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§1. Introduction

The class of normal functionals

[ fre o w)By Brdndx,, fermy,
R"L
(pla v 7pn)€(N U {O})n B

is, as is well known, adapted to the domain of Lévy’s Laplacian and plays
important roles in the works by P. Lévy and T. Hida (cf. [1], [2] and [8]),
where B, denotes one-dimensional parameter white noise and :Bg;- . -Bg;:
denotes the renormalization of B;’;- . ~B§,’:.

We are interested in a generalization of this class to that of gener-
alized functionals of two-dimensional parameter white noise {W(¢, x);

(t, x) € R*}, which is a generalized stochastic process with the characteristic
functional

C) = E(exp {i(W, ) = exp{— -;—115112}, Se S(RY.

As in the case [1], we are able to introduce, in Section 2, a space
(L= of generalized functionals and the #-transform on (L) for every

a > 0. Then the calculus in terms of the white noise W(t, x) will quickly
be discussed.

The main purpose of this paper is to investigate how Lévy’s Laplacian
appears in It6’s formula for generalized Brownian functionals depending
on t. To this end we first discuss a class of generalized Brownian func-
tionals, often without any renormalization, having interest in its own
right. For instance, a monomial B,(f)’ is sometimes more significant

rather than the renormalized quantity :B,()?: = :Ul W(r, x)dr}p: which
0

is living in (L*)®. We are therefore led to construct a new space [L*]¢®,
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in which B,(t)? lives, in Section 3. The #-transform and the W(t, x)-

differentiation can be introduced on [L*]® for every a« > 0 in a similar

manner to those in [6]. The symbol 1/dx which has often been used by

H.H. Kuo (cf. [7]) is now understood as a shift operator acting on [L*]¢.
In Section 4, we define B, (+)”---B, (+) by

B, ()" B, (+) = H B, (+)"- B, (+):, Bz(l’lz_”ll(.); B, ()"-*B, ()7 - .
B, (+)m: 4+ - + MQTL)(-):BM(-)”“ . .an_l(.)pn-lB“(.)pH:]] ,

forany ne N, (p, -+, p,) €N U {0)", and x,, - - -, x, € R, and we introduce
a class 2, of generalized functionals as follows:

2, = LS{ f - j (- ) )Bo(s) - - By (+)edix, - - -dix, s fe L(RY),
R”

(ply vpr)e(NU{O})na n:0’1’23 }a

where LS means the linear span. Then it holds that 2, is contained in
([0, c0) — [L*]"*) for any a« > 5/6 and that for ¢(B(+)) in 2,, the W(, x)-
derivative 8, ,4(B(f)) is independent of the choice of s in an open interval
(0, £). With these property, It6’s formula for elements in 2, is proved
in Theorem:

If ¢(B(-)) is in 2,, then

@D §BO) — 4B = [ [0.8Bu)dBwds + 3 [ LB

holds for 0 < s < ¢

Finally, we should like to note that the Lévy’s Laplacian 4, is in-
volved in the It6’s formula only for generalized Brownian functionals and
that 4,, in fact, annihilates ordinary Brownian functionals.

§2. Preliminaries

1°) Let S(R®) be the Schwartz space on R* and S*(R’) be the dual space
of S(R®). Let p be the measure of white noise introduced on S*(R*) by
the characteristic functional

C@=exp{— ZIEl),  seS@),

where || -|| denotes the L(R*)-norm and set (L*) = L*(S*(R%), p). The Hilbert
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space (L*) admits the Wiener-Ité6 decomposition
=Y @ #,,
n=0
where 7, is the space of n-ple Wiener integrals, i.e.

%n = {fR; fF(tl’ Xy ov vy tm xn)W(tn xl)' . W(tm xn)dtldxl * dtndxn 5
FeL(®))},
the space IAf((Rz)”) being the totality of symmetric L¥(R*")-functions.

The &-transform of a Brownian functional ¢ in (L?) is defined by

OO =[  HW+duW),  geSE).

It can be easily checked that

y%ﬂn - {j Rznj F(tU Xy 0y tn’ xn)f(tu xx)' : 'f(tm xn)dtidxx' : 'dtndxn;
Fel ((RZ)")} .

We denote the space &¥#, by F,.
2°) We then come to a background in order to introduce a class of

normal functionals of R®-parameter. Take a complete orthonormal system
(c.om.s.) in LAR?) formed by

Eum =608, &w=©@jWx)""-Hw e j k=012 .-,

where H, denotes the Hermite polynomial of degree j. With this c.o.n.s.,
we introduce a Hilbertian norm ||-|,.. by

.=, 5 {

skgytresgnska=0

(1@ + D@k + D} S @@ i)'
fel'(R)Y), a>0,

where (-, ) denotes the L*((R®)")-inner product. For « >0 we form
Hilbert spaces

SR = {f € L{(R)); | fllasw < o0,

.§,,((R2)") = {fe S,((R)™); f is symmetric}, « >0.
Let S_((R)™ be the dual space of S((R)™) for « >0. The space F{ of
U-functionals is introduced in the same manner as in [2],
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Fo = ([ [ Pt o oty 2080 %) 8, w)dtd, - de,dx,
FeS(®M), a>0.

With the help of the #-transform, we can define a subspace #* by
HD = FLF@
For U, in F{¥ with kernel F,, i = 1,2, we have
, Uz)lv‘;,“) = n!(F,, Fs,«rom -

This is rephrased in the form

(¢1, ¢2).#§ba) = (‘Spﬂﬁl’ ey‘¢2)F§L‘"’ ’ ¢17 ¢2 € %:za) .

Let o, « > 0, be the dual space of #, and define the spaces (L)@
=>r @ and (L) = 52 @ # to obtain a Gel'fand triple:

LY < (@) < ().
The &-transform can be extended to the space (L) to have
SH” = [(F, §%; F e S_ (B},

which is denoted by F{®.
3°) The W(t, x)-derivative 9, .6 = d¢/d0W(t, x) of a generalized Brownian
functional ¢ is defined by

8
0§(t, x)

where (6/05(t, x))#$ denotes the functional derivative of #¢. If the second
variation of the &-transform #¢ of ¢ in (L))* is given by a following

0,00 =S L, (t, x) e R*,

form

FF ), ) = j j ULGE; t, O(t, 2)C(E, 0)didx

R2

+ j j j j UY(E; t, %, 8, Y)plt, (s, y)dtdadsdy, & 14, L e S(RY,
R*

then the Lévy’s Laplacian 4; is defined by

4,4 = y—l{” U, x)dtdx} (see [2], [7] and [8]).
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§3. The spaces of generalized functionals

In this section, we construct the various spaces of generalized func-
tionals, on which the W(¢, x)-differentiation, the operator 1/dx and other
related notations are introduced.

We introduce the spaces (L~“)("> and F©® for every « € R:

@y
= {¢: (¢1, ¢2’ ot 'a¢m . )y ¢je(L2)(a),j = 1, 2; e,y ey, ]Z:;HgﬁJH%L?)‘“’<OO}:
F‘(a)
= {f:(fl’f‘ly "'7fn’ "');fjeF(a),j= 17 2’ s,y ey, Z::lnfjﬂi‘m’ <OO} )
(a) — = (a)
F —;O(EFn .

The spaces (L)@ and F@ are Hilbert spaces with the inner products

(¢’ ‘1")(52)‘4“ == gl(?s: 1/’j)(L2)‘¢”’ ¢ = (¢1, ¢29 i ')7 \!f = (Wn \,’2, M ') € (L~2)<a)

and

(f, g)ﬁ(”) = jZ:I(fj, gj)l"“"” f = (fh f27 ot ')7 g = (gl, gZy - ) € F‘(a)
respectively. We define the spaces (L%){ and F{ for every « € R as follows:
LYY =1g = by ¢ -+ )e@); g = g =0},
FQ ={f=(ufo - )eF?; fi=f=0}.
The spaces (L) and F¢ are closed subspaces of (L)@ and F® respec-
tively. Set [L*]® = (L)@/(L){ and set [F]“ = F@/F®. Both [L*]*“ and
[F] are Hilbert spaces with the norms
6 4+ (LA lezmeo = inf (||| zow; ved + TN}, pe @@,
and
W+ F&\ermo = inf{llgllsm ; gef + FY},  feF©@,

respectively. The spaces [L*]“® and [L*]""® are mutually dual by the
canonical bilinear form

<@ + (Ez)gk_u), ¢ + (EZ);‘:)>[[L2]](—a)’[[L‘ZJ](a) = <@1) ¢l> + <@Z? ¢2> ’
@ = (@1’ @Z’ ° ') € (LZ)(—a) ) 9:6 = (¢19 ¢2) ° ') € (EZ)(a) )
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where (-, -) denotes the canonical bilinear form connecting (L) and
IH™, Any element ¢ + (LY@, with ¢ = (¢, gy =+ +) e (IHw@, may be re-
presented as [4,, ¢,]. For any « > 0, the spaces [L*]"® and [L*]* are
viewed as the space of generalized functionals and the space of testing
functionals respectively.

The F-transform on [L*]¢®, & > 0, is given by

(3.1) Ll ] = Lo 1, [0 p] € [L].

The &-transform gives an isomorphism [L*]¢® ~ [F]“®. The W(, x)-
differentiation 9,,, = 9/6W(t, x) in [L*]""®, « > 0, is naturally defined by

(32) at,x[ﬁbh ¢2:ﬂ = [[at,z¢S) az,z¢2]]

for every differentiable element [¢,, ¢,] in [L*]*"®. We now introduce the
shift 1/dx on [L*]¢"* by the formula

(3.3) ;%;W" 61 =10, 61, [ddle[L].

For ¢(B(t)) = [6.(B(), ¢.B(®)] in [L*]= for some « > 0, we understand
the integral rgé(B(u))du as

(3.4) f :¢(B(u))du - [U:gb,(B(u))du, I:qSZ(B(u))duH :

Similarly, we can define the stochastic integral fg&(B(u))dBI(u) as

@5 | pBu)dB.w) = ||[ 6Bw)dB.w), | 4BHE.W) -

Concerning the first component of (3.5), we can see a similarity to the
stochastic integral introduced in [5].

§4. Ité’s formula and Lévy’s Laplacian

We are now in a position to define the domain of the Lévy’s Laplacian.

The product B,(+)* --- B, (+)’*, which has only formal significance, will
be understood to be

[1Buert - By, 55 CNCY: [T BolIBooy

where Cy(p;) =pp; — 1/2,j=1,2, ---,n and : B, (+)"*-- B, (+)": denotes
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the renormalization of B, (:)*-.-B,(+)”». Then an integral

J.R.n.jf(xb ceo x)Bo () - - B (+)dx, - - -dx,

is given by
([ - w0 By Bo (i,
2 CIO o [ o505 TL Ba) By dae -, ||

1svsn

PEV)

Set
D0 = L8{[ o[, -, w)B(y B (rdi - wd; fe LR,

(pla ’pn)e(NU {O})n’ n=07 192’ '}

LEmMa 1. We have 2, C ([0, o0) — [L*]"®) for any « > 5/6.
Proof. Take

(.1) S(B(+)) = _[R jf(xl’ e, x)Bo( ) B ()da,- - -dx,
fel'\R), p,+ -+ +p,=N.

It is sufficient to prove ¢(B(+)) € ([0, oo) — [L*]*"®) for any a« > 5/6. We
will first prove ¢(B(t)) e [L*]¢® for any « >5/6 and t > 0. Set

F=J“‘If(x1, ° x)I[0£]® éagpydxl"'dxn
R™ y=1

and set

G = Z Cl(pj)tj' n ff(xl’ 0y xn)I%fé\i_2)® ® 5%Pv®5%(?i’2)dxl_ : 'dxn
7=1 R™ 15v=En
vEJ

Then what we should prove can be reduced to show that two series

@y 5 1@+ Dk + D) (R © @8 )

J1kt,ee e i N EN=0

and

oo N-2 —
@y 5 T @+ Dek+ D)
Jiskiseeey N -2, kN —2=0

\
Zsrm m® ®€<J\_ ky—2) /

x(@ )

(N—2)’
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converge for any « > 5/6, where ¢ and ¢ extend over the set of all possible
permutations. It is easily checked that

(44) <F’ %Zg: Sﬂ(jl)kl) ® @ {:0<jy,k1v)>
< YN I amllE 0l - NE RS - - 16l
and
/ 1 L ®E., y
(45) \G> m Z Sf(jlakl> ® @ EY(./N—kaN—Z)>

< renl 35 CpICp))
XN ammll €5l - HE sl Bl Enlle e - [l 8eyull s

where || ||ign is the L'(R")-norm and ||-||. is the maximum norm. By E.
Hille and R.S. Phillips [3], p 571, (21.3.3), it holds that

(4.6) l§,lE=0G"), Jj>0.

From (4.4), (4.5) and (4.6), follows the convergence of two series (4.2) and (4.3)
for any « > 5/6. Next, we prove the continuity of ¢(B(+)). Set ¢(B(+)) =
[8:(B((+)), ¢o(B(-)]. Then [|¢(BE)|[rron - = [|$:(BEM[izey-o» + | g BE [tz c-eo-
It is clear that, for any a« >5/6 and 0 < s < ¢, ||g(B(8) — $(BE)|[trey-w
= NI G keimiy=o U102 (), + DK, + 1)} *(t — s) {polynomial in (¢ — s)}

XMWl &l - UE Bl - -1[&ylf%- Similar evaluation can be ob-
tained for ¢,(B(f)) — ¢(B(s)). Thus follows the continuity of @(B(+)).
Q.E.D.

Lemma 2. For any ¢(B(+)) in 2., the W(, x)-derivative 0, 4(B(t))
exists and is independent of the choice of s in the interval (0, t).

Proof. It is sufficient to prove this Lemma for a functional given by
(4.1). Set 5, x) = j &(r, X)dr for £e S(R). Then by Lemma 1, the -
0
transform of #(B(t)) is given by

FBBONE = || [ [fen, - 2 [1 20, x)d- - dx,

Gt [ e Fm - x) TS 5wyt dx, ||, e S@).
e n 1=v=n

Hence,
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5 ( ) FLHBENE)

= H:.lejg(t’ x)pj_lj‘lé . If(xl’ oy Koy Xy Xjagy 00, xn)
= n-1
X n E(ta xv)ppdxl' : 'dxj—ldx]+1' : 'dxn ’

1gv=n
v#E]

kZI Cl(pk)tlz; ij(t’ x)pj_lflé e Jf(xx, ety Xyogy Xy Xjuqy ey xn)
= <j<n n—1
12k

X 11 8@, x)»E(, x ) dx, - - -dx;_dx,,,- - -dx,

1=v<n
PEXIN 4

+ 3 O ps = D [ [ ey 2wy o 1)

PHECELN dxj_ldx“,-udxn]], ce S(RY.

1

© A,
g b

By the definition of 3, .4(B(f)) and by the above form, we can see that
9,,.0(B(?)) is independent of the choice of s in (0, ). Q.E.D.

By Lemma 2, we may denote o, , simply by 4., when it acts on 2,.

TueoreEM. If ¢(B(-)) is in @, then

@D §BO) — 4B6) = [ [ .Bu)aB.wdr + L 4,5Blu)du
holds for 0 < s < &

Proof. 1t is suffices for us to prove (4.7) for an element ¢(B(t)) of the
form (4.1). The &-transform of 3,4(B(%) is given in the proof of Lemma 2.

Hence we can easily compute the #-transform of I r 9,6 (B(w)dB,(u)dx
RJs
by the definition of the stochastic integral. The “#-transform of

dif 4,¢(B(w)du is given by
el
7|2 [ asBydu]© = [0 233 @ [ [, -
% r 1 By S, xpr duds, ~dxnﬂ . zeS(RY.

By comparing Z[s(B@)I(§) — S B(s)I(E) with

7|[ [ o.oBunaB.adx|@ + | 1 [ dsBudu|e,

https://doi.org/10.1017/50027763000002658 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000002658

76 KIMIAKI SAITQ
we obtain (4.7). Q.E.D.
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