97.11 The rational distance problem for polygons

Introduction

For \(n \geq 3 \), let \(P_n \) denote a regular \(n \)-gon with rational side-length. Attractive questions are:

(P1) If \(U, V, W \) are 3 consecutive vertices of \(P_n \), do there exist points in the plane of \(P_n \), other than \(V \), that are at rational distances from \(U, V, \) and \(W \)?

(P2) Do there exist points in the plane of \(P_n \), that are at rational distances from the \(n \) vertices of \(P_n \)?

In this note, we provide a complete answer to both problems, except for \(n = 4 \) in (P2).

First, notice the following:

- Both problems are invariant by a rational rescaling. Hence, without loss of generality, we may assume that the common side-length of \(P_n \) is 1.
- For a given \(n \geq 3 \), if (P1) has a negative answer, then (P2) has a negative answer as well.

The main results are the following:

Theorem 1: Let \(n \geq 3 \). The answer to (P1) is positive for \(n \in \{3, 4, 6, 12\} \) and negative in all other cases.

Theorem 2: Let \(n \geq 3, n \neq 4 \). The answer to (P2) is positive for \(n \in \{3, 6\} \) and negative in all other cases.

We first need some simple preliminaries.

The letters \(\mathbb{Q}, \mathbb{Q}^+, \mathbb{R} \) denote respectively the set of rational, non-negative rational, and real numbers.

Lemma 1: Let \(a, \beta, \gamma \in \mathbb{Q}, \gamma \neq 0 \). Then \(x = (a\sqrt{5} + \beta)\sqrt{\gamma} \) is not a root of the equation \(x^4 - 5x^2 + 5 = 0 \).

Proof: Otherwise, \(y = x^2 \) would be a root of \(y^2 - 5y + 5 = 0 \), so \(x^2 = \frac{5}{2} \pm \frac{1}{2}\sqrt{5} \), leading to \(5a^2 + \beta^2 = \frac{5}{2} \) and \(2a\beta\gamma = \pm\frac{1}{2} \), so \(a\beta\gamma \neq 0 \).

Eliminating \(\beta^2 = \frac{1}{16\gamma^2a^2} \) in the first equation yields \(80\gamma^2a^4 + 1 = 40\gamma a^2 \).

Therefore, \(t = 4\gamma a^2 \) would be a rational root of the equation in \(t \), \(5t^2 - 10t + 1 = 0 \), a contradiction since \(\Delta = 4\sqrt{5} \notin \mathbb{Q} \), where \(\Delta \) is the discriminant.

Next, as usual, let \(\phi \) denote Euler's function. If \(n \) is a positive integer, \(\phi(n) \) counts the number of integers \(m, 1 \leq m \leq n \), such that \(m \) is relatively prime to \(n \).

Lemma 2: Let \(n \in \{7, 9, 11\} \) or \(n > 12 \). Then, \(\phi(n) \geq 6 \).
Proof: The result follows from the elementary property (left as an exercise): the solution sets of the equations \(\phi(n) = k \), \(k = 1, 2, 3, 4, 5 \) are respectively \(\{1, 2\}, \{3, 4, 6\}, \phi, \{5, 8, 10, 12\} \) and \(\phi \).

Finally, recall that a real number \(\theta \) is called algebraic if \(\theta \) is a zero of rational polynomials with positive degree; the least such degree is called the algebraic degree of \(\theta \) and is denoted by \([\theta : \mathbb{Q}] \). For example, \([\sqrt{5} : \mathbb{Q}] = 2 \) and \([\sqrt{10} : \mathbb{Q}] = 3 \). According to this definition, the following is obvious:

If a real number \(\theta \) is a zero of some rational polynomial with degree \(n_0 \geq 0 \), then \(\theta \) is algebraic and

\[
[\theta : \mathbb{Q}] \leq n_0.
\]

Results for isosceles triangles with rational common side

Let \(\nabla \) denote an isosceles triangle with side-lengths 1, 1, \(x \). It is known that if \(x \) or \(x^2 \in \mathbb{Q} \), then there exist infinitely many points in the plane of \(\nabla \) that are at rational distance from the 3 vertices of \(\nabla \), (see [1] and [2]). Here we rather need a characterisation for arbitrary \(x \).

Proposition 1: Let \(AOB \) be a non-degenerate triangle with \(OA = OB = 1 \) and \(\omega = \angle AOB \), \((0 < \omega < \pi) \). Set \(a = -\cos\omega \), \(b = \sin\omega \), \((b > 0) \). Then, the following statements are equivalent:

(i) There is a point \(M \) in the plane of \(AOB \), \(M \neq O \), such that \(MA, MO, MB \) are all rational.

(ii) \(\exists q \in \mathbb{R}, \exists R, S, T \in \mathbb{Q}^+, R > 0 \), such that, if \(2p = R^2 - S^2 + 1 \), \(2\lambda = R^2 - T^2 + 1 \), \((p, \lambda \in \mathbb{Q}) \), we have

\[
p^2 + q^2 = R^2 \quad (2)
\]

and

\[
qb - pa = \lambda. \quad (3)
\]

Proof: Consider the \(x-y \) axes with origin \(O \), such that \(A = (1, 0) \) and \(B = (-a, b) \). (ii) \(\Rightarrow \) (i) Define \(M = (p, q) \). We have

\[
MO^2 = p^2 + q^2 = R^2, \quad \text{so} \quad MO = R \in \mathbb{Q}. \quad \text{Further,} \quad M \neq O \quad \text{as} \quad R > 0.
\]

Next, \(MA^2 = (p - 1)^2 + q^2 = R^2 - 1 - 2p = R^2 + 1 - (R^2 - S^2 + 1) = S^2 \).

Hence, \(MA = S \in \mathbb{Q} \). Finally,

\[
MB^2 = (p + a)^2 + (q - b)^2 = (p^2 + q^2) + (a^2 + b^2) + 2pa - 2qb = R^2 + 1 + 2pa - 2(\lambda + \lambda) = R^2 + 1 - (R^2 - T^2 + 1) = T^2.
\]

Hence, \(MB = T \in \mathbb{Q} \).

(i) \(\Rightarrow \) (ii) Let \(M = (p, q), M \neq O \), be a point in the plane of \(AOB \) such that \(MO = R, MA = S, MB = T \) are all rational. As \(M \neq O \), then \(R > 0 \).

The Pythagorean relations provide

\[
p^2 + q^2 = R^2, \quad (p - 1)^2 + q^2 = S^2, \quad (p + a)^2 + (q - b)^2 = T^2.
\]
From the first two relations we get $2p = R^2 - S^2 + 1$ (so $p \in \mathbb{Q}$). Expanding the last relation yields

$$(p^2 + q^2) + (a^2 + b^2) + 2pa - 2qb = R^2 + 1 + 2pa - 2qb = T^2.$$

By setting $2\lambda = R^2 - T^2 + 1$ (so $\lambda \in \mathbb{Q}$), we obtain $qb - pa = \lambda$.

As a corollary of Proposition 1, we obtain the *useful* elegant sufficient condition:

Proposition 2: With the hypothesis of Proposition 1, suppose that the equation

$$b = (aa + \beta)\sqrt{\gamma}$$

is insolvable with $\alpha, \beta, \gamma \in \mathbb{Q}, \gamma > 0$. Then, there is no point M in the plane of $AOB, M \neq O$, such that MA, MO, MB are all rational.

Proof: Otherwise, let p, q, R, λ, \ldots ($R > 0$) be as in Proposition 1, with $p^2 + q^2 = R^2$ and $qB - pa = \lambda$. Set $\gamma = q^2 = R^2 - p^2$. Then, $\gamma \in \mathbb{Q}^+$ and $q = \pm\sqrt{\gamma}$.

Case 1: $q \neq 0$. We may write $b = \frac{pa + \lambda}{q} = \frac{pa + \lambda}{q^2} = \frac{(pa + \lambda)}{\gamma}(\pm\sqrt{\gamma})$.

Now clearly, b has the form $b = (aa + \beta)\sqrt{\gamma}$ with $a, \beta, \gamma \in \mathbb{Q}, \gamma > 0$, a contradiction.

Case 2: $q = 0$. Then, $p^2 = R^2$, so $p = \pm R$ and $p \neq 0$ (as $R > 0$). From $0 = qb - pa + \lambda$, we get $a = -\lambda/p \in \mathbb{Q}$. Therefore, if we set $\mu = b^2 = 1 - a^2$, we see that $\mu \in \mathbb{Q}^+$. In fact $\mu > 0$ since $\mu = b^2$ and $b = \sin \omega > 0$. Now, $b = \sqrt{\mu} = (0.a + 1)\sqrt{\mu}$, with $0, 1, \mu \in \mathbb{Q}$, $\mu > 0$, a contradiction.

Proof of Theorem 1

Case $n = 3$: Let ABC be a unit equilateral triangle. Disregarding the vertices, the point $M \in AB$ such that $MA = \frac{1}{3}$ satisfies $MA = \frac{1}{8}, MB = \frac{5}{8}$ and $MC = \frac{7}{8}$. In fact, as proved in [1] and [2], the suitable points M are infinite in number.

Case $n = 4$: Let $ABCD$ be a unit square. The point $M_0 = B$ satisfies $M_0A = 1, M_0B = 0, M_0C = 1$. The point $M \in AB$ such that $MA = \frac{1}{4}$ satisfies $MA = \frac{1}{4}, MB = \frac{3}{4}$ and $MC = \frac{7}{8}$. In fact, since ABC has side-lengths 1, 1, $\sqrt{2}$, the suitable points M are infinite in number, as proved in [2].

Case $n = 6$: The centroid of $P_6 = A_1A_2 \ldots A_6$ (unitary) is at distance 1 from A_1, A_2, A_3. The point M is on A_1A_2 produced such that $A_1M = 2A_1A_2$ and so satisfies $MA_1 = 2, MA_2 = 1, MA_3 = 1$, etc. In fact, since $A_1A_2A_3$ has side-lengths 1, 1, $\sqrt{3}$, the suitable points M are infinite.
Case \(n = 12 \): Let \(P_{12} = A_1A_2 \ldots A_{12} \) be a unit regular 12-gon. The point \(M \) on \(A_2A_9 \) such that \(A_2M = \frac{1}{\sqrt{2}} \) satisfies \(MA_1 = \frac{13}{12} \), \(MA_2 = \frac{1}{\sqrt{2}} \), \(MA_3 = \frac{1}{\sqrt{2}} \). Other points can be found. An attempt to find all the suitable points \(M \) is possible, but this is another question.

Case \(n = 8 \): The answer to (P1) is negative. Otherwise, let \(p, q, R, \lambda, \ldots \) \((R > 0)\) be as in Proposition 1, with \(p^2 + q^2 = R^2 \) (2) and \(q\beta - pa = \lambda \) (3). Here, \(\omega = \frac{3}{4} \pi \), so \(a = \beta = \frac{1}{\sqrt{2}} \). Hence by (3),

\[
q = p + \lambda \sqrt{2}.
\]

(5)

(2) and (5) yield \(p^2 + (p + \lambda \sqrt{2})^2 = R^2 \) hence \(2p\lambda \sqrt{2} = R^2 - 2p^2 - 2\lambda^2 \in \mathbb{Q} \).

This requires \(p\lambda = 0 \). If \(p = 0 \), then by (5), \(q = \lambda \sqrt{2} \), so by (2), \(2\lambda^2 = R^2 \). Since \(R > 0 \), then \(\lambda \neq 0 \) and hence \(2 = (R/\lambda)^2 \), where \(\frac{R}{\lambda} \in \mathbb{Q} \) a contradiction.

If \(\lambda = 0 \), then by (5), \(q = p \), so by (2), \(2p^2 = R^2 \), leading to the same contradiction.

Case \(n \in \{5, 10\} \): The answer to (P1) is negative. By virtue of Proposition 2, we only need to show that the equation \(b = (aa + \beta)\sqrt{\gamma} \), or equivalently,

\[
2b = (aa + \beta)\sqrt{\gamma}
\]

is insolvable with \(a, \beta, \gamma \in \mathbb{Q}, \gamma > 0 \).

For \(n = 5 \), \(\omega = \frac{3}{4} \pi \), so \(a = \frac{\sqrt{5} - 1}{4} \) and \(2b = \sqrt{\frac{5 + \sqrt{5}}{2}} \). Observe that \(2b \) is a root of \(x^4 - 5x^2 + 5 = 0 \), while \((aa + \beta)\sqrt{\gamma} = \left(\frac{\sqrt{5} - 1}{4} + \beta\right)\sqrt{\gamma} \), which clearly has the form \((A\sqrt{5} + B)\sqrt{\gamma} \), \(A, B, \gamma \in \mathbb{Q}, \gamma > 0 \), is not a root of this equation by Lemma 1. We conclude that relation (6) never holds.

For \(n = 10 \), the proof is similar with \(\omega = \frac{3}{4} \pi \), \(a = \frac{\sqrt{5} + 1}{4} \) and

\[
2b = \sqrt{\frac{5 - \sqrt{5}}{2}}.
\]

Finally, Case \(n \in \{7, 9, 11\} \) or \(n > 12 \): The answer to (P1) is negative. By Lemma 2, \(\varphi(n) \geq 6 \), so

\[
\frac{1}{n} \varphi(n) \geq 3.
\]

By virtue of Proposition 2, we only need to show that equation (4)

\[
b = (aa + \beta)\sqrt{\gamma} \]

is insolvable with \(a, \beta, \gamma \in \mathbb{Q}, \gamma > 0 \). Here,

\[
a = -\cos \left(\frac{(n - 2)\pi}{n}\right) = \cos \frac{2\pi}{n} \quad \text{and} \quad b = \sin \left(\frac{(n - 2)\pi}{n}\right) = \sin \frac{2\pi}{n} \quad (b > 0)
\]
as \(n \geq 7 \). For the purpose of contradiction, suppose that (4) holds. Then,

\[
b^2 = \gamma(\alpha^2 + \beta)^2, \]

that is, \(1 - a^2 = \gamma a^2 + \beta^2 + 2\alpha\beta a \). Hence, \(a \) is a
zero of the rational polynomial \(f(X) = (1 + \gamma \alpha^2)X^2 + (2a \beta \gamma)X + (\gamma \beta^2 - 1) \). Since \(1 + \gamma \alpha^2 > 1 > 0 \), this polynomial has degree 2, and hence by (1), \(\alpha \) is algebraic and

\[
[a : \mathbb{Q}] < 2. \tag{8}
\]

But, there is a general result relative to the number \(a = \cos(2\pi / n) \) (see [3]):

- The number \(a = \cos(2\pi / n) \) is algebraic and for \(n \geq 3 \),

\[
\left[\cos \frac{2\pi}{n} : \mathbb{Q} \right] = \frac{1}{2} \varphi(n). \tag{9}
\]

Combining (9) and (7) we obtain \([a : \mathbb{Q}] = [\cos \frac{2\pi}{n} : \mathbb{Q}] = \frac{1}{2} \varphi(n) \geq 3\), in contradiction to (8).

Proof of Theorem 2

Let \(n \geq 3 \), \(n \neq 4 \). If \(n \neq 3, 6, 12 \), the answer to (P2) is negative since, by Theorem 1, it is negative for (P1).

For \(n \in \{3, 6\} \), the answer to (P2) is clearly positive (for \(n = 3 \), any vertex will do, and for \(n = 6 \), the centroid of \(P_6 \) will do). It remains only to prove that the answer to (P2) is negative for \(n = 12 \).

Lemma 3: Let \(P_{12} \) be a regular 12-gon with unit side. Then, if \(A, O, B \) denote 3 consecutive vertices of \(P_{12} \), the points that are at rational distance from \(A, O \) and \(B \), all lie in \(L \cup L' \), where the line \(L \) (respectively \(L' \)) denote the perpendicular at \(O \) to \(OA \) (respectively \(OB \)).

Proof: We refer to Proposition 1 and its proof. Consider the \(x-y \) axes with origin \(O \), such that \(A = (1, 0) \) and \(B = (-a, b) \), with \(a = -\cos(5\pi/6) = \frac{1}{2} \sqrt{3} \) and \(b = \sin(5\pi/6) = \frac{1}{2} \). Let \(M = (p, q) \) be a point \(\neq O \) such that \(MO = R \) (\(R > 0 \)), \(MA = S \) and \(MB = T \) are all rational (recall \(p \in \mathbb{Q} \)). With \(2\lambda = R^2 - T^2 + 1 \), we have \(qb - pa = \lambda \), that is, \(\frac{1}{2}q - \frac{1}{2}\sqrt{3}p = \lambda \), or, \(q = p\sqrt{3} + 2\lambda (p, \lambda \in \mathbb{Q}) \). Squaring provides \(4p\lambda \sqrt{3} = q^2 - 3p^2 - 4\lambda^2 \in \mathbb{Q} \). This requires \(p\lambda = 0 \). If \(p = 0 \), then \(M = (0, q) \) lies on the \(y \)-axis, which is the perpendicular line at \(O \) to \(OA \). If \(\lambda = 0 \), then \(q = p\sqrt{3} \). Hence, the point \(M = (p, q) \) lies on the line \(y = \sqrt{3}x \), which is precisely the perpendicular line at \(O \) to \(OB \).

Finally we prove that the answer to (P1) is negative for \(n = 12 \). More precisely, let \(P_{12} = A_1A_2A_3 \ldots A_{12} \) denote a regular 12-gon with unit side. Then, no point in the plane of \(P_{12} \) is at rational distance from 5 consecutive vertices of \(P_{12} \). Indeed, for the purpose of contradiction, suppose that some point \(M \) in the plane of \(P_{12} \) is at rational distance from \(A_{12}, A_1, A_2, A_3, A_4 \), say.

Consider first the vertices \(A_{12}, A_1, A_2 \). Check that the perpendicular line at \(A_1 \) to \(A_1A_{12} \), respectively to \(A_1A_2 \), is precisely the line \(A_1A_6 \), respectively the line \(A_1A_8 \) (see figure below). Hence by Lemma 3,

\[
M \in X = A_1A_6 \cup A_1A_8.
\]
Similarly, by considering A_1, A_2, A_3 and then A_2, A_3, A_4 we see that

$$M \in Y = A_2A_7 \cup A_2A_9 \quad \text{and} \quad M \in Z = A_3A_8 \cup A_3A_{10}.$$

Therefore, $M \in X \cap Y \cap Z$. But in fact, it is not difficult to notice (see figure above) that $X \cap Y \cap Z$ is an empty set. We obtain a contradiction, and the proof is complete.

Open Problem: Do there exist points in the plane of a unitary regular hexagon, other than the centroid, that are at rational distance from the 6 vertices?

Acknowledgement: The author would like to thank the referee for several helpful suggestions and comments and for pointing out an appropriate reference.

References

ROY BARBARA

PO Box 90, 357 Jdeidet-El-Metn, Lebanon

e-mail: roybarbara.math@gmail.com