GLANDERS: MEDICINE AND VETERINARY MEDICINE IN COMMON PURSUIT OF A CONTAGIOUS DISEASE

by

LISE WILKINSON*

TODAY, GLANDERS is a disease rarely heard of in Western Europe, Britain, and North America; but a hundred years ago the annual total of cases of glanders in the horse, published by the Board of Agriculture, exceeded 2,000, and British veterinarians were all too familiar with the disease. Moreover, transmission to man took place with distressing regularity, and the outcome was nearly always fatal. In 1908, William Hunting, Chief Veterinary Inspector to the London County Council, wrote: “Glanders in man is such a loathsome and fatal disease as to deserve more attention than it receives. . . . If the medical profession called for the suppression of glanders as loudly as they did for the extermination of rabies, prevention in all animals would be accelerated. Hydrophobia in man ceased when we had stamped out rabies in dogs, and glanders in man will only cease when the disease no longer exists among horses”.

Historically, the juxtaposition with rabies is apt. Over the centuries the number of animals of the equine species, and of men, whether infected naturally or in the laboratory, killed by glanders have probably equalled or even outweighed those who have succumbed to rabies. In times of war, from the Middle Ages onwards and as late as World War I, losses of horses through glanders in the armed forces of all nations must have been an important and influential factor. Yet in historical terms the literature on rabies is copious, while glanders has remained very much a neglected subject. Whereas the drama and unpredictability surrounding the clinical manifestations of rabies have frequently attracted the attention of medical and lay historians alike, glanders has remained ignored by most historians even in the context of the

2 The Registrar-General reported 78 deaths during the twenty years between 1883 and 1902. Ibid., p. 134.

4 Serious outbreaks among army remounts during World War I were reported from South Africa, Canada, Persia, Russia, etc.; see L. J. Blenkinsop and J. W. Rainey (editors), History of the Great War based on official documents: veterinary services, London, HMSO, 1925.

5 In his ‘preface’, E. G. Lafosse wrote in Traité sur le véritable siège de la morve des chevaux, et les moyens d’y remédier, Paris, David & Gonichon, 1749: “It is a well established fact that the great and terrible ravages of glanders are found in the armies; it is certain that during all the wars under which Europe has laboured for 200 years, a very considerable number of horses has been lost through this disease.”

363
major wars of the past. Nevertheless, there can be little doubt that losses through glanders in all the major wars in Europe and elsewhere, from the Crusades and throughout the troubled Middle Ages, must have been considerable, and a factor to be reckoned with by the warring nations; but the practical difficulties preventing retrospective exploration of its effects are self-evident.

However, the history of glanders and its bibliography is worth a second glance for other reasons. During the eighteenth century it reflected not only the ideas, old and new, which the century of the Enlightenment brought to bear on infectious disease problems in general; but it can also serve to illustrate important facets of many events which in one way or another influenced the early development of veterinary education on the European continent and in the British Isles. This development continued uninterrupted throughout the nineteenth century; but from 1820 onwards, the glanders literature reflects a major new departure and the rise of an entirely new discipline, made possible by the growing interest in veterinary science and its interrelationship with medicine. The nineteenth century saw the tremendous advance of a comparative medicine of infectious disease, which by the end of the century had not only yielded factual knowledge of a number of disease agents, but also spawned such secondary but no less important related concepts as natural and acquired immunity, vaccines, and toxins and anti-toxins.

A major stumbling-block in any historical treatment of glanders is the difficulty of diagnosis. In man, its clinical presentation has been easily confused with a number of other diseases, prominent among them tuberculosis and pyaemia. Even in horses diagnosis, before the advent of the mallein test, was difficult in all but the most acute cases. It is perhaps not surprising that in previous centuries reputable authors frequently described a variety of glanders of which only one (if that) was true glanders, thus lending an air of authority to the general confusion. Confusion there was. Caused by Pseudomonas mallei, the disease exists in a subcutaneous form

5 Smithcors has pointed out that the routes of the Crusades may have been responsible for the early emergence of veterinary literature in Italy. J. F. Smithcors, *Evolution of the veterinary art*, Kansas City, Missouri, Veterinary Medicine Publishing Company, 1957, p. 130.

6 This may also account for the fact that the transmissibility of glanders to man was discovered only belatedly, and not generally accepted until well into the nineteenth century.

8 In addition to tuberculosis and pyaemia, glanders has also over the centuries been frequently confused with ozaena and strangles, see F. Smith, *The early history of veterinary literature and its British development*, vol. I, 1919; reprinted London, J. A. Allen, 1976.

9 After the bacillus was first described in 1882, it has suffered a number of changes of nomenclature and classification, from Bacillus mallei via the genera of Actinobacillus, Pfeifferella, Malleomyces, Loefflerella, and Acinetobacter to its present position as Pseudomonas mallei. See T. J. Mackie and J. E. M’Courtney (editors), *Medical microbiology*, 13th ed., Edinburgh, Churchill Livingstone, 1978, p. 343; and G. S. Wilson

364
Glanders: medicine and veterinary medicine in pursuit of a contagious disease

(farcy) and a pulmonary form (glanders). Their common aetiology was first demonstrated at the end of the eighteenth century by E. Viborg, who was able to show that inoculation with matter from farcy buds could induce glanders in horses and asses. But if we take the comparison with rabies back to the earliest surviving descriptions of animal disease, we find that Aristotle, that mainstay of early and incomplete descriptions, probably described, equally incompletely, both rabies and glanders. His remarks on rabies have been quoted, if not ad nauseam, at least at tediously regular intervals. In the same book Aristotle wrote of a disease of the equine species: “The ass suffers chiefly from one particular disease which they call ‘melis’. It arrives first in the head, and a clammy humour runs down the nostrils, thick and red; if it stays in the head the animal may recover, but if it descends into the lungs the animal will die. . . .” This has been generally regarded as the first surviving description of glanders. In the Latin versions of subsequent authors “melis” became “malleus” and as such eventually a generic term for epizootics. Vegetius in the fifth century used it of epizootic diseases of both cattle and horses; among the seven varieties of malleus in the equine species mentioned by Vegetius, veterinary historians have identified morbus humidus with glanders and morbus facciminosus with farcy.

Apsyrtus, whose letters to friends, veterinarians, and military officers were written in the third century and later included in the Hippiatrika manuscripts compiled in Byzantium during the tenth century, described four kinds of “malis” of equines. What he called the “dry” variety may well have been farcy; as for glanders, opinions have differed as to whether it should be identified with the “moist” or the “articular” “malis” described by Apsyrtus.

If such probings of the fragments remaining of the works of classical authors serve to illustrate the uncertainty of terminology and retrospective diagnosis rather than to provide unequivocal information, the evidence would seem to favour the view that

13 See, for example, Med. Hist., 1977, 21: p. 17.

15 A number of authors credit Hippocrates with mention of glanders a century before Aristotle (see, for example, Jennings, op. cit., note 9 above, p. 264, and M’Fadyean, op. cit., note 1 above, p. 2), but this would appear to be due to confusion of the Hippocratic Corpus with the work of one Hippocrates who wrote in Persia, and probably in Sanskrit, a veterinary work on the horse in the sixth century; see Smith, op. cit., note 10 above, vol. I, pp. 71–73.

17 M’Fadyean (following Bass), op. cit., note 1 above, p. 2. Smith, op. cit., note 10 above, vol. I, p. 22, laconically remarks: “... such symptoms as are recorded are somewhat fantastic, but farcy, mange and strangles are readily recognised”.

18 Smith has tried to unravel the origins of the Hippiatrika at length, ibid., vol. I, p. 39.

19 M’Fadyean (following Bass) thinks it probable that “moist” was glanders and “dry” farcy (op. cit., note 1 above, p. 2). Smith, on the other hand, carefully analysing the symptoms mentioned, thought the “articular” kind might be acute glanders, while farcy should more likely be identified with Apsyrtus’ “subcutaneous” malleus.
glanders and farcy existed in classical times. There has even been a suggestion that glands may have been recorded during the century preceding the birth of Aristotle. In a paper published in 1962, Eby and Evjen made an attempt to identify the Plague of Athens, as recorded by Thucydides, with an outbreak of glands, rather than the smallpox, typhus, measles, bubonic plague, typhoid fever, and ergot poisoning severally suggested by other authors. Although the symptoms reported by Thucydides could conceivably have been caused by glands, the authors themselves point out that he made no mention of a simultaneous affliction of horses and asses, while he referred to the behaviour of birds and dogs at the time. A factor weighing more seriously against Eby and Evjen’s theory would seem to be the fact that at no other time has glands been known to cause extensive outbreaks in man. On the contrary, one reason its transmission to man was overlooked for so long and became accepted medical knowledge only well into the nineteenth century was probably the sporadic manner of its occurrence even among grooms and laboratory workers in constant contact with glandered material. If *Pseudomonas mallei* had become adapted to growth in man on such a scale by 400 B.C. it would seem unlikely that the fact could have been overlooked for more than 2,000 years.

As with most infectious diseases, so also in the case of glanders; our interpretation of the observations and opinions of classical authors must always retain elements of conjecture. But if this is true of the descriptions of individual diseases offered, in the area of general animal hygiene and prevention of epizootics among domestic animals, the writings of Vegetius and of Apsyrtus were conceptually quite advanced. Writing of the disease we now assume to have been glanders, both Apsyrtus and Vegetius recognized its contagiousness and recommended strict isolation of affected animals to prevent spread of the infection. Vegetius wrote about a century later than Apsyrtus and went considerably further with regard to the measures he thought necessary to arrest the spread of contagion. He recommended isolation of suspected animals as well as of those with the frank disease, and was even in favour of burying the carcases of glandered animals well away from pastures used by healthy ones. The first printed edition of Vegetius’ veterinary work appeared in Basle in 1528. Six years later, in 1534, Fitzherbert mentioned glanders (“glaunders”) and farcy

21 Cf. note 8 above; Eby and Evjen’s one example of an “epidemic” among humans appears to stem from an (undocumented) remark to the effect that “Such an epidemic occurred among soldiers and civilians following the Russian Revolution in 1917” in L. A. Merillat and D. M. Campbell, *Veterinary military history of the United States*, 2 vols., Chicago, Veterinary Magazine Corp., 1935, p. 165.

22 Apsyrtus’ assertion that “moist malis” is “easily curable” would seem to favour Smith’s interpretation rather than M’Fadyean’s, and suggest that if Apsyrtus described glanders it was as “articulate malis”; Smith, op. cit., note 10 above, vol. 1, p. 46.

23 M’Fadyean wrote: “In this, Vegetius, no doubt, went beyond the necessities of the case, but in his estimate of the risks of contagion from living diseased animals he appears to have been more than a thousand years in advance of his time”; op. cit., note 1 above, p. 3.

24 Cf. note 16 above.

25 Fitzherbert has often been identified with Sir Anthony Fitzherbert, a justice of the Court of Common Pleas during the reign of Henry VIII, but Smith makes out a convincing case for the author to be identified with Sir Anthony’s eldest brother, John, lord of the Manor of Norbury, who took a life-long interest in all aspects of agriculture and husbandry. Smith, op. cit., note 10 above, vol. 1, p. 129.
("farcyon") in his *Boke on husbandry.* It is probably the first account written in English to recognize the contagious nature of farcy, but apart from this makes no great claim to accuracy; thus true glanders would seem to have less in common with Fitzherbert's "glaunders" than with what he referred to as "mournynge on the chyne". On the European continent glanders was also being recognized as contagious by Fayser and by Seuter in the sixteenth century; Fayser referred to the transmission of farcy from horse to horse, and Seuter warned that contagion could remain active in infected stables for long periods. During the following two centuries there was to be little change, let alone improvement, on the views of these authors and on Vegetius, on whose recently printed writings they may all have leaned. The only exception was the remarkably clear account of glanders written in the seventeenth century by Jacques Labessie de Solleyse.

Writing in the 1660s, Solleyse adhered to the conventions of his times in the matter of superstitious considerations. He was very much preoccupied with the effects of the various phases of the moon, and wrote: "Farcy which appears during the waxing of the moon is more serious and less easy to cure than that which erupts during its waning, because the humours are less abundant and weaker, the same applies to glanders and leg sores." Solleyse does not otherwise explicitly connect farcy with glanders, and although he warned that farcy could be transmitted to healthy horses by contact with infected animals, he also believed that it could be caused by excessive feeding on oats. It is Solleyse's description of glanders which commands our admiration. He stressed the importance of involvement of the lungs in true glanders, he insisted that afflicted horses should be kept separated from healthy ones, and he was aware of the dangers of ingestion through drinking-water and of contagion through

26 *The boke of husbandry,* by mayster Fitzherbarde . . . after he had exercysed husbandry, with greate experyence, 40 yeres. In: *Certain ancient tracts concerning the management of landed property reprinted,* London, C. Bathurst, 1767. *The boke of husbandry* was first printed about 1534.

27 This was probably a corruption of MORTECHIEN (mort d'eschine), commonly used in the sixteenth century, when it was also believed that the morbidity of glanders had its seat in the spine. Among the afflicts Shakespeare ascribed to Petruchio's horse was "... possessed of the glanders and like to mouse in the chine" (*The Taming of the Shrew,* Act III, Scene 2; first printed 1594).

28 Johann Fayser, *Hippiatria, grundlicher Bericht und aller ordnunglichste Beschreibung der bewerten Rossäritzney,* Augsburg, M. Manger for G. Willer, 1576. M'Fadyean quotes Fayser and Seuter, as he does many others, without giving any explicit references.

29 Solleyse (1617–1680) was a self-taught horseman and veterinarian. He had been master of the horse to the French ambassador negotiating the Peace of Westphalia in 1648, and ended his days as instructor at the Paris academy where the art of horsemanship was taught to members of the French aristocracy (he literally ended his days there, collapsing in the exercising ring). His work on glanders is perhaps the most celebrated and most frequently quoted by veterinary historians, although Schwabe's claim that he broke important new ground "by experimentally transmitting glanders from horse to horse" would appear to rest on a mis-reading of Garrison, cf. C. W. Schwabe, *Cattle, priests and progress in medicine,* Minneapolis, University of Minnesota Press, 1978, p. 156; and F. H. Garrison, *An introduction to the history of medicine,* 4th ed., Philadelphia, Saunders, 1929, pp. 271, 274.

31 In an edition published in 1718, nearly forty years after Solleyse's death, the anonymous editor has added, in the chapter on farcy, that in serious cases, if farcy persists for three or four months, "there is reason to fear the development of glanders". *Le parfait maréchal,* 1718, p. 411. That sentence is not found in Solleyse's own last edition, op. cit., note 30 above.

32 Ibid., p. 408.
Lise Wilkinson

rubbing and other contact with glandered horses in the same stable. He wrote: "This is the most contagious distemper to which horses are obnoxious, for not only it communicates its venom at a small distance, but it infects the very air, and seizes on all horses that are under the same roof with him that languishes under it. And therefore as soon as you perceive the least sign of the glanders, you must separate the sick horse from all his companions, and not suffer him to drink out of the same pail with 'em; ...".33

Solleysel’s excellent advice may have been heeded at the time;34 but during the eighteenth century, glanders, like other infectious diseases, came in for a great deal more attention than it had received in previous centuries, and not all of the additions to the literature improved the sum of medical and veterinary knowledge. The prominent place afforded glanders in much of the copious literature on horses, their physiology and diseases, even before the advent of the veterinary schools, leaves little doubt of the threat it must have always posed in an era so dependent on the horse, in times of both war and peace. But from the publication of Solleysel’s first edition in 1664 until the end of the eighteenth century, there was little improvement on his views. At best, writers on glanders leaned heavily on Solleysel; those who did not fared rather worse and re-introduced the superstitions and confusions of earlier centuries.

Gaspard de Saunier,35 whose treatise was printed in The Hague in 1734, copied shamelessly from Solleysel the best part of his chapter on glanders, i.e. eminently reasonable directions for isolation and slaughter of infected animals, and for disinfection of stables previously used by them. For the rest, he distinguished between three different kinds of glanders and six kinds of farcy, but like Solleysel did not connect the two diseases in any real sense.36

In England at this time, i.e. the first half of the eighteenth century, veterinary medicine, if such it could be called, was often in the hands of the surgeons attached to regiments on active duty or, in the case of major disastrous epizootics, Court surgeons might be consulted.37 One surgeon who recorded his views and translated his army experiences into print was William Gibson. We have examples of his work published at an interval of thirty years, and in the case of some diseases, although by no means all, his knowledge improved with the years. He never recognized the identity of the contagious material in glanders and farcy. The latter he had seen in his regimental

33 This contemporary translation is by Sir William Hope, who had known and been taught by Solleysel, and who prefaced his English edition with a tribute to the late master, and his portrait, see J. L. de Solleysel, The compleat horseman, By Sir William Hope ... made English ... , London, M. Gillyflower. 1696.

34 The popularity of his work caused it to be pirated to such an extent that he felt compelled, at the end of his life, to publish a final edition to correct the many errors perpetrated by the pirate publishers. In his foreword to this final edition, Solleysel makes no attempt to disguise his dismay at the activities of the unscrupulous publishers whose "teachings serve rather to kill the horses than to cure them".

35 Gaspard de Saunier, La parfaite connoissance des chevaux, ... par J. de Saunier, ... continuée et donnée au public par son fils, Gaspard de Saunier, The Hague, A. Moetjens, 1734.

36 For nasal catarrh in the horse, de Saunier recommends a decoction prepared by boiling two newborn puppies in eight pints of white wine with an ounce of pepper, an ounce of ginger and four ounces of sugar.

37 When the first wave of rinderpest reached the British Isles in 1714, Thomas Bates (d. 1760), surgeon to the court of George I, handled the outbreak with exemplary fortitude. Thomas Bates, "A brief account of the contagious disease which raged among the milch cows near London in the year 1714 and of the methods that were taken for suppressing it", Phil. Trans., 1718, 30: 872–885.

368
horses, but nevertheless thought it was rarely, if ever, spread by contagion. In his first edition he had similar views on glanders, but by 1751 he had come to recognize its infectious nature, and to urge measures of isolation and disinfection. Then, long before there was any general attempt to take advantage of comparisons between infections of animals and man, this army surgeon with responsibility for both horses and men devoted space to a comparison of susceptibilities to infection in man and horses, and gave examples of physicians contaminated during examinations, although he never actually suggested the possibility of transmission of glanders to man. Unlike many of his contemporaries, Gibson was able to distinguish between glanders and ozaena, but Sir Frederick Smith has pointed out that, on the other hand, his description of “consumption” incorporates features of glanders and internal strangles.

About the time of Gibson’s death, across the Channel the subject of glanders was becoming caught up in the controversy surrounding one of the major advances of the century of the Enlightenment, which spawned so much literary and scientific activity. Between August 1761, when Louis XV granted its Royal Charter, and February 1762 when its doors were officially opened to students, Claude Bourgelat installed Europe’s first veterinary school at Lyons, where he had been running a riding academy since 1740. Bourgelat was a representative figure of the French Enlightenment, well connected, corresponding with d’Alembert and with Voltaire, and with useful support at Court. Born into a family tradition of legal service, he was educated with a view to practising law; but his enthusiasm for horsemanship combined with his reservations concerning the execution of the law to deflect him towards the veterinary art. When in 1740 he acquired the old academy of equitation in his native city of Lyons, he began by educating riding masters; but he soon saw the need for a new breed of practitioners.

38 William Gibson, The farrier’s new guide, London, W. Taylor, 1720. This edition carries as its frontispiece the frequently used graphic presentation of a horse and its diseases seen in the previous century in the work of Sollesey (Fig. I). Its earliest use appears to have been in broadsheets printed in Italy in the sixteenth century with a text of disease descriptions and suggested cures (H. J. M. Symons, Wellcome Institute Library, personal communication).

39 William Gibson, A new treatise on the diseases of horses, London, A. Millar, 1751. The publication date was posthumous. Gibson, born about 1680, died on 5 October 1750; the author’s preface is dated 1 October 1750.

40 Having first served with Colonel Tyrrell’s Regiment of Foot, Gibson was later with the 16th Dragoons. See Smith, op. cit., note 10 above, vol. II, p. 11.

42 Ibid., pp. 267–269.

43 E. Leclainche, Histoire de la médecine vétérinaire, Toulouse, Office du livre, 1936. In this otherwise excellent and authoritative account of the evolution of veterinary education, Leclainche gives the date of opening both as 1762 (p. 240) and 1763 (pp. 254, 237). Comparison with other works, and the fact that the bicentenary of the school was duly celebrated at Lyons in May 1962, would suggest that 13 February 1762 is the correct date for the opening.

44 According to C. H. Eby, Bourgelat (1712–1779) made the most of his connexions and the intrigues surrounding the Court of Louis XV to keep himself in control and to prevent Ph. E. Lafosse (1739–1820) from gaining official recognition, specifically from obtaining the directorship of the second veterinary school at Alfort. C. H. Eby, ‘Lafosse and his book’, Record (Friends of the Library of Washington State Univ.), 1960, pp. 39–43.

45 Bourgelat seems to have been a man of integrity who became disenchanted with the legal profession when he won a case he felt was unjustified. He then spent a period in the corps of gallant mousquetaires before becoming the dedicated, if self-styled, director of the first veterinary schools.

369
of a specialized profession, that of veterinary medicine. It is sometimes suggested that the first veterinary schools grew out of the need for qualified intervention during the devastating cattle epizootics which swept through Europe during the eighteenth century. If such considerations contributed to Bourgelat's initial efforts, and to the political support he received, he soon abandoned any pretence of concern for cattle to concentrate on his chosen species, the equines. By 1760, he had brought himself and his academy to a standard of knowledge and equipment which warranted the establishment of Europe's first veterinary school; it opened, with official sanction, on 13 February 1762.

On its own terms, it was a success, and was followed three years later by a similar school outside Paris at Alfort, where a small chateau formed the nucleus of a second teaching establishment, also to be run under the directorship of Bourgelat, to the dismay of a certain Philippe Etienne Lafosse. Lafosse and his father had been the main critics of Bourgelat since the opening of the Lyons school; they considered him insufficiently versed in his subject, especially in the study of the classical authors. The younger Lafosse had considered himself the ideal choice to lead the Alfort school, and was bitterly disappointed not to have been selected. The writings published by Bourgelat and by the two Lafosses, father and son, during the latter half of the eighteenth century reflect their rivalry and acrimonious disputes. The literature on glanders is no exception.

The elder Lafosse, Etienne Guillaume, of whose life we know little, published a

4 Sandwiches of rinderpest on an alarming scale intensified the many problems with which European countries had to contend between 1710 and 1780. Foot-and-mouth disease and bovine pleuroneumonia were frequently present at the same time, and historically there is much diagnostic confusion. Rinderpest has received the better part of historians' attention, see, for example, George Fleming, Animal plagues: their history, nature and prevention, London, Chapman & Hall, 1871; and C. F. Mullett, 'The cattle distemper in mid-eighteenth century England', Agric. Hist., 1946, 20: 144–165.

48 Cf. note 43 above.

49 Now very much part of greater Paris, Alfort has its own metro station and can be reached in less than thirty minutes from the Place de la Bastille. For the history of this second school, see A. Railliet and L. Moulé, Histoire de l'Ecole d'Alfort, Paris, Asselin & Houzeau, 1908.

50 Philippe Etienne Lafosse was the scion of a family whose members had for generations held appointments as equerries and farriers at the courts of Louis XIV and XV. His father supervised both his instruction in liberal arts and human anatomy and his practical training in the stable and smithy. In spite of their own broad background, both father and son held reactionary views regarding veterinary education which they felt should aim at producing practical farriers rather than scientifically competent veterinary surgeons. See Leclainche, op. cit., note 43 above, p. 241.

51 This criticism was justified. As a friend of d'Alembert and contributor to his Encyclopédie, Bourgelat was totally committed to the new philosophical approach and its pursuit of truth through the study of nature. The literature of past centuries should be ignored and not be allowed to interfere with the free spirit of the philosophers, see Leclainche, op. cit., note 43 above, p. 241.

52 His date of birth is unknown, but we know that he died in Paris in January 1765, on the eve of the opening of the school at Alfort. See G. W. Schrader and E. Herig, Biographisch-literarisches Lexicon der Thierärzte aller Zeiten und Länder, Stuttgart, Ehner & Seubert, 1863.
Figure 2. Plate from Ph. E. Lafosse, *Guide du maréchal*, 1792 (footnote 56). In addition to anatomical details relevant to glanders, Fig. E shows an iron vaporizer recommended by Lafosse for the application of medication through the nostrils. (*Reproduced by courtesy of the Wellcome Trustees.*)

Figure 3. Copperplate illustration from Schilling’s paper of 1821 (footnote 88) showing the extent of the patient’s facial glanders lesions. (*Reproduced by courtesy of the Royal Society of Medicine.*)
Glanders: medicine and veterinary medicine in pursuit of a contagious disease

tract on glanders more than ten years before the opening of the school at Lyons propelled Bourgelat into the spotlight and the full force of the dislike of both Lafosses. With hindsight, it is not an impressive document, and insofar as it reflects the opinions of the time it bears witness to a lamentable rejection of the views pioneered by Solleysel a century earlier. In a foreword Lafosse assures his readers that he has examined carefully all the classical authors, and that nowhere has he found any mention of glanders until the fifteenth century, when the disease first made its appearance “at the siege of Naples, after the arrival of the Spaniards from their discovery of America . . .”. He then proceeds to discuss the “erroneous and bizarre” ideas of Solleysel, pouring scorn on the latter’s statement concerning the involvement of the lungs, and sometimes the liver and kidneys, in advanced cases. The elder Lafosse believed that glanders was a local disease of the nasal membrane, and that any other lesions were secondary phenomena unconnected with the original “contagion” which was confined to the nasal membrane and its glands. Lafosse based his observations on a number of autopsies where he found no lesions other than in the nose; in all probability the horses he examined were not all glandered. As a result of his investigations, Lafosse came to the conclusion that glanders could be cured by trephining and draining of the discharge, or by injecting “convenient remedies” into the nasal cavities (Fig. 2).

The younger Lafosse began writing on glanders while his father was still alive. In subsequent years he widened his scope and published a Guide du maréchal and a Cours d’Hippiatrique. Both volumes were impressive, representative of the best of the knowledge of the time; but they were more than that. They were moves in a game which Lafosse never won, his bid for at least a share in, if not absolute control of, the shaping of the rapidly growing structure of veterinary education in France, soon to become the model for similar ventures elsewhere. The Cours d’Hippiatrique is unfortunately now a very rare book, but the Guide du maréchal, although less lavishly produced and illustrated, serves well enough to convince us of the care and comprehensiveness of the teaching offered by Lafosse in direct competition with Bourgelat’s state schools. His forte was anatomy; his chapter on glanders reads as a curious attempt to vindicate his father’s earlier account and at the same time add new and honest knowledge to make it more accurate. In trying to corroborate his father’s .

Lafosse, op. cit., note 5 above, was published under the auspices of, and with the full approbation of, the Paris Academy of Sciences, see its postscript, pp. 20–24.

M’Fadyean, op. cit., note 1 above, wrote in 1904: “No case of glanders with lesions elsewhere than in the lungs, and with these organs healthy, has ever been recorded” (p. 71). And in a Fellowship thesis prepared for the Royal College of Veterinary Surgeons James Webb wrote in 1897: “. . .I have made many post mortem examinations of horses that were affected with supposed farcy only, but in all I found the lungs showed the characteristics of glanders.”

According to Schrader and Hering, op. cit., note 52 above, he first submitted a dissertation on glanders to the Academy of Sciences in April 1761.

The edition here used is: Ph. E. Lafosse, Guide du maréchal, Paris, Lacombe, 1792.

See Eby, op. cit., note 44 above.

In Italy veterinary schools opened at Turin in 1769, at Padua in 1774, and at Milan and Modena in 1791; in Germany, at Göttingen in 1771 and in Hanover in 1778; Denmark got its veterinary school in Copenhagen in 1773; and Sweden followed with one in Skara in 1775; England did not have its first school until 1791–92 in London. See Leclainche, op. cit., note 43 above, p. 237.
trenchant if erroneous views on the pathogenesis of glanders, Lafosse the younger reverts to the confusions of earlier centuries and distinguishes between a number of varieties of glanders, some of which he considers contagious, others not. In addition to true glanders, it would seem that he includes strangles, simple nasal catarrh, pneumonia, and broken wind.

By way of contrast, his arch-rival Bourgelat, untrammelled by immersion in the classical literature and unhampered by filial piety, wrote on glanders without constraint, and leaning on Solleysel. The result was not a great deal more illuminating. His attempts to explain the crucial difference between the “flux” in the relatively “benign” diseases such as strangles and catarrh, and the “glanderous ferment” with its deleterious effect due to “acrid particles”, led him to invoke the action of “molecules which push continuously and successively against those in front of them”. He also wrote that the actual amount of nasal discharge depended on the multiplication of the “acrimonious virus”; but the context leaves no reason to believe that he had any real understanding of the phrases he was using.

Although Lafosse continued his campaign, Bourgelat’s position was secure and the skirmishes did not prevent the French schools from rapidly becoming models for similar establishments throughout the length and breadth of Europe, from Italy to Scandinavia, and from the German States to St. Petersburg. Interested governments and universities soon began sending students to Lyons and to Alfort, and as a result first-hand accounts appeared of the new system, reflecting both its advantages and its shortcomings.

Among the early arrivals in Lyons was P. C. Abildgaard, who after his return to Denmark was to establish the first veterinary college in Copenhagen, and guide it through its politically fraught early years. Abildgaard arrived in Lyons in September 1763, and almost left in despair a few months later. He wrote home to his mentors, who were hoping the course would enable him to control cattle epizootics at home, of
the school’s one-sided concern with horses to the exclusion of other domestic animals, and of the emphasis placed on farriery. He was prevailed upon to stay, and later realized that the thorough instruction in farriery would be of use in his activities at the veterinary college.

Before the Danish school had lived through its precarious first decade, Abildgaard managed to attract a young and versatile follower, who not only helped him to put the school on its feet, but also joined him in research projects and literary activities. This was Erik Viborg, who in 1795 published an account of glanders which was to ensure him a lasting and enviable reputation in veterinary literature. Hunting wrote in 1908: “Viborg, in 1797, knew practically all that was known about glanders up to the time of the discovery of the Bacillus mallei.” Hunting’s praise was justified, with one reservation. Viborg, who had spent much time and effort in experimental work with glanders, was fortunate in never observing its transmission to man; and to the end of his life he resisted the idea of its transmissibility to the human species. In all other respects he was correct; he proved conclusively that farcy and glanders were caused by the same agent, and that the discharge from horses suffering from glanders and farcy contained a specific “virus” which could be destroyed by heat, and which was otherwise capable of carrying the infection in harness and utensils, and in forage left in mangers previously used by glandered animals. From his first paragraph Viborg made it clear that he believed firmly in the contagious nature of what he called the “poison of glanders”; but, like many of his contemporaries, he was puzzled by cases occurring in horses which had had no apparent contact with infected animals. Viborg wrote: “How the poison of glanders can be provoked by such apparently contradictory causes cannot be explained on the basis of current knowledge. Only when more light is shed on the nature of the contagion in glanders can we hope for such developments . . .”

Viborg qualified in veterinary medicine in Copenhagen, and not until the eve of his

65 The school’s difficulties were both political and financial, but the situation was eased when it received its Royal Charter and state support in July 1777, ibid., p. 73.
66 Erik Nissen Viborg (1759–1822) began by following in his father’s footsteps studying theology, but he soon yielded to a growing interest in the sciences. Throughout his life he maintained a special affinity for applied botany, but from the day he joined Abildgaard at the veterinary college first as a student in 1781 and from 1783 as a staff member, his prime commitment was to the new school and its teaching and research activities.
67 The date 1797 quoted in most of the subsequent literature applies to the articles on glanders and farcy published in German in Abhandlungen für Tierärzte und Oekomen I–V; Viborg had first published his experiments and conclusions in op. cit., note 12 above.
68 Hunting, op. cit., note 3 above, p. 10.
70 Viborg, op. cit., note 12 above, pp. 157–158. Among those struggling with the same problems in Britain were James White (?–1825), an early graduate of the London Veterinary College, and his contemporary there, Thomas Peall (?–1825). They both experimented with the transmission of farcy and glanders during their student years at the college, and both later included their observations in books, see J. White, A complete system of veterinary medicine, London, J. Baddock, 1804, vol. 1, pp. 103–116; and Thomas Peall, Observations, chiefly practical, on some more common diseases of the horse . . . , Cork, John Bolster, 1814, pp. 111–152. They were students of Edward Coleman (1765–1839), whose long period as head of the London Veterinary College was fraught with controversy. See Smith, op. cit., note 10 above, vol. III, pp. 13–31.
Lise Wilkinson

appointment to a chair there in 1790 did he travel abroad. By contrast, Abildgaard, the pioneer, had studied medicine at Copenhagen for less than two years when he left for Lyons in September 1763. Although Bourgelat, when inaugurating the schools, had considered this a desirable background for his students, he soon changed his mind. This may have been in part in deference to the views expressed by his arch-rivals, the Lafosses, who considered the main function of veterinary schools to be the preparation of good farriers; but there is evidence that other factors played a part.

In 1772, when the Lyons school was approaching its tenth anniversary, Cicognini, then head of the faculty of medicine at Milan, wrote to Bourgelat inquiring about the possibility of sending two students to France, and explaining that he thought it would be appropriate to select young men who had already had a thorough grounding in medicine. Reasonable as this might seem, Cicognini's letter occasioned a veritable outburst from Bourgelat, who wrote back bitterly: "The choice of well born young gentlemen, such as surgeons or physicians, would be unlikely to benefit either your institution or ours. So far among those sent here by foreign nations, I have known only three to succeed. . . . All the others have been . . . a total loss . . . such have been their excesses and their debauchery that our minister has decided . . . that it is essential for us to choose by preference children of the common folk, sons of honest farriers, as long as they are able to read and write. . . ." 71

In Britain, in spite of an obvious need, veterinary education developed more slowly and tentatively than across the Channel. Much of the early spadework was done by the Odiham Agricultural Society with Thomas Burgess, later Bishop of Salisbury, as the driving force behind the initial efforts. 72 James Clark, 73 justly famed for his volume on veterinary hygiene, expressed his admiration for the French initiative in veterinary education, and recommended the creation of similar institutions in England: "In France, a regular academy for the instruction of young farriers has been instituted. The attempt is laudable, and worthy of imitation . . ." 74 His admiration of French initiatives extended to the works of Lafosse, whose views on glanders he adopted without reservation. 75

His unqualified acceptance of French ideas was not shared by another English writer in the late eighteenth century, John Lawrence, 76 whose Philosophical and practical treatise on horses first appeared in 1796. A man of means but an autodidact in the field of veterinary medicine, his knowledge of horsemanship, his common sense, and his increasing obsession with kindness to animals could not compensate for his

71 This correspondence is quoted in full by Leclainche, op. cit., note 43 above, pp. 243–244.
73 Nothing is known of James Clark's life history, not even the dates of his birth and death; he was "Farrier" to the King for Scotland, and may have held a teaching position; Smith, op. cit., note 10 above, vol. II, pp. 111–130.
74 James Clark, A treatise on the prevention of diseases incidental to horses from bad management in regard to stables, food, water, air, exercise . . ., Edinburgh, 1788, p. 4.
75 Smith, op. cit., note 10 above, having praised Clark as "the great figure of the eighteenth century", admits that his views on fancy and glanders are "most disappointing" (vol. II, pp. 111–126).
76 John Lawrence of Bury St. Edmunds (1753–1839). According to Smithcors (op. cit., note 7 above, p. 279) he was "one of the more intelligent and conservative British writers of the early nineteenth century . . .". The Dictionary of national biography quotes an obituary (Sporting Magazine, May 1839, p. 63) to the effect that he was "certainly an eccentric, but if the shell was husky, the kernel was sound".
lack of basic veterinary knowledge. His humane attitudes led him to oppose the experimental work of Lafosse, Bourgelat, and Vial de Sainbel (cf. below), whom he accused collectively of being "... not unfrequently governed by a rage for experiment", concluding with the piously chauvinistic thought that "... in my opinion there is more solid and useful knowledge to be drawn from the English, than the French veterinary writers. ... In whatever they have failed, the defect may be fairly attributed to their late despotic system of government, which devoured the finest country, and stifled the energies of the most emulous and enterprising people on earth. A country and a people, under the cheering auspices of liberty, must infallibly excel in all things." So much for pre- and post-revolutionary France, compared to the relative stability of Georgian England. Nor was he impressed by the French literature on glanders, but wrote: "... As to the numerous attempts hitherto made in the French schools to cure the glanders, I must own, I see nothing to wonder at in their ill success. It appears evident to me (I say this after good advice) that many of those hectic patients died of the doctor."

Meanwhile, the slow development of English veterinary education continued. After the initial efforts of the Odiham Agricultural Society, more politically minded factions became interested; above all, John Hunter gave continued and loyal support to the project, and his death at a critical time during the early struggles of the infant London Veterinary College came as a sad and potentially crippling blow. Having said all this, one is bound then to admit that, for better or worse, the controversial architect of the initial courses, given between 1791 and 1793, was a Frenchman, one Charles Vial de Sainbel. During his ill-starred career in France, Sainbel had made a number of observations concerning glanders which have come down to us in an essay published posthumously in London in 1795. Sainbel was not impressed by the works of Lafosse, on which he wrote: "I fear he has left us little to rely on: we are still miserably ignorant as to the cause and nature of this specific virulence ..." Sainbel added little to the views on the nature of the contagion in glanders which had already been expressed by Solleysel more than a century earlier; inexplicably, he stated that the disease was not transmissible by "... inoculating the body with the morbific matter".

Perhaps Sainbel's main interest for the history of glanders lies in the manner of his

"Ibid., p. 43.
"In addition to the thorough account given by Pugh (op. cit., note 72 above), this development is also described at length by Smith, op. cit., note 10 above, vol. II, pp. 180–184.
"Ibid., pp. 204–206.
"Sainbel's motives in coming to England to espouse the cause of veterinary education appear to have been not altogether altruistic. Born near Lyons and entering the veterinary school there at the age of nineteen, he was known in France as Benoit Vial. He proved unable to hold down any appointment for any length of time in his native country, and according to the register of his alma mater he eventually "went to London where he wished to form an establishment; has there taken the ostentatious and false name of Saint-Bel". Ibid., vol. II, pp. 184–203.
"The works of Charles Vial de Sainbel, professor of veterinary medicine, to which is prefixed a short account of his life including also the origin of the veterinary college of London, London, Martin & Bain, 1795, p. 52.
"Ibid., p. 54.
death, little more than two years after the inauguration of the veterinary college. After
his customary round of the patients in the stables of the college, which no doubt
included glandered horses, he was taken ill one Sunday afternoon in August 1793.
 Barely three weeks later he died, in circumstances which prompted the attending
physicians to have him buried without delay in a lead coffin; they suspected he might
have died of plague.84 Nearly a century later, Hunting observed that the symptoms
described would suggest that the illness from which Vial de Sainbel died was
glanders.85 This interpretation is now generally accepted.

It is hardly surprising that Sainbel's illness was not recognized as glanders at the
time. Until the end of the eighteenth century, there is nowhere in the extant literature
any suggestion of transmission of glanders to man. On the other hand, it occurred on
the threshold of an age which, in the teeth of distressing evidence, was finally to recog-
nize the transmissibility of glanders to man. From the early years of the nineteenth
century, there appeared in various journals reports of cases which could have been fancy
and glanders in man. In 1812 a Dr. Lorin, surgeon to a French regiment, diagnosed
farcy in two members of his regiment who had incurred minor injuries to their hands
while operating on horses with farcy. By removing the small tumours formed at the
sites of injury, Lorin was able to cure both patients.86

Two years earlier, the transmission of glanders from horse to man had been
observed and recorded, albeit in unpublished form, in France by Jean Hameau, whose
observation rested unsung in manuscript form in the archives of the Société de
Médecine de Bordeaux. It finally appeared in print in part 2 of Hameau's Étude sur
les virus which was first printed (although written twelve years earlier) in 1847, a
perceptive and unjustly ignored theoretical precursor of the bacteriological tenets
explored by Koch and Pasteur later in the century.87

A detailed report of a case which ended tragically was written by a Dr. Schilling of
Berlin, and published in Rust's Magazin für die gesammte Heilkunde in 1821. Dr.
Schilling's patient died after six weeks of feeling unwell but continuing to work –
looking after glandered horses – and a few days of final acute illness. Dr. Schilling
carried out an autopsy "with the utmost care" and inoculated two rabbits with
material from pustules on the body. After a week, one rabbit died, the other was
destroyed; both were found to have pustules in various organs, while there was little
necrosis in the nose. No horses or mules were inoculated.88 The paper is accompanied

84 The episode, and the state of body, was graphically described by Bracy Clark, who with complete
disregard for the safety of himself and others insisted on making an impression in plaster of Paris of the face
of his dear friend. Bracy Clark, 'Vial de St. Bel and the early history of the London Veterinary College',

86 [-] Lorin, 'Observations sur la communication du farcin des chevaux aux hommes', J. med. chir.
pharm., 1812, 23: 136–137.

87 See J. Théodorides, 'Un précurseur girondin de la pathologie infectieuse: Jean Hameau (1779–1851)',
C. r. 104° Congr. nat. Soc. savant., Bordeaux, 1979: 81–95. I am indebted to Dr. Théodorides for drawing
my attention to Hameau.

88 [-] Schilling, 'Merkwürdige Krankheits- und Sections-Geschichte einer wahrscheinlich durch
Uebertragung eines tierischen Giftes erzeugten Brandrose', Rust's Magazin für die gesammte Heilkunde,
by a beautifully executed copperplate illustrating the distressing facial manifestations observed in his patient (Fig. 3). The title of the paper is carefully worded, leaving room for any doubts remaining in the mind of the reader or, for that matter, of the author, who also adds a further reservation: "One might also pose the question: were those horses [attended by the patient during the period leading to his illness] suffering only from glanders, or were any of them coincidentally carriers of the contagion of anthrax . . . ?". 89

While not treated as explicitly, the problem had been noted elsewhere at the time of Hameau's observation. Schilling quotes a contemporary textbook by Waldinger, published in Vienna in 1810, in which Waldinger wrote: "... when opening carcasses of horses suffering from glanders or farcy, the utmost care must be taken in the case of accidents not to introduce any pus into any wound, as this could lead to the most melancholy consequences and even death". 90 At a time when a number of authors still maintained that glanders could not be transmitted to man, 91 and that such illnesses and deaths as occurred in persons associated with horses suffering from farcy or glanders were far more likely to have been caused by pyaemia or septicaemia, the editor added a warning postscript to Schilling's paper: "Nevertheless, both of the latest cases described here and the earlier observations by Veith and by Waldinger seem to me sufficient evidence that the poison of glanders can be transmitted to man, with highly dangerous and deadly results." 92

Less than ten years later, in London, appeared a more definitive treatment of the subject. Its author was John Elliotson, who at this time was Physician to, and Lecturer on the Practice of Medicine at, St. Thomas's Hospital. 93 In 1830 Elliotson was at the height of his powers; and on 1 June he read to the Medical and Chirurgical Society of London a paper, 'On the glanders in the human subject', which in its published form 94 was soon quoted by authors at home and abroad. Within a short space of time, two cases had been seen at St. Thomas's of patients dying in distressing circumstances, after great prostration, with abscesses on the extremities, pustules on the face, and what appeared to be gangrene of the nose, with profuse discharge of pus from the nostrils. Elliotson was satisfied that what he called a "morbid poison" was responsible, but in spite of exhaustive interviews with friends and relatives of the patients he had been unable to establish any source of contagion. With the practised lecturer's sense of the dramatic he then described how, seeing the headline 'Fatal case of acute glanders in the human subject' on the cover of the Medical Gazette for 4 July, 95 "It instantly flashed upon my mind that this must be what I sought." 96 Further

89 Ibid., p. 499.
90 Ibid., p. 501.
91 As indeed did Viborg to the end of his life, cf. note 69 above. The capricious and unpredictable nature of glanders transmission to man has never been satisfactorily explained.
93 John Elliotson (1791–1868) was then at the zenith of his career, when every volume of the Lancet reported copiously on his cases, lectures, and opinions. It was before, from the mid-1830s onwards, he became increasingly involved in and impressed by the practice of hypnotism and mesmerism. The uncritical enthusiasm with which Elliotson embraced these concepts introduced from abroad progressively clouded his mind and harmed his reputation; Lancet obituary, 1868, ii: 202–204.
95 This was a paper by Andrew Brown, 'Fatal case of glanders in the human subject', Lond. med. Gaz.,

377
inquiries revealed that his patients had indeed been in contact with glandered horses.

Pursuing the matter, Elliotson then discovered that at London's Veterinary College as early as 1817, a student had accidentally inoculated himself through injury while dissecting the head of a horse dead of glanders. An ulcer developed at the site of the injury, later abscesses formed on other extremities, and the patient died. An ass was inoculated with material taken from an abscess on the arm of the deceased, and developed fatal glanders. In spite of this evidence, the head of the Veterinary College, the controversial Edward Coleman, and Benjamin Travers, F.R.S., surgeon at St. Thomas's, agreed that the late Mr. Turner had died of "constitutional irritation" and not of glanders, which they maintained was not transmissible to man. They did, however, admit that the "poison of glanders retains its properties after passing through the human system". Elliotson, of course, drew a different conclusion, and the Lancet commented acridly on Travers's interpretation of the results: "... he, with a singular degree of blindness, or prejudice, regarded them as cases of mere irritation, and not of specific disease; did not appear, when he saw the two patients in St. Thomas's Hospital, to have the least idea that they were labouring under a similar affection".

One can only regret that his self-destructive crusade for the lost cause of mesmerism prevented a man of Elliotson's ability from making further contributions to the practice and teaching of clinical medicine which he had until then pursued so successfully. While he became increasingly discredited and died a disappointed man, his paper on glanders became a point of reference for a number of related studies whose authors seized the opportunity Elliotson had so carelessly left behind. Together with contemporary studies on rabies and anthrax, this work was to lay the foundations for a comparative approach to the many problems associated with infectious diseases of animals and man; problems which were only then coming within the range of a new breed of experimentalists who were helped both by a revolution in microscopical techniques and by the opportunities afforded by the growing number of veterinary schools throughout Europe. The early prejudices concerning background upheld by Bourgelat and his contemporaries were at last forgotten, and young physicians frequently decided to obtain veterinary qualifications in a deliberate move to equip themselves with a broader background suitable for a comprehensively comparative approach to medical problems. Among the first in this new generation of doubly

1829, 4: 134–137. Brown was at the time surgeon to the 2nd Dragoon Guards and had observed the disease in a corporal while on duty at Caher Barracks. The corporal had had sole charge of a glandered horse until the onset of his illness.

Benjamin Travers, An inquiry concerning the disturbed state of the vital functions, usually denominated constitutional irritation, London, Longman, 1826, p. 350. Garrison, op. cit., note 29 above, says of Travers: "He was one of those who followed Broussais in regarding constitutional irritation as a cause of disease, especially in the nervous system", p. 481.

qualified investigators was K. H. Hertwig. Having qualified in medicine at Breslau, he travelled to Vienna, Munich, and Berlin in search of additional veterinary education, and eventually held a chair at Berlin’s veterinary college. Initially, the spur to his interest in veterinary matters may have been his preoccupation with rabies, on which he wrote extensively in the 1820s;¹⁰¹ but in 1834 he followed up Elliotson’s paper with a report of a number of transmissions of farcy and glanders to man. All the cases occurred in or around the Berlin veterinary school, the patients being either veterinary students or grooms employed in the stables.¹⁰² In spite of his well-documented interest in animal experimentation, Hertwig does not appear to have attempted to inoculate any animals with material from his patients.

Three years later, in the wards of the Charité Hospital in Paris, Pierre François Olive Rayer treated a groom who died of an acute disease which appeared to have much in common with glanders in the horse. The post-mortem findings also showed pathological changes similar to those associated with the disease in the equine species. Remembering Elliotson’s paper, and informed that the groom had slept in the stable with a glandered mare, Rayer introduced pustular matter from the patient into the nostrils of a sound horse which developed typical glanders. Not long afterwards, Rayer saw a second case of human glanders in the same ward, and then wrote a monograph on farcy and glanders in the human subject.¹⁰³ Three years later he compiled, with Gilbert Breschet, a comparative study of glanders in man, equines, and other mammals.¹⁰⁴ In 1840, Rayer began publishing a journal which unfortunately did not survive its first year, the Archives de Médecine comparée; among Rayer’s own contributions the volume included a report of a recent outbreak of foot-and-mouth disease,¹⁰⁵ and also a comparative study of pulmonary tuberculosis in animals and man.¹⁰⁶

Théodoridès has pointed out that since the age of twenty-five Rayer had been committed to the study of comparative pathology and that his “entire oeuvre is suffused with the concept of the universality of the sciences concerned with organized

¹⁰¹ See, for example, K. H. Hertwig, ‘Beiträge zur nähern Kenntnis der Wutkrankheit oder Tollheit der Hunde’, Hufeland’s Journal der praktischen Arzneykunde und Wundartzneykunst, 1828, 67: 3–173. This paper contains reports of attempts to transmit rabies by implantation of nervous tissue from rabid animals into healthy ones; the results were negative.
¹⁰⁶ P. Rayer, ‘Fragment d’une étude comparative de la phthisie pulmonaire chez l’homme et chez les animaux’, ibid., 189–219; here Rayer distinguished clearly between nodules of glandeous and of tubercular origin which had been confused by contemporary veterinarians who regarded glanders as an equine form of tuberculosis. Villemin, who was later in the century to make definitive contributions to the study of tuberculosis, was a pupil of Rayer.
beings". Lacking formal veterinary qualifications, Rayer frequently consulted veterinarians and personally dissected glandered horses. His attempt to publish a journal devoted to comparative pathology may have been short-lived; but his influence during the first years of the Société de Biologie and its journal should not be underestimated, and it was a fitting tribute when a chair of comparative medicine and experimental pathology was created for him in 1862. When Rayer died in 1867, the comparative pathology of infectious diseases was poised for an explosive development, and both in France and elsewhere the future of the subject was ensured through the works of a new generation of remarkable men whose backgrounds and activities reflected the complexity of the new discipline and the diversity of skills and knowledge required in order to gain insight into the agents and the disease processes associated with infectious diseases of animals and man. While Rayer’s erstwhile pupil, Davaine, continued the work on anthrax he had first begun under Rayer, glanders reverted to the attention of the veterinary schools, and that of Jean-Baptiste Auguste Chauveau in particular.

Although Bourgelat’s uncompromising attitude to the medical profession had disappeared, and Hertwig was only one of many medical men who were welcomed in the veterinary schools, Chauveau was everything Bourgelat could have hoped for. The son of a farrier, he could be expected to bring the right attitude of mind to the study of veterinary medicine when he entered the school at Alfort at the age of seventeen in 1844. But Chauveau had very much more to contribute. His vitality matched his intellectual vigour, and from the time he first set foot in the Alfort school until he died, replete with honours, the Grand Old Man of French comparative pathology, in Paris at the age of ninety in 1917, he enriched and developed his chosen subjects. At the age of fifty, he even provided a neat counterpoint to the many physicians who in the nineteenth century added veterinary qualifications to their medical ones. In 1969, Bost and Branco found, in the archives of the medical faculty of Paris, the thesis which earned Chauveau a doctorate in medicine in Paris in 1877.

Arloing has described how, in the climate created by the first successes of Pasteur and by the early work on anthrax, Chauveau, indignant at the negative attitudes surrounding him at Lyons, was stimulated by a visit in the company of Bouley to the

108 For this purpose he journeyed across Paris to the slaughterhouses at Monfauçon; two of his students later wrote dissertations on aspects of glanders, see Raoul Caveribert, ‘La vie et l’oeuvre de Rayer (1793–1867)’, thesis, Paris, 1931.
109 Upon graduation from Alfort, Chauveau went straight into the anatomy department at Lyons in 1848. Over the years his interests included comparative anatomy, the physiology of the heart, thermodynamics of muscle functions, and a number of other problems in physiology and pathology.
114 At this time, reactionary elements both within the veterinary school and the medical faculty at Lyons favoured the theory of spontaneous generation of disease agents. F. Arloing, Inauguration du monument J.-B.-A. Chauveau à l’école nationale vétérinaire de Lyon, Toulouse, J. Bonnet, 1927, p. 32.
England of the great cattle plague of 1865, which offered much irrefutable evidence concerning the pathways of epizootic contagion. Arloing wrote: "At his return, the physiologist had become pathologist and, above all, a student of pathogenesis."115 In reality, Chauveau's conversion to comparative pathology had begun two years earlier, when the Académie de Médecine received Bouley's report on what he called horse-pox.116 Bouley's paper sparked off an immediate, heated, and prolonged discussion concerning all aspects of the respective origins and identities of variola and vaccinia. Later in the same year, 1863, the Medical Science Society at Lyons set up a commission under the chairmanship of Chauveau with the aim of establishing experimentally the relationship between variola and vaccinia. The commission reported to the Académie de Médecine in 1865. It had then concluded unequivocally that, although variola in man could be transmitted to horses and cattle as easily as vaccinia, the manifestations produced by the two kinds of contagion were essentially different.117

From this time onwards, Chauveau was totally committed to the study of comparative pathology of infectious diseases, with particular emphasis on the question of the nature of the contagious principles. His point of departure was, naturally enough, vaccinia and variola; being a veterinarian working within a busy veterinary school, it seemed logical to draw on the contagion of glanders (and of sheep-pox) for comparison. His series of diffusion experiments, published in 1868,118 showed conclusively that the active principles of vaccinia and variola as well as of glanders were particulate and not dissolved in the serum. The same technique was used, simultaneously and independently, in experiments designed to examine the nature of the infection in rinderpest.119 Soon afterwards were developed the first bacteria-proof filters, and the laborious procedures of diffusion were replaced by more easily reproducible methods of filtration which were eventually to lend themselves to standardization.120 Directly and indirectly, the methods of diffusion and filtration proved to be valuable aids in the search for specific disease agents which was finally successful from 1880 onwards, when Robert Koch had perfected his methods of pure culture and staining techniques, and formulated the eponymous postulates. The bacillus of glanders was isolated by

115 Ibid.
117 A. Chauveau, 'Recherches experimentales de la Société des sciences médicales de Lyon sur les relations qui existent entre la variole et la vaccine', ibid., 1865, 30: 808–816.
Loeffler and Schütz in 1882, the same year that Robert Koch isolated the tubercle bacillus in the same institute in Berlin; and also by Bouchard and his associates in France.

It is a measure of the importance of glanders a hundred years ago that its bacillus was isolated among the very first in the long and rapid succession of disease agents identified during the last two decades of the nineteenth century. Not long afterwards, Koch discovered tuberculin; and the hunt was on for a similar substance in the case of glanders. It was prepared, independently, by Kalning and by Helmann in 1891 in what were then universities within Imperial Russia, at Dorpat and at St. Petersburg, respectively. Unhappily, they both died of glanders during their further researches, within a year of the initial discovery, and they were not alone in their plight. Hunting wrote in 1908: “During the years 1891–92, no less than seven European scientists working at glanders lost their lives through accidental infection.”

The preparation of mallein may be seen as a corollary of Koch’s development of tuberculin, and was doubtless directly inspired by it; there are references to this effect in the contemporary literature. Thus Schneidemühl wrote of mallein in 1891: “Also in the early diagnosis of a second disease which is occasionally even more dangerous to man and animals than tuberculosis, i.e. glanders of the horse, we have made substantial advances using a similar method.” Like tuberculin, mallein was initially regarded as a much-needed prophylactic; like tuberculin, it confounded the early high hopes, but in its turn it formed the basis of a valuable diagnostic test which made eventual control of the disease possible. The study of mallein was taken up in many European countries. The brothers Babes – Victor the pathologist and his less well-known brother Aurel, one of the early biochemists who had trained in Bunsen’s laboratories in Heidelberg – worked in Bucharest’s Institute of Pathology and Bacteriology. They compared extracts of glanders material with tuberculin, and unlike many of their contemporaries survived their work on glanders. In 1892,

115 Bulloch has pointed out that until Koch had perfected the pure culture method by 1881, the existence of bacteriological agents had been “probable or certain” only for anthrax and relapsing fever. After 1881 there was a steady stream of isolations, see Bulloch, op. cit., note 113 above, p. 237.
118 Kh. Helmann, ‘Diagnoz sapa posredstvom podkozhavo vpriskivanja vitiazkhki sapnikh batsil’ [Diagnosis of glanders by means of subcutaneous injections of extract of glanders bacilli], Vestnik Obshhsoi Vet., 1891, 3: 67–70; quoted as above.
120 Schneidemühl, op. cit., note 9 above, p. 1261.
122 Victor Babes, 1854–1926; Aurel Babes, 1853–1925.
Aurel Babes published promising results with a substance he called "morvine", to distinguish it from the slightly different mallein of Helmann, and reported it to be an effective vaccine, and even in an exceptional case to have cured a glandered horse. These results were never confirmed; but in France, as in England (cf. note 130), interest in mallein as a diagnostic tool continued to grow, and in Paris it was soon manufactured commercially at the Institut Pasteur.

The parallel drawn between tuberculin and mallein reflects the way the two diseases were at the forefront of the rapidly developing comparative pathology of infectious diseases at the end of the nineteenth century; it is also an indication of the magnitude of the problem of glanders at this time. In the Harben Lectures for 1904, M'Fadyean quoted Board of Agriculture statistics for the last quarter of the nineteenth century which illustrated the fluctuations in the continued presence of the infection among horses in Great Britain. In 1874, reported cases numbered a relative low of 636. Five years later, it had risen to 1,367, increasing steadily during the following twelve months to 2,110 in 1880. After another low of 946 in 1885, the incidence rose to the high total of 3,001 reported cases in 1892, just as the mallein test was being perfected and brought into use; but although subsequent years saw another decrease it was not to last, and M'Fadyean noted that in 1903 the annual total had leaped to 2,499 cases, and at the time he was speaking the incidence was still rising.

M'Fadyean's account is lucid and dispassionate and firmly concludes that the only way to eradicate the disease in man is by stamping it out among the equine species. His statistics clearly showed that although in previous centuries glanders was regarded as the scourge of armies and cavalry regiments in times of war, it had been a peacetime disease of far greater prevalence than might have been, or indeed had been, suspected before the mallein test provided the means of examining the extent of infection among apparently healthy horses in infected studs and stables. Moreover, M'Fadyean pointed out that the vast majority of these peacetime cases, nearly ninety per cent of all reported cases, were found in the area of Metropolitan London. On the other hand, the movement of animals whose infection became apparent only after arrival at their destination remained a problem both during the Boer War and other campaigns. Hunting wrote in 1908: "Our minor wars in Egypt, Abyssinia and Afghanistan were all attended by glanders to an extent which interfered with efficiency. The United States are said to have introduced glanders into Mexico and Cuba with their army horses. The South African War, where 240,000 horses perished, was not only accompanied by the prevalence of glanders, but left the whole country infected. The disease was carried to South Africa from home, from America and Australia, and possibly from Europe, by the remounts."
In Britain, the first Glanders and Farcy Order of the Board of Agriculture came into effect in 1894. In spite of its directions for slaughter and isolation, compensation, and restrictions on movement of suspected animals,\(^{137}\) and in spite of the pleas of M'Fadyean and of Hunting, the problem of glanders stillloomed large when World War I broke out in 1914. The previous year the *Journal of comparative Pathology and Therapeutics* which M'Fadyean had founded in 1888 contained a harrowing account of human glanders by one of the few patients who survived an attack.\(^{138}\) At the onset of his illness, S. H. Gaiger was serving as a veterinarian in the Indian Civil Veterinary Department at the Punjab Veterinary College in Lahore. He appeared to have been infected while making diagnostic cultures from an abscess on the skin of an Arab pony which was not at first suspected of being glandered. After more than two years and forty-five operations, including the amputation of his left arm, Gaiger considered himself to have fully recovered; but in 1916 he was able to write another sober and dispassionate instalment of the gruesome story, when, following an attack of tertian malaria, he suffered a relapse, proving that his recovery had been only apparent. However, by January 1916, he appeared to have finally overcome the infection and, undaunted, joined an expedition investigating a serious scourge of sheep in the Peruvian Andes. From 1926 he held a chair of animal pathology at Liverpool University, but died at the early age of fifty in 1934.\(^{139}\)

By the time Gaiger, the survivor, moved to Liverpool, glanders had disappeared from Britain and northern Europe; by 1939 it had been eradicated in most parts of western Europe, the U.S.A., and Canada. It is still present in parts of eastern Europe, and in Asia, Africa, and the Middle East, but with reduced frequency.\(^{140}\) Unlike rabies, glanders is not carried by any species of wild animals; like smallpox, it should therefore lend itself to eventual complete eradication. In a world beset with many more acute problems it would be over-optimistic to expect an early solution to the particular one of the presence of glanders. Nevertheless, given the mallein test and steady improvement in veterinary services in the less developed countries, glanders may yet one day disappear as undramatically and unheralded as it has existed for the better part of our history.

SUMMARY

Glanders is a disease primarily of the equine species which is occasionally transmitted to man. In past ages when man was utterly dependent on the horse both in times of war and of peace, the ravages of glanders represented a very considerable problem especially in mounted regiments, although its transmissibility to man was observed only in the nineteenth century. The literature on glanders is therefore extensive and reflects the development of an independent science of veterinary medicine and later, during the nineteenth century, the emergence of a comparative pathology of infectious diseases.

\(^{137}\) M’Fadyean gives details of the order (it was revised in 1907), op. cit., note I above, pp. 128–129.

