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Trace element-gene interactions with particular reference to zinc 
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Review of situations in which trace elements are known to be involved in the functional 
expression of genes suggested that in most instances the element in question was zinc. 
However, transcriptional regulation by trace elements might be most likely for those 
proteins which are directly involved in uptake and storage of the elements and must, 
therefore, be responsive to variations in their supply. The regulation of certain of these 
proteins will, therefore, be considered before the wider involvement of Zn in gene 
regulation is examined. 

TRANSPORT AND STORAGE PROTEINS 

Two proteins are primarily involved in regulating the intracellular concentration of iron, 
ferritin and the receptor (TfR) for the Fe-transport protein transferrin. Changes in Fe 
supply produce a coordinated response in TfR and ferritin but this is achieved 
translationally rather than by controlling gene expression (Klausner & Harford, 1989). 
Their mRNA contain Fe-responsive elements (IRE) that form stem-loop structures to 
which binds an Fe-dependent protein (IRE-BP). This has high affinity for IRE when Fe 
is scarce but low affinity when it is abundant. In ferritin mRNA, an IRE is located in the 
5' untranslated region and binding of IRE-BP inhibits translation of ferritin mRNA. In 
TfR mRNA, the IRE are located in the 3' untranslated region and binding of IRE-BP 
stabilizes the mRNA allowing more efficient production of TfR. Thus, at low Fe 
abundance, little ferritin but relatively large quantities of TfR are produced. If Fe supply 
is abundant, these effects are reversed as the affinity of IRE-BP for IRE is decreased and 
this stimulates ferritin production while reducing the stability of Tf R mRNA. 

Caeruloplasmin has been suggested as a transport protein for copper (Harris & 
Stevens, 1985) and there are indications that its mRNA concentration is regulated by 
dietary Cu content (Evans et al. 1970; Danks & Mercer, 1988) but there is little definite 
evidence as yet regarding either the mechanism or extent of such regulation. 

Selenium incorporation into proteins is determined genetically by a unique use of the 
codon UGA (Chambers & Harrison, 1987). Normally treated as a stop codon during 
mRNA translation, it is used in selenoproteins to code for selenocysteine. The 
incorporation of this amino acid is mediated by an unusual tRNA initially charged with a 
serine residue which is then converted to selenocysteine while still attached to the tRNA 
(Leinfelder et at. 1990). The mechanism which distinguishes the two interpretations of 
UGA remains unknown but is assumed to depend on the local environment of the codon 
within its mRNA. The most extensively studied selenoprotein in animals is glutathione 
peroxidase (EC 1.11.1.9; GSHPx) and its activity can be influenced by dietary Se supply. 
Two reports have indicated that Se deficiency resulted in a reduction in GSHPx mRNA 
(Saedi et al. 1988; Toyoda et al. 1989) but a third suggested that it was elevated (Li et al. 
1990). Clearly, further work is required to resolve these apparent contradictions. 

Metallothionein is a small cysteine-rich protein which binds many divalent cations and 
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probably acts as a storage protein for Zn. Zn is a potent inducer of the protein and its 
promoter contains several closely-related nucleotide sequences, the metal-responsive 
elements (MRE), which confer sensitivity to metals and are capable of inducing similar 
sensitivity when introduced into promoters of other unrelated genes (Stuart et al. 1984). 
The activity of MRE is largely independent of their position within the promoter and 
they can even activate genes from a 3’ location. Gel-retardation assays and protein 
blotting with nucleotides containing a concensus sequence for the MRE, demonstrated a 
nuclear protein(s) which binds to the MRE (Seguin & Prevost, 1988; Westin & 
Schaffner, 1988~). Competition with oligonucleotides or plasmids containing MRE 
indicated that the protein acts as a metal-dependent activator of metallothionein 
transcription (Seguin et al. 1984; Garg et al. 1989). The most active of the mouse MRE 
exhibits a close homology between its 3‘ zone and the consensus sequence required for 
promoter binding of Spl, a transcription factor known to activate many mammalian 
genes. While further competition experiments seem to have excluded the possibility that 
the MRE-binding protein is Spl (Seguin & Prevost, 1988; Westin & Schaffner, 1988a), 
the similarities are intriguing and will be considered further later. 

‘ZN-FINGER’ PROTEINS 

In addition to regulating metallothionein induction, Zn is also involved in the control of 
many other genes through its essential role in the so-called ‘Zn-finger’ proteins. The first 
of these to be recognized was a transcription factor TFIIIA necessary for the synthesis of 
5s rRNA by RNA polymerase I11 (EC 2.7.7.6) (Hanas et al. 1983; Klug & Rhodes, 
1987). This was found to contain nine tandem imperfect repeats of a motif containing 
pairs of cysteine and histidine residues separated by twelve amino acids. These repeats 
contain one Zn tetrahedrally coordinated by the cysteine and histidine residues and the 
intervening residues were thought to form loops or finger-like structures which interacted 
with the 5s rRNA gene. Since the original description of this structure, numerous other 
proteins have been suggested to contain Zn fingers, often entirely on the basis of their 
deduced primary amino acid sequence, until the numbers of such proteins probably now 
exceed the number of known Zn enzymes. However, increasing information regarding 
these proteins has led to their provisional re-classification into three separate groups 
(Evans & Hollenberg, 1988). 

The first, exemplified by TFIIIA, have the characteristic two cysteines and two 
histidines per ‘finger’ (C2H2) and more than two fingers per molecule. All appear to be 
regulators of gene expression and to interact with DNA via the ‘Zn-finger’ region. The 
precise structure adopted by these fingers and their mode of attachment to DNA is still 
subject to debate (Berg, 1988, 1990; Gibson et al. 1988). However, it seems likely that 
the ‘fingers’ contain both P-sheet and helical zones and interact with the major groove of 
DNA. Although TFIIIA functions as a transcription factor for RNA polymerase 111, 
most of these proteins bind to promoters for RNA polymerase I1 (EC 2.7.7.6) and one of 
the most extensively studied of these, Spl, is involved in the regulation of a wide range of 
genes. Spl binds to a ‘GC box’ in their promoters and has three contiguous finger 
sequences which require Zn and determine the specificity of attachment of Spl to DNA 
(Kadonaga et al. 1987; Westin & Schaffner, 19886). However, transcriptional activation 
by Spl appears to be mediated by regions of the protein outwith the ‘Zn-finger’ zone. 
Although the mechanism by which binding of Spl promotes the transcription of respon- 
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sive genes is unknown, it does not enhance binding of transcription factor IID to the 
TATA box (Schmidt et al. 1989). 

The second group of ‘finger’ proteins comprise a range of receptors for thyroxine and 
many steroid hormones. Superficially similar to the C2H2 proteins, their functionality is 
relatively independent of the position of their receptor sequence within its promoter, 
they always have only two fingers in each of which Zn is tetrahedrally coordinated to four 
cysteines (C4) and all contain an extra cysteine at the C-terminal finger (Sunderman & 
Barber, 1988). Furthermore, the number of amino acids separating the central cysteines 
of each finger is constant within the group but is not the same for the two fingers. The 
N-terminal ‘loop’ contains thirteen and the other finger nine or twelve depending on 
which pair of the terminal group of three cysteines is actually involved in the chelation of 
Zn. These proteins appear to have three functional zones. Chimeric proteins constructed 
by molecular biological techniques clearly demonstrated that the specificity for hormone 
recognition depends on a hormone binding site in the C-terminal region of the proteins. 
However, gene activation or repression seems to be mediated by the N-terminal domain 
while the central region contains the ‘Zn fingers’ required for binding to the promoter. 
Mutational analysis of the ‘Zn-finger’ regions has led to a number of conclusions 
(Umesono & Evans, 1989). It appears that the amino acids in the ‘loops’ between the 
central cysteines of each finger are required for binding to DNA but do not determine 
the specificity of this binding since they can be interchanged between different hormone 
receptors without alteration to the sequences recognized. These sequences, hormone- 
responsive elements (HRE) , are generally palindromes consisting of two hexa- 
nucleotides (Fig. 1). The hormonal specificity of the HRE is partly determined by their 
hexanucleotide sequences but also depends on their separation. Thus, the oestrogen 
(ERE)- and thyroid (TRE)-receptor palindromes are identical but in the ERE the two 
halves are separated by three nucleotides whereas in the TRE they are contiguous. 
Further mutational analysis has indicated that the specificity of hormone-receptor 
binding depends on the two amino acids separating the pair of Zn-binding cysteines on 
the C-terminal side of the first ‘finger’ and on the next two or three amino acids 
immediately adjacent to the final cysteine of this ‘finger’. These amino acids seem to 
determine palindrome sequence recognition while a second group of amino acids 
situated between the N-terminal pair of cysteines in the second ‘finger’ may be involved 
in determining specificity associated with the distance between the two halves of the 
palindrome. 

The final group are all transcription factors from fungi and contain a sequence of 
twenty-seven amino acids with six cysteines in highly conserved locations (Tao & 
Coleman, 1990). These proteins require Zn for DNA binding and were initially thought 
to be ‘Zn-finger’ proteins but recent evidence indicates that the conserved structures 
contain two Zn ions in a cluster of six cysteines two of which are coordinated with both 
Zn ions. These proteins are, thus, more reminiscent of the structure of metallothionein 
than that of the ‘Zn-finger’ proteins. 

ZN AND G E N E  EXPRESSION 

Many Zn enzymes have been investigated in the past but so far no clear relationship has 
emerged between their activity and onset of growth failure associated with dietary Zn 
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Fig. 1. Amino acid sequence of the ‘zinc fingers’ and nucleotide sequence of the hormone-responsive 
elements for (a) glucocorticoid (GRE), (b) oestrogen (ERE), and (c) thyroid (TRE) hormones. Amino acids 
involved in Zn binding or in determining hormonal specificity are shown in capital letters. In the nucleotide 
sequences, n indicates a non-conserved base. Based on Umesono & Evans (1989). 

deficiency. Instead, the studies which will be reviewed suggest that Zn may be required 
for alterations in the expression of certain genes (Chesters, 1978). 

Both in rats and in cell cultures in which Zn availability has been restricted by addition 
of a chelator, DNA synthesis is more sensitive to lack of Zn than is protein synthesis 
(Williams & Chesters, 1970; Chesters, 1978). Early investigations demonstrated that 
reduced thymidine incorporation caused by Zn deficiency was associated with lower 
thymidine kinase (EC 2.7.1.21) activity in cultures (Lieberman et al. 1963), in rat fetuses 
(Duncan & Hurley, 1978), and in wound-healing experiments (Prasad, 1982). However, 
there appears to be no evidence that thymidine kinase contains Zn; in both the fetus 
and in culture, DNA polymerase activity was also reduced to a comparable extent 
(Lieberman et al. 1963; Duncan & Hurley, 1978) and the reduction in these enzyme 
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Table 1. Effect of zinc deficiency on the Zn content and growth characteristics of the buccal 
rnucosa of the rabbit (based on Chen (1986)) 

~ 

Zn status . . . Zn-deficient Zn-adequate 

Zn concentration (pg/g protein) 167 265 
Mitotic index 1.31 0.89 
Cell cycle time (h) 21.0 31.7 
GI transit time (h) 16.8 26.8 

activities was proportional to the reduction in the number of cells labelled with thymidine 
(Fujioka & Lieberman, 1964). Taken together, these findings point to a failure of 
individual cells to induce the block of enzymes required for DNA synthesis rather than a 
generalized reduction in activity of enzymes requiring Zn for their catalytic activity or 
structural integrity. Recent studies of 3T3 cells stimulated from quiescence have 
indicated that for normal initiation of DNA synthesis, Zn is required for only a short 
period immediately preceding the induction of the enzymes needed for DNA synthesis 
(Chesters et al. 1989) and that the normal rise in thymidine kinase mRNA was 
substantially and specifically reduced in the absence of adequate Zn (J. K. Chesters and 
L. Petrie, unpublished results). These observations reinforce the suggestion that lack of 
Zn inhibits the induction of the enzymes required for DNA synthesis. 

Although in most tissues and in culture, DNA synthesis and cell division appear to be 
inhibited by Zn deficiency, in the buccal mucosa it results in elevated rates of cell division 
and in impaired differentiation of the cells as they mature (Chen, 1986; Table 1). In the 
rat fetus, even transient reductions in Zn supply during the critical period for tissue 
differentiation have been shown to result in substantially increased incidence of fetal 
abnormalities (Record et al. 1985). Both these observations are consistent with a role for 
Zn in changes in genetic expression during differentiation, the effects on entry into S 
phase being only a prime example of the need for Zn in gene activation. If this suggestion 
has wider validity, one might expect that various other differentiation processes, 
including some not involving DNA synthesis, would also be dependent on Zn supply. 
Interestingly, recent studies of myoblast differentiation, a process initiated only after the 
cells have left the replication cycle (Florini & Magri, 1989), indicated that increase in 
both creatine kinase (EC 2.7.3.2) mRNA and activity was inhibited in the absence of 
adequate Zn (L. Petrie and J. K. Chesters, unpublished results). 

The previously described observations are consistent with a role for Zn in the 
regulation of transcription of a number of important genes. This raises the question of 
whether the crucial role of Zn may relate to one or more of the ‘Zn-finger’ proteins since 
these have been shown to perform just this type of function. Following reports of Zn in 
TFIIIA, its functional adequacy was assessed both in EDTA-treated cultures and in 
Zn-deficient rats (Chesters et al. 1988). 5s rRNA synthesis was found to be impaired in 
the cultures but not in the rats. This was thought to be due to a relatively high affinity for 
Zn inherent in its tetrahedral coordination by two cysteine and two histidine residues. It 
seemed that this structure was sensitive to the strong chelator but could retain Zn with 
sufficient tenacity to prevent its loss following the relatively slight reduction in Zn 
availability which occurs with dietary Zn deficiency. However, a recent report has 
indicated that the dissociation constant for Zn of a synthetic ‘Zn-finger’ peptide is of the 

https://doi.org/10.1079/PNS19910023 Published online by Cambridge University Press

https://doi.org/10.1079/PNS19910023


128 J .  K .  C H E S T E R S  

order of M (Berg & Merkle, 1989) which is close to the best estimates available for 
the concentration of free Zn2+ in serum (May et al. 1977; Magneson et al. 1987). This 
suggests that even in an animal, some ‘finger’ proteins may not be fully saturated with 
Zn. Variations in amino acid sequence around the Zn-binding sites may have resulted in 
transcription factors with a lower affinity for Zn than that of TFIIIA and with an ability 
to retain Zn and bind to DNA that may be adversely affected by dietary Zn deficiency. It 
is exciting to postulate that after years of investigation since dietary Zn deficiency was 
first recognized, the basic function of this element in controlling growth may be in sight. 
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