ρ2

∂p
∂r
,

−iω̂δuφ + 1
r
δu · ∇(r2Ω)=− im δp

ρr
,

−iω̂δuz =− 1
ρ

∂δp
∂z
+ δρ
ρ2

∂p
∂z
,

−iω̂δρ + δu · ∇ρ =−ρ
[

1
r
∂

∂r
(r δur)+ im δuφ

r
+ ∂δuz

∂z

]
,

−iω̂δp+ δu · ∇p=−γ p
[

1
r
∂

∂r
(r δur)+ im δuφ

r
+ ∂δuz

∂z

]
,



(11.109)

where
ω̂=ω−mΩ (11.110)

is the intrinsic frequency, i.e. the angular frequency of the wave measured in a frame
of reference that rotates with the local angular velocity of the fluid.

Eliminate δuφ and δρ to obtain

(ω̂2 − A) δur − B δuz =− iω̂
ρ

(
∂δp
∂r
− ∂p
∂r
δp
γ p

)
+ 2Ω

im δp
ρr

,

−C δur + (ω̂2 −D) δuz =− iω̂
ρ

(
∂δp
∂z
− ∂p
∂z
δp
γ p

)
,

 (11.111)

where

A= 2Ω
r
∂

∂r
(r2Ω)− 1

ρ

∂p
∂r

(
1
γ p
∂p
∂r
− 1
ρ

∂ρ

∂r

)
,

B= 2Ω
r
∂

∂z
(r2Ω)− 1

ρ

∂p
∂r

(
1
γ p
∂p
∂z
− 1
ρ

∂ρ

∂z

)
,

C=− 1
ρ

∂p
∂z

(
1
γ p
∂p
∂r
− 1
ρ

∂ρ

∂r

)
,

D=− 1
ρ

∂p
∂z

(
1
γ p
∂p
∂z
− 1
ρ

∂ρ

∂z

)
.


(11.112)

Note that A, B, C and D involve radial and vertical derivatives of the specific angular
momentum r2Ω and the specific entropy s. The thermal wind equation implies

B=C, (11.113)

so the matrix

M =
[

A B
C D

]
=
[

A B
B D

]
(11.114)

is symmetric.
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11.6.3. The Høiland criteria
It can be useful to introduce the Lagrangian displacement ξ such that

1u= δu+ ξ · ∇u= Dξ
Dt
, (11.115)

i.e.

δur =−iω̂ξr, δuφ =−iω̂ξφ − rξ · ∇Ω, δuz =−iω̂ξz. (11.116a−c)

Note that

1
r
∂

∂r
(r δur)+ im δuφ

r
+ ∂δuz

∂z
=−iω̂

[
1
r
∂

∂r
(rξr)+ imξφ

r
+ ∂ξz

∂z

]
. (11.117)

The linearized equations constitute an eigenvalue problem for ω but it is not
self-adjoint except when m = 0. We specialize to the case m = 0 (axisymmetric
perturbations). Then

(ω2 − A)ξr − Bξz = 1
ρ

(
∂δp
∂r
− ∂p
∂r
δp
γ p

)
,

−Bξr + (ω2 −D)ξz = 1
ρ

(
∂δp
∂z
− ∂p
∂z
δp
γ p

)
,

 (11.118)

with
δp=−γ p∇ · ξ − ξ · ∇p. (11.119)

Multiply the first of (11.118) by ρξ ∗r and the second by ρξ ∗z and integrate over the
volume V of the fluid (using the boundary condition δp= 0) to obtain

ω2
∫

V
ρ(|ξr|2 + |ξz|2) dV =

∫
V

[
ρQ(ξ)+ ξ ∗ · ∇δp− δp

γ p
ξ ∗ · ∇p

]
dV

=
∫

V

[
ρQ(ξ)− δp

γ p
(γ p∇ · ξ ∗ + ξ ∗ · ∇p)

]
dV

=
∫

V

(
ρQ(ξ)+ |δp|

2

γ p

)
dV, (11.120)

where

Q(ξ)= A|ξr|2 + B(ξ ∗r ξz + ξ ∗z ξr)+D|ξz|2 =
[
ξ ∗r ξ ∗z

] [A B
B D

] [
ξr
ξz

]
(11.121)

is the (real) Hermitian form associated with the matrix M .
Note that this integral involves only the meridional components of the displacement.

If we had not made the Cowling approximation there would be the usual negative
definite contribution to ω2 from self-gravitation.

The above integral relation therefore shows that ω2 is real, and a variational property
ensures that instability to axisymmetric perturbations occurs if and only if the integral
on the right-hand side can be made negative by a suitable trial displacement. If Q is
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positive definite then ω2 > 0 and we have stability. Now the characteristic equation of
the matrix M is

λ2 − (A+D)λ+ AD− B2 = 0. (11.122)

The eigenvalues λ± are both positive if and only if

A+D> 0 and AD− B2 > 0. (11.123a,b)

If these conditions are satisfied throughout the fluid then Q> 0, which implies ω2> 0,
so the fluid is stable to axisymmetric perturbations (neglecting self-gravitation). These
conditions are also necessary for stability. If one of the eigenvalues is negative in
some region of the meridional plane, then a trial displacement can be found which
is localized in that region, has δp= 0 and Q< 0, implying instability. (By choosing
ξ in the correct direction and tuning ∇ · ξ appropriately, it is possible to arrange for
δp to vanish.)

Using ` = r2Ω (specific angular momentum) and s = cp(γ
−1 ln p − ln ρ) + const.

(specific entropy) for a perfect ideal gas, we have

A= 1
r3

∂`2

∂r
− gr

cp

∂s
∂r
,

B= 1
r3

∂`2

∂z
− gr

cp

∂s
∂z
=−gz

cp

∂s
∂r
,

D=−gz

cp

∂s
∂z
,


(11.124)

so the two conditions become

1
r3

∂`2

∂r
− 1

cp
g · ∇s> 0 (11.125)

and

−gz

(
∂`2

∂r
∂s
∂z
− ∂`

2

∂z
∂s
∂r

)
> 0. (11.126)

These are the Høiland stability criteria21.
(If the criteria are marginally satisfied a further investigation may be required.)
Consider first the non-rotating case ` = 0. The first criterion reduces to the

Schwarzschild criterion for convective stability,

− 1
cp

g · ∇s≡N2 > 0. (11.127)

In the homentropic case s= const. (which is a barotropic model) they reduce to the
Rayleigh criterion22 for centrifugal (inertial) stability,

d`2

dr
> 0, (11.128)

which states that the specific angular momentum should increase with r for stability.

21Einar Høiland (1907–1974), Norwegian.
22John William Strutt, Lord Rayleigh (1842–1919), British.
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The second Høiland criterion is equivalent to

(er × (−g)) · (∇`2 ×∇s) > 0. (11.129)

In other words the vectors er × (−g) and ∇`2 × ∇s should be parallel (rather than
antiparallel). In a rotating star in which the specific entropy increases outwards, for
stability we require that the specific angular momentum should increase with r on
each surface of constant entropy.

Related example: A.26.

Appendix A. Examples
A.1. Validity of a fluid approach

The Coulomb cross-section for ‘collisions’ (i.e. large-angle scatterings) between
electrons and protons is σ ≈ 1 × 10−4(T/K)−2 cm2. Why does it depend on the
inverse square of the temperature?

Using the numbers quoted in § 2.9.3 (or elsewhere), estimate the order of magnitude
of the mean free path and the collision frequency in (i) the centre of the Sun, (ii) the
solar corona, (iii) a molecular cloud and (iv) the hot phase of the interstellar medium.
Is a fluid approach likely to be valid in these systems?

A.2. Vorticity equation
Show that the vorticity ω=∇× u of an ideal fluid without a magnetic field satisfies
the equation

∂ω

∂t
=∇× (u×ω)+∇p×∇v, (A 1)

where v = 1/ρ is the specific volume. Explain why the last term, which acts as a
source of vorticity, can also be written as ∇T ×∇s. Under what conditions does this
‘baroclinic’ source term vanish, and in what sense(s) can the vorticity then be said to
be ‘conserved’?

Show that the (Rossby–Ertel) potential vorticity (1/ρ)ω · ∇s is conserved, as a
material invariant, even when the baroclinic term is present.

A.3. Homogeneous expansion or contraction
(This question explores a very simple fluid flow in which compressibility and self-
gravity are important.)

A homogeneous perfect gas of density ρ = ρ0(t) occupies the region |x| < R(t),
surrounded by a vacuum. The pressure is p= p0(t)(1− |x|2/R2) and the velocity field
is u= A(t)x, where A= Ṙ/R.

Using either Cartesian or spherical polar coordinates, show that the equations of
Newtonian gas dynamics and the boundary conditions are satisfied provided that

ρ0 ∝ R−3, p0 ∝ R−3γ , R̈=−4πGρ0R
3

+ 2p0

ρ0R
. (A 2a−c)

Deduce the related energy equation

1
2

Ṙ2 − 4πGρ0R2

3
+ 2p0

3(γ − 1)ρ0
= const., (A 3)
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and interpret the three contributions. Discuss the dynamics qualitatively in the two
cases γ > 4/3 and 1< γ < 4/3.23

A.4. Dynamics of ellipsoidal bodies
(This question uses Cartesian tensor notation and the summation convention.)

A fluid body occupies a time-dependent ellipsoidal volume centred on the origin.
Let f (x, t)= 1− Sijxixj, where Sij(t) is a symmetric tensor with positive eigenvalues,
such that the body occupies the region 0 < f 6 1 with a free surface at f = 0. The
velocity field is ui = Aijxj, where Aij(t) is a tensor that is not symmetric in general.
Assume that the gravitational potential inside the body has the form Φ = Bijxixj +
const., where Bij(t) is a symmetric tensor.

Show that the equations of Newtonian gas dynamics and the boundary conditions
are satisfied if the density and pressure are of the form

ρ = ρ0(t)ρ̂( f ), p= ρ0(t)T(t)p̂( f ), (A 4a,b)

where the dimensionless functions p̂( f ) and ρ̂( f ) are related by p̂′( f ) = ρ̂( f ) with
the normalization ρ̂(1) = 1 and the boundary condition p̂(0) = 0, provided that the
coefficients evolve according to

Ṡij + SikAkj + SjkAki = 0,
Ȧij + AikAkj =−2Bij + 2TSij,

ρ̇0 =−ρ0Aii,

Ṫ =−(γ − 1)TAii.

 (A 5)

Examples of the spatial structure are the homogeneous body: ρ̂ = 1, p̂ = f , and the
polytrope of index n: ρ̂ = f n, p̂= f n+1/(n+ 1). Show that Poisson’s equation cannot
be satisfied if the body is inhomogeneous.24

Show how the results of the previous question are recovered in the case of a
homogeneous, spherically symmetric body.

A.5. Resistive MHD
Ohm’s Law for a medium of electrical conductivity σ is J = σE, where E is the
electric field measured in the rest frame of the conductor. Show that, in the presence
of a finite and uniform conductivity, the ideal induction equation is modified to

∂B
∂t
=∇× (u×B)+ η∇2B, (A 6)

where η = 1/(µ0σ) is the magnetic diffusivity, proportional to the resistivity of the
fluid. Hence argue that the effects of finite conductivity are small if the magnetic
Reynolds number Rm = LU/η is large, where L and U are characteristic scales of
length and velocity for the fluid flow.25

23This flow is similar in form to the cosmological ‘Hubble flow’ and can be seen as a homogeneous
expansion or contraction centred on any point, if a Galilean transformation is made. In the limit R→∞ (for
γ > 4/3), or if the pressure is negligible, the equations derived here correspond to the Friedmann equations
for a ‘dust’ universe (i.e. negligible relativistic pressure p� ρc2) with a scale factor a∝ R, ä/a=−4πGρ0/3
and (ȧ2 + const.)/a2 = 8πGρ0/3. See Bondi (1960) for a discussion of Newtonian cosmology.

24It can be shown that the self-gravity of a homogeneous ellipsoid generates an interior gravitational potential
of the assumed form. The behaviour of self-gravitating, homogeneous, incompressible ellipsoids was investigated
by many great mathematicians, including Maclaurin, Jacobi, Dirichlet, Dedekind, Riemann and Poincaré, illustrating
the equilibrium and stability of rotating and tidally deformed astrophysical bodies (Chandrasekhar 1969).

25The magnetic diffusivity in a fully ionized plasma is of the order of 1013(T/K)−3/2 cm2 s−1. Simple
estimates imply that Rm� 1 for observable solar phenomena.
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A.6. Flux freezing

Consider a magnetic field that is defined in terms of two Euler potentials α and β by

B=∇α×∇β. (A 7)

(This is sometimes called a Clebsch representation.) Show that a vector potential of
the form A= α∇β + ∇γ generates this magnetic field via B= ∇ × A, and that the
magnetic field lines are the intersections of the families of surfaces α = const. and
β = const. Show also that

∂B
∂t
−∇× (u×B)=∇

(
Dα
Dt

)
×∇β +∇α×∇

(
Dβ
Dt

)
. (A 8)

Deduce that the ideal induction equation is satisfied if the families of surfaces
α= const. and β = const. are material surfaces, in which case the magnetic field lines
can also be identified with material curves.

A.7. Equilibrium of a solar prominence

A simple model for a prominence or filament in the solar atmosphere involves a
two-dimensional magnetostatic equilibrium in the (x, z) plane with uniform gravity
g = −g ez. The gas is isothermal with isothermal sound speed cs. The density and
magnetic field depend only on x and the field lines become straight as |x|→∞.

Show that the solution is of the form

Bz = B0 tanh(kx), (A 9)

where k is a constant to be determined. Sketch the field lines and find the density
distribution.

A.8. Equilibrium of a magnetic star

A star contains an axisymmetric and purely toroidal magnetic field B = B(r, z) eφ ,
where (r, φ, z) are cylindrical polar coordinates. Show that the equation of
magnetostatic equilibrium can be written in the form

0=−ρ∇Φ −∇p− B
µ0r
∇(rB). (A 10)

Assuming that the equilibrium is barotropic such that ∇p is everywhere parallel to
∇ρ, show that the magnetic field must be of the form

B= 1
r

f (r2ρ), (A 11)

where f is an arbitrary function. Sketch the topology of the contour lines of r2ρ in a
star and show that a magnetic field of this form is confined to the interior.
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A.9. Force-free magnetic fields
(i) Show that an axisymmetric force-free magnetic field satisfies

Bφ = f (ψ)
r
, (A 12)

where ψ is the poloidal magnetic flux function, r is the cylindrical radius and f is an
arbitrary function. Show also that ψ satisfies the equation

r2
∇ · (r−2

∇ψ)+ f
df
dψ
= 0. (A 13)

(ii) Let V be a fixed volume bounded by a surface S. Show that the rate of change
of the magnetic energy in V is

1
µ0

∫
S
[(u ·B)B− B2u] · dS−

∫
V

u ·Fm dV, (A 14)

where Fm is the Lorentz force per unit volume. If V is an axisymmetric volume
containing a magnetic field that remains axisymmetric and force free, and if the
velocity on S consists of a differential rotation u = rΩ(r, z) eφ , deduce that the
instantaneous rate of change of the magnetic energy in V is

2π

µ0

∫
f (ψ)1Ω(ψ) dψ, (A 15)

where 1Ω(ψ) is the difference in angular velocity of the two end points on S of the
field line labelled by ψ , and the range of integration is such as to cover S once.

A.10. Helicity
The magnetic helicity in a volume V is

Hm =
∫

V
A ·B dV. (A 16)

A thin, untwisted magnetic flux tube is a thin tubular structure consisting of the
neighbourhood of a smooth curve C, such that the magnetic field is confined within
the tube and is parallel to C.

(i) Consider a simple example of a single, closed, untwisted magnetic flux tube such
that

B= B(r, z) eφ, (A 17)

where (r, φ, z) are cylindrical polar coordinates and B(r, z) is a positive function
localized near (r = a, z= 0). The tube is contained entirely within V . Show that the
magnetic helicity of this field is uniquely defined and equal to zero.

(ii) Use the fact that Hm is conserved in ideal MHD to argue that the magnetic
helicity of any single, closed, untwisted and unknotted flux tube contained within V
is also zero.

(iii) Consider a situation in which V contains two such flux tubes T1 and T2. Let
F1 and F2 be the magnetic fluxes associated with T1 and T2. By writing B=B1+B2,
etc., and assuming that the tubes are thin, show that

Hm =±2F1F2 (A 18)

if the tubes are simply interlinked, while Hm = 0 if they are unlinked.
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A.11. Variational principles
The magnetic energy in a volume V bounded by a surface S is

Em =
∫

V

B2

2µ0
dV. (A 19)

(i) Making use of the representation B=∇×A of the magnetic field in terms of a
magnetic vector potential, show that the magnetic field that minimizes Em, subject to
the tangential components of A being specified on S, is a potential field. Argue that
this constraint corresponds to specifying the normal component of B on S.

(ii) Making use of the representation B=∇α ×∇β of the magnetic field in terms
of Euler potentials, show that the magnetic field that minimizes Em, subject to α and
β being specified on S, is a force-free field. Argue that this constraint corresponds to
specifying the normal component of B on S and also the way in which points on S
are connected by magnetic field lines.

A.12. Friedrichs diagrams
The dispersion relations ω(k) for Alfvén and magnetoacoustic waves in a uniform
medium are given by

v2
p = v2

a cos2 θ, (A 20)

v4
p − (v2

s + v2
a)v

2
p + v2

s v
2
a cos2 θ = 0, (A 21)

where vp = ω/k is the phase velocity and θ is the angle between k and B. Use the
form of vp(θ) for each mode to calculate the group velocities vg= ∂ω/∂k, determining
their components parallel and perpendicular to B.

Sketch the phase and group diagrams by tracking vp= vpk̂ and vg, respectively, over
the full range of θ . Treat the cases vs > va and vs < va separately. By analysing the
limit θ→ π/2, show that the group diagram for the slow wave has a cusp at speed
vsva(v

2
s + v2

a)
−1/2.

A.13. Shock relations
The Rankine–Hugoniot relations in the rest frame of a non-magnetic shock are

[ρux]21 = 0, (A 22)

[ρu2
x + p]21 = 0, (A 23)[

ρux
(

1
2 u2

x + h
)]2

1 = 0, (A 24)

where ux > 0 and [Q]21 = Q2 − Q1 is the difference between the downstream and
upstream values of any quantity Q. Show that the velocity, density and pressure ratios

U = u2

u1
, D= ρ2

ρ1
, P= p2

p1
(A 25a−c)

across a shock in a perfect gas are given by

D= 1
U
= (γ + 1)M2

1

(γ − 1)M2
1 + 2

, P= 2γM2
1 − (γ − 1)
(γ + 1)

, (A 26a,b)
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where M= ux/vs is the Mach number, and also that

M2
2 =

(γ − 1)M2
1 + 2

2γM2
1 − (γ − 1)

. (A 27)

Show that the entropy change in passing through the shock is given by

[s]21
cv
= ln P− γ ln

[
(γ + 1)P+ (γ − 1)
(γ − 1)P+ (γ + 1)

]
(A 28)

and deduce that only compression shocks (D> 1, P> 1) are physically realizable.

A.14. Oblique shocks
For a hydrodynamic shock, let uX2 and uY2 be the downstream velocity components
parallel and perpendicular, respectively, to the upstream velocity vector u1. In the limit
of a strong shock, M1� 1, derive the relation

u2
Y2 = (|u1| − uX2)

[
uX2 −

(
γ − 1
γ + 1

)
|u1|
]
. (A 29)

Sketch this relation in the (uX2, uY2) plane. Hence show that the maximum angle
through which the velocity vector can be deflected on passing through a stationary
strong shock is arcsin(1/γ ).

A.15. The Riemann problem
A perfect gas flows in one dimension in the absence of boundaries, gravity and
magnetic fields.

(i) Determine all possible smooth local solutions of the equations of one-
dimensional gas dynamics that depend only on the variable ξ = x/t for t > 0. Show
that one such solution is a rarefaction wave in which du/dξ = 2/(γ + 1). How do
the adiabatic sound speed and specific entropy vary with ξ?

(ii) At t= 0 the gas is initialized with uniform density ρL, pressure pL and velocity
uL in the region x < 0 and with uniform density ρR, pressure pR and velocity uR in
the region x> 0. Explain why the subsequent flow is of the similarity form described
in part (i). What constraints must be satisfied by the initial values if the subsequent
evolution is to involve only two uniform states connected by a rarefaction wave? Give
a non-trivial example of such a solution.

(iii) Explain why, for more general choices of the initial values, the solution cannot
have the simple form described in part (ii), even if uR > uL. What other features will
appear in the solution? (Detailed calculations are not required.)

A.16. Nonlinear waves in incompressible MHD
Show that the equations of ideal MHD in the case of an incompressible fluid of
uniform density ρ can be written in the symmetrical form

∂z±
∂t
+ z∓ · ∇z± =−∇ψ, (A 30)

∇ · z± = 0, (A 31)
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where
z± = u± va (A 32)

are the Elsässer variables, va = (µ0ρ)
−1/2B is the vector Alfvén velocity and

ψ =Φ + (Π/ρ) is a modified pressure.
Consider a static basic state in which the magnetic field is uniform and ψ = const.

Write down the exact equations governing perturbations (z′±, ψ ′) (i.e. without
performing a linearization). Hence show that there are special solutions in which
disturbances of arbitrary amplitude propagate along the magnetic field lines in one
direction or other without change of form. How do these relate to the MHD wave
modes of a compressible fluid? Why does the general argument for wave steepening
not apply to these nonlinear simple waves?

A.17. Spherical blast waves
A supernova explosion of energy E occurs at time t = 0 in an unmagnetized perfect
gas of adiabatic exponent γ . The surrounding medium is initially cold and has non-
uniform density Cr−β , where C and β are constants (with 0 < β < 3) and r is the
distance from the supernova.

(i) Explain why a self-similar spherical blast wave may be expected to occur, and
deduce that the radius R(t) of the shock front increases as a certain power of t.

(ii) Write down the self-similar form of the velocity, density and pressure for
0 < r < R(t) in terms of three undetermined dimensionless functions of ξ = r/R(t).
Obtain a system of dimensionless ordinary differential equations governing these
functions, and formulate the boundary conditions on the dimensionless functions at
the strong shock front ξ = 1.

(iii) Show that special solutions exist in which the radial velocity and the density
are proportional to r for r< R(t), if

β = 7− γ
γ + 1

. (A 33)

For the case γ =5/3 express the velocity, density and pressure for this special solution
in terms of the original dimensional variables.

A.18. Accretion on to a black hole
Write down the equations of steady, spherical accretion of a perfect gas in an arbitrary
gravitational potential Φ(r).

Accretion on to a black hole can be approximated within a Newtonian theory by
using the Paczyński–Wiita potential

Φ =− GM
r− rh

, (A 34)

where rh = 2GM/c2 is the radius of the event horizon and c is the speed of light.
Show that the sonic radius rs is related to rh and the nominal accretion radius

ra =GM/2v2
s0 (where vs0 is the sound speed at infinity) by

2r2
s −
[
(5− 3γ )ra + 4rh

]
rs + 2r2

h − 4(γ − 1)rarh = 0. (A 35)

Argue that the accretion flow passes through a unique sonic point for any value of
γ > 1. Assuming that vs0 � c, find approximations for rs in the cases (i) γ < 5/3,
(ii) γ = 5/3 and (iii) γ > 5/3.
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A.19. Spherical flow in a power-law potential
For steady, spherically symmetric, adiabatic flow in a gravitational potential
Φ = −Ar−β , where A and β are positive constants, show that a necessary condition
for either (i) an inflow that starts from rest at r =∞ or (ii) an outflow that reaches
r=∞ to pass through a sonic point is

γ < f (β), (A 36)

where γ > 1 is the adiabatic exponent and f (β) is a function to be determined.
Assuming that this condition is satisfied, calculate the accretion rate of a transonic

accretion flow in terms of A, β, γ and the density and sound speed at r=∞. Evaluate
your expression in each of the limits γ → 1 and γ → f (β). (You may find it helpful
to define δ = γ − 1.)

A.20. Rotating outflows
The wind from a rotating star can be modelled as a steady, axisymmetric, adiabatic
flow in which the magnetic field is neglected. Let ψ(r, z) be the mass flux function,
such that

ρup =∇ψ ×∇φ, (A 37)

where (r, φ, z) are cylindrical polar coordinates and up is the poloidal part of the
velocity. Show that the specific entropy, the specific angular momentum and the
Bernoulli function are constant along streamlines, giving rise to three functions s(ψ),
`(ψ) and ε(ψ). Use the remaining dynamical equation to show that ψ satisfies the
partial differential equation

1
ρ
∇ ·

(
1
ρr2
∇ψ

)
= dε

dψ
− T

ds
dψ
− `

r2

d`
dψ
. (A 38)

A.21. Critical points of magnetized outflows
The integrals of the equations of ideal MHD for a steady axisymmetric outflow are

u= kB
ρ
+ rωeφ, (A 39)

uφ − Bφ
µ0k
= `

r
, (A 40)

s= s(ψ), (A 41)
1
2 |u− rωeφ|2 +Φ − 1

2 r2ω2 + h= ε̃, (A 42)

where k(ψ), ω(ψ), `(ψ), s(ψ) and ε̃(ψ) are surface functions. Assume that the
magnetic flux function ψ(r, z) is known from a solution of the Grad–Shafranov
equation, and let the cylindrical radius r be used as a parameter along each magnetic
field line. Then the poloidal magnetic field Bp =∇ψ ×∇φ is a known function of r
on each field line. Assume further that the surface functions k(ψ), ω(ψ), `(ψ), s(ψ)
and ε̃(ψ) are known.

Show that (A 39)–(A 41) can then be used, in principle, and together with the
equation of state, to determine the velocity u and the specific enthalpy h as functions
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of ρ and r on each field line. Deduce that (A 42) has the form

f (ρ, r)= ε̃= const. (A 43)

on each field line.
Show that

−ρ ∂f
∂ρ
= u4

p − (v2
s + v2

a)u
2
p + v2

s v
2
ap

u2
p − v2

ap

, (A 44)

where vs is the adiabatic sound speed, va is the (total) Alfvén speed and the subscript
‘p’ denotes the poloidal (meridional) component. Deduce that the flow has critical
points where up equals the phase speed of axisymmetric fast or slow magnetoacoustic
waves. What condition must be satisfied by ∂f /∂r for the flow to pass through these
critical points?

A.22. Radial oscillations of a star
Show that purely radial (i.e. spherically symmetric) oscillations of a spherical star
satisfy the Sturm–Liouville equation

d
dr

[
γ p
r2

d
dr
(r2ξr)

]
− 4

r
dp
dr
ξr + ρω2ξr = 0. (A 45)

How should ξr behave near the centre of the star and near the surface r=R at which
p= 0?

Show that the associated variational principle can be written in the equivalent forms

ω2
∫ R

0
ρ|ξr|2 r2 dr =

∫ R

0

[
γ p
r2

∣∣∣∣ d
dr
(r2ξr)

∣∣∣∣2 + 4r
dp
dr
|ξr|2

]
dr

=
∫ R

0

[
γ pr4

∣∣∣∣ d
dr

(
ξr

r

)∣∣∣∣2 + (4− 3γ )r
dp
dr
|ξr|2

]
dr, (A 46)

where γ is assumed to be independent of r. Deduce that the star is unstable to purely
radial perturbations if and only if γ < 4/3. Why does it not follow from the first form
of the variational principle that the star is unstable for all values of γ ?

Can you reach the same conclusion using only the virial theorem?

A.23. Waves in an isothermal atmosphere
Show that linear waves of frequency ω and horizontal wavenumber kh in a plane-
parallel isothermal atmosphere satisfy the equation

d2ξz

dz2
− 1

H
dξz

dz
+ (γ − 1)

γ 2H2
ξz + (ω2 −N2)

(
1
v2

s

− k2
h

ω2

)
ξz = 0, (A 47)

where H is the isothermal scale height, N is the Brunt–Väisälä frequency and vs is
the adiabatic sound speed.

Consider solutions of the vertically wave-like form

ξz ∝ ez/2H exp(ikzz), (A 48)
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where kz is real, so that the wave energy density (proportional to ρ|ξ |2) is independent
of z. Obtain the dispersion relation connecting ω and k. Assuming that N2 > 0, show
that propagating waves exist in the limits of high and low frequencies, for which

ω2 ≈ v2
s k2 (acoustic waves) and ω2 ≈ N2k2

h

k2
(gravity waves) (A 49a,b)

respectively. Show that the minimum frequency at which acoustic waves propagate is
vs/2H.

Explain why the linear approximation must break down above some height in the
atmosphere.

A.24. Gravitational instability of a slab
An isothermal ideal gas of sound speed cs forms a self-gravitating slab in hydrostatic
equilibrium with density ρ(z), where (x, y, z) are Cartesian coordinates.

(i) Verify that
ρ ∝ sech2

( z
H

)
, (A 50)

and relate the scale height H to the surface density

Σ =
∫ ∞
−∞

ρ dz. (A 51)

(ii) Assuming that the perturbations are also isothermal, derive the linearized
equations governing displacements of the form

Re
[
ξ(z) ei(kx−ωt)

]
, (A 52)

where k is a real wavenumber. Show that ω2 is real for disturbances satisfying
appropriate conditions as |z|→∞.

(iii) For a marginally stable mode with ω2 = 0, derive the associated Legendre
equation

d
dτ

[
(1− τ 2)

d δΦ
dτ

]
+
(

2− ν2

1− τ 2

)
δΦ = 0, (A 53)

where τ = tanh(z/H), ν = kH and δΦ is the Eulerian perturbation of the gravitational
potential. Verify that two solutions of this equation are(

1+ τ
1− τ

)ν/2
(ν − τ) and

(
1− τ
1+ τ

)ν/2
(ν + τ). (A 54a,b)

Deduce that the marginally stable mode has |k| = 1/H and δΦ ∝ sech(z/H). Would
you expect the unstable modes to have wavelengths greater or less than 2πH?

A.25. Magnetic buoyancy instabilities
A perfect gas forms a static atmosphere in a uniform gravitational field −gez, where
(x, y, z) are Cartesian coordinates. A horizontal magnetic field B(z)ey is also present.

Derive the linearized equations governing small displacements of the form

Re[ξ(z) exp(−iωt+ ikxx+ ikyy)], (A 55)
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where kx and ky are real horizontal wavenumbers, and show that

ω2
∫ b

a
ρ|ξ |2 dz= [ξ ∗z δΠ ]ba

+
∫ b

a

 |δΠ |2

γ p+ B2

µ0

−

∣∣∣ρgξz + B2

µ0
ikyξy

∣∣∣2
γ p+ B2

µ0

+ B2

µ0
k2

y |ξ |2 − g
dρ
dz
|ξz|2

 dz, (A 56)

where z= a and z= b are the lower and upper boundaries of the atmosphere, and δΠ
is the Eulerian perturbation of total pressure. (Self-gravitation may be neglected.)

You may assume that the atmosphere is unstable if and only if the integral on
the right-hand side can be made negative by a trial displacement ξ satisfying the
boundary conditions, which are such that [ξ ∗z δΠ ]ba= 0. You may also assume that the
horizontal wavenumbers are unconstrained. Explain why the integral can be minimized
with respect to ξx by letting ξx→ 0 and kx→∞ in such a way that δΠ = 0.

Hence show that the atmosphere is unstable to disturbances with ky= 0 if and only
if

−d ln ρ
dz

<
ρg

γ p+ B2

µ0

(A 57)

at some point.
Assuming that this condition is not satisfied anywhere, show further that the

atmosphere is unstable to disturbances with ky 6= 0 if and only if

−d ln ρ
dz

<
ρg
γ p

(A 58)

at some point.
How does these stability criteria compare with the hydrodynamic stability criterion

N2 < 0?

A.26. Waves in a rotating fluid
Write down the equations of ideal gas dynamics in cylindrical polar coordinates
(r, φ, z), assuming axisymmetry. Consider a steady, axisymmetric basic state in
uniform rotation, with density ρ(r, z), pressure p(r, z) and velocity u = rΩeφ .
Determine the linearized equations governing axisymmetric perturbations of the
form

Re[δρ(r, z) e−iωt], (A 59)

etc. If the basic state is homentropic and self-gravity may be neglected, show that the
linearized equations reduce to

−iωδur − 2Ωδuφ =−∂W
∂r
, (A 60)

−iωδuφ + 2Ωδur = 0, (A 61)

−iωδuz =−∂W
∂z
, (A 62)
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−iωW + v
2
s

ρ

[
1
r
∂

∂r
(rρδur)+ ∂

∂z
(ρδuz)

]
= 0, (A 63)

where W = δp/ρ.
Eliminate δu to obtain a second-order partial differential equation for W. Is the

equation of elliptic or hyperbolic type? What are the relevant solutions of this equation
if the fluid has uniform density and fills a cylindrical container {r< a, 0< z<H} with
rigid boundaries?

Appendix B. Electromagnetic units

These lecture notes use rationalized units for electromagnetism, such that Maxwell’s
equations take the form

∂B
∂t
=−∇×E, ∇ ·B= 0, ∇×B=µ0

(
J+ ε0

∂E
∂t

)
, ∇ ·E= ρe

ε0
. (B 1a−d)

These involve the vacuum permeability and permittivity µ0 and ε0, related to the speed
of light c by c= (µ0ε0)

−1/2, but do not involve factors of 4π or c.
In astrophysics it is common to use Gaussian units for electromagnetism, such that

Maxwell’s equations take the form

∂B
∂t
=−c∇×E, ∇ ·B= 0, ∇×B= 1

c

(
4πJ+ ∂E

∂t

)
, ∇ ·E= 4πρe. (B 2a−d)

In the limit relevant for Newtonian MHD, the ∂E/∂t term is neglected. Different
factors then appear in several related equations. The magnetic energy density in
Gaussian units is

B2

8π
rather than

B2

2µ0
, (B 3)

the electromagnetic energy flux density (Poynting vector) is

c
4π

E×B rather than
E×B
µ0

, (B 4)

the Maxwell stress is

1
4π

(
BB− B2

2
I

)
rather than

1
µ0

(
BB− B2

2
I

)
, (B 5)

and the Lorentz force is

1
c

J×B= 1
4π
(∇×B)×B rather than J×B= 1

µ0
(∇×B)×B. (B 6)

The perfectly conducting fluid approximation of ideal MHD corresponds to

E=−1
c

u×B rather than E=−u×B. (B 7)
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The fields E, B and J can be converted from rationalized to Gaussian units by
replacing

E 7→
(

1
4πε0

)1/2

E= c
(µ0

4π

)1/2
E,

B 7→
(µ0

4π

)1/2
B,

J 7→ (4πε0)
1/2J= 1

c

(
4π

µ0

)1/2

J.


(B 8)

For historical reasons, rationalized electromagnetic units are associated with
the MKS (metre–kilogram–second) system of mechanical units, while Gaussian
electromagnetic units are associated with the CGS (centimetre–gram–second) system.
The most common system of rationalized units is SI units, in which µ0 has the exact
value 4π × 10−7 (in units of N A−2 or H m−1). In principle, rationalized units can
be used within CGS, in which case µ0 has the value 4π.

Appendix C. Summary of notation

A : poloidal Alfvén number
Ai : matrix describing hyperbolic structure
A : magnetic vector potential
a : particle acceleration; initial position vector
B : Bernoulli constant
B : magnetic field
Bp : poloidal magnetic field
Cij : cofactor of deformation tensor
c : speed of light; velocity dispersion
cp : specific heat capacity at constant pressure
cs : isothermal sound speed
cv : specific heat capacity at constant volume
D/Dt : Lagrangian time-derivative
E : electric field
e : specific internal energy
e : basis (unit) vector
F : determinant of deformation tensor
F ij : deformation tensor
F : flux density of conserved quantity
Fm : Lorentz force per unit volume
F : force operator
f : distribution function
fM : Maxwellian distribution function
G : Newton’s constant
Gij : inverse of deformation tensor
g : gravitational acceleration
g : gravitational field
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H : Heaviside step function; scale height
Hc : cross helicity
Hk : kinetic helicity
Hm : magnetic helicity
h : specific enthalpy
I : trace of inertia tensor; moment of inertia
I ij : inertia tensor
I : unit tensor
J : Jacobian determinant
J0, J1 : Bessel functions
J ij : Jacobian matrix
J : electric current density
K : polytropic constant; kinetic energy
K ij : kinetic energy tensor
k : Boltzmann’s constant; wavenumber; mass loading; potential Love number
k : wavevector
L : characteristic length scale; Lagrangian
L : Lagrangian density
` : angular momentum invariant; specific angular momentum
M : magnetic energy; mass
M : Maxwell stress tensor
M : Mach number
m : particle mass
mH : mass of hydrogen atom
N : buoyancy frequency
n : number of degrees of freedom; number density
n : unit normal vector
p : pressure
pg : gas pressure
pm : magnetic pressure
pr : radiation pressure
q : electric charge; density of conserved quantity
R : shock radius
R± : Riemann invariants
r : cylindrical radius; spherical radius
r0 : footpoint radius
ra : Alfvén radius
rs : sonic radius
S : bounding surface; action
s : specific entropy
T : temperature; characteristic time scale; torque
Tm : magnetic tension
T : stress tensor
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T : trace of integrated stress tensor
Tij : integrated stress tensor
t : time
U : internal energy
U : state vector
ush : shock speed
u : velocity field
V : volume (occupied by fluid)
V̂ : exterior volume
V ij : second-rank potential energy tensor
V ijk` : fourth-rank potential energy tensor
v : specific volume; wave speed
vs : adiabatic sound speed
v : particle velocity; relative velocity of frames
va : Alfvén velocity
vg : group velocity
vp : phase velocity
W : gravitational energy; potential energy functional
x : Cartesian coordinate
x : position vector
Y : spherical harmonic
y : Cartesian coordinate
z : Cartesian coordinate
β : plasma beta
Γ1 : first adiabatic exponent
γ : ratio of specific heats; adiabatic exponent
∆ : Lagrangian perturbation; divergence of displacement
δ : Eulerian perturbation; Dirac delta function
δm : material mass element
δS : material surface element
δu : velocity difference; velocity perturbation
δV : material volume element
δx : material line element
δΦ : material flux element
εijk : Levi–Civita tensor
ε : energy invariant
η : secondary displacement
θ : polar angle; angle between wavevector and magnetic field
λ : mean free path; force-free field scalar; scaling parameter
µ : mean molecular weight; scaling parameter
µ0 : vacuum permeability
ξ : similarity variable
ξ : (Lagrangian) displacement
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Π : total pressure
ρ : mass density
ρe : charge density
σ : Stefan’s constant; collisional cross-section
τ : relaxation time
Φ : gravitational potential
Φe : electrostatic potential
Φext : external gravitational potential
Φint : internal (self-) gravitational potential
φ : azimuthal angle
ϕ : phase
χ : scalar field in gauge transformation
χρ : inverse isothermal compressibility
Ψ : secondary gravitational potential
ψ : magnetic flux function
Ω : angular velocity
ω : wave frequency
ω : vorticity
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