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Riboflavin-responsive anaemia in man was described as early as the 1950s (Foy & Kondi, 
1953, 1958). The characteristic features included an erythroid hypoplasia and 
reticulocytopenia. Xanthurenic aciduria, indicative of abnormal tryptophan metabolism, 
was also reported and suggested that some of the effects of riboflavin deficiency may be 
secondary to interference with pyridoxine metabolism (Rasmussen et al. 1979). Ribo- 
flavin depletion-repletion studies demonstrated that plasma Fe clearance, also, might be 
impaired in riboflavin deficiency in humans (Lane et al. 1964). 

Investigations in rats, pigs, and dogs produced conflicting reports of the effects of 
riboflavin deficiency on circulating haemoglobin and erythropoiesis (Spector et al. 1943; 
Endicott et al. 1947; Terrill et al. 1953). Studies of nutritional deficiency anaemias in 
non-human primates provided further opportunity to characterize the anaemia of 
riboflavin deficiency and to evaluate the specificity of the haematological and bio- 
chemical features (Foy et al. 1964; Foy & Kondi, 1968). 

A more experimental approach by Jamdar et al. (1968) using 59Fe in rats depleted of 
riboflavin showed a slight decrease in plasma Fe turnover rate compared with pair-fed 
control animals, which the authors suggested indicated a defect in Fe utilization for 
haematopoiesis. There was also the suggestion of a reduced lifespan of circulating 
erythrocytes. Our studies among elderly subjects with poor riboflavin status also 
suggested a reduction in the lifespan of circulating erythrocytes (Powers & Thurnham, 
1980). 

Since riboflavin deficiency appeared to affect haematology without diminishing 
circulating Fe concentrations, and in this way differed from simple Fe deficiency, we 
reasoned that it could act either by reducing the availability of stored or circulating Fe 
andlor by diminishing the rate of synthesis of globin or porphyrin. A possible mechanism 
whereby riboflavin could exert an effect on either of these processes was by reducing the 
activity of key flavin-dependent enzymes. 

FERRITIN-IRON MOBILIZATION 

Ferritin is a predominantly intracellular Fe-storage protein. Fe is retained in the protein 
shell of ferritin in the oxidized form, Fe3+, and requires reduction in order to be released 
(Frieden & Osaki, 1974). Considerable interest has been shown in the likely physio- 
logical mechanism whereby ferritin-Fe could be mobilized; various biological reductants, 
such as ascorbic acid and glutathione, can reduce ferritin-Fe to Fe2+ but at rates that are 
unlikely to be of any physiological significance. Reduced flavins on the other hand are 
capable of reducing ferritin-Fe in vitro rapidly and quantitatively (Sirivech et al. 1974). 
FMN:NADH-linked oxidoreductase activity has been described in cytosolic fractions of 
cells (Crichton et al. 1975) and a mitochondria1 ubiquinone-linked flavin reductase has 
also been studied (Ulvik, 1983). It was also reported that Fe mobilization from ferritin 
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Table 1. Iron metabolism f rom ferritin in tissue f rom riboflavin-deficient rats 

Period of Riboflavin- 
depletion deficient 

Reference System studied Source of material (weeks) Controls (% control)* 

Zaman & Verwilghen Young adult 
(1977) Liver homogenate males 24 Ad lib. 100 

Sirivech et al. (1977) Liver homogenate Young males 8 Ad lib. 72 
Kidney homogenate Young males 8 Ad lib. 17 
Duodenal homogenate Young males 8 Ad lib. 44 

Powers er al. (1983) Liver mitochondria Lactating dams 11 Pair-fed 62 
Pups Gestation and 

3 weeks 
suckling Pair-fed 52 

Powers (1986) Duodenal mucosal 
homogenate Young females 5 Weight-matched 3 

Adult females 7 Weight-matched 23 

Powers (1987) Placental mitochondria Pregnant dams: 
Day 18 7 Weight-matched 70 
Day 21 7 Weight-matched 76 

* Calculated from published mean values 

was impaired in some tissue preparations from riboflavin-deficient rats (Sirivech et al. 
1977; Zaman & Verwilghen, 1977), although the absence of appropriate controls, and 
little information concerning growth rates of the animals, limits interpretation of the data 
reported (Table 1) .  

The possible importance of riboflavin to ferritin-Fe mobilization in vivo rather 
depends on the function of ferritin in Fe metabolism. There are a number of potential 
sites for ferritin involvement in Fe metabolism including Fe absorption, hepatic 
mobilization and haem synthesis. 

We investigated the effects of riboflavin deficiency in the rat on ferritin-Fe-mobilizing 
activity in vitro in a number of different tissue preparations (Table 1). The most 
profound effect of riboflavin depletion was seen in homogenates prepared from the 
mucosa of the epithelia of the upper part of the small intestine. After 35 d of receiving a 
riboflavin-deficient diet, the rate of Fe mobilization in mucosal homogenates from 
riboflavin-deficient animals was only 3% of that in preparations from weight-matched 
control animals. A similar effect was observed in adult animals. A strong correlation 
existed between the rate of Fe mobilization and riboflavin status measured as the 
activation coefficient for the flavin-dependent erythrocyte enzyme glutathione reductase 
(EC 1.6.4.2; Powers, 1986); this was true for both weanling ( r  0.685, P<O.OOl) and adult 
rats ( r  0.756, P<O-OOl). Hepatic Fe accumulation, which occurs in the normal healthy rat 
in the neonatal period, was also severely impaired in the young riboflavin-deficient rats; 
after 35 d of receiving the riboflavin-depleted diet hepatic ferritin-Fe concentration was 
only 36% of that in the livers of control animals (Table 2) .  These results suggested that 
FMN-oxidoreductase activity might be involved in Fe absorption and that riboflavin 
deficiency, therefore, could impair this process. The failure to accumulate hepatic Fe 
neonatally is a consistent characteristic of riboflavin deficiency (Powers, 1985; Adelekan 
& Thurnham, 1986a; Powers et al. 1991; Table 2).  
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Table 2. Effect of riboflavin deficiency on hepatic iron accumulation in young rats* 

References 

Period of Liver Fe Riboflavin- 
depletion concentration deficient 

Controls (weeks) measured as: (% control)t 

Sirivech et al. 61977) Ad lib. 8 Total Fe 60 
Powers (1985) Weight-matched 7 Ferritin-Fe 44 

Non-haem-Fe 52 
Adelekan & Thurnham 

Powers (1986) Weight-matched 5 Ferritin-Fe 36 
Powers et al. (1991) Weight-matched 7 Total Fe 92 

(19864 Weight-matched 7 Ferritin-Fe 73 

Powers et al. (1993) Weight-matched 5 Total Fe 59 

* Data are only reported from studies conducted within the first 12 weeks of life of the rats. 
t Calculated from published mean values. 

An effect of riboflavin deficiency in the rat on the rate of mobilization of Fe from 
ferritin was demonstrated-also in hepatic mitochondria1 preparations from weanling pups 
(Powers et al. 1983a), and in placental mitochondria prepared from dams late in 
gestation (Powers, 1987; Table 1). Since FMN was added to the incubation system used 
for measuring Fe mobilization, the reduced activity in vitro must have been due to a 
lower concentration of functional enzyme in the tissues. 

Although ferritin is an important intracellular Fe carrier, the nature of its role in Fe 
movement between subcellular fractions remains unclear. The importance of riboflavin 
to ferritin-Fe-mobilizing activity in vitro tells us little of the physiological importance of 
flavin-dependent Fe mobilization in vivo. Intervention studies conducted in humans 
provided further valuable support for the contention that riboflavin deficiency could alter 
the body’s handling of Fe. 

H U M A N  SUPPLEMENTATION S T U D I E S  

A few small studies condtteted among schoolchildren (Buzina et al. 1979; Charoenlarp 
et al. 1980) and pregnant women (Decker et al. 1977) had shown that correcting a 
riboflavin deficiency could improve the haematological response to Fe supplements. We 
chose to investigate this possibility further in a village population in The Gambia, where 
biochemical riboflavin deficiency is endemic and there is evidence of poor Fe status 
among some of the sections of the population (Bates et al. 1981, 1982). Placebo- 
controlled randomized supplementation studies were carried out among children, adult 
males, and pregnant and lactating women. Attention was given to the presence of any 
infection that could influence Fe status. There was biochemical evidence of riboflavin 
deficiency in virtually all subjects with normal erythrocyte activity for glucose-6- 
phosphate dehydrogenase (EC 1.1.1.49) at the outset of each study (Thurnham, 1972). 
Haematological response to 6 weeks of Fe supplements alone was variable, particularly 
among pregnant women. Correcting riboflavin deficiency significantly improved the 
haematological response to Fe in the men and the lactating women, and this effect was 
most evident among men with poor haematological status at the outset (Powers et al. 
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Fig. 1. Effect of correcting a riboflavin deficiency on haematological status in adult males. Values are mean 
changes from a baseline value after 6 weeks of daily supplementation: (I), placebo; (m), iron; (a), 
Fe+riboflavin. Mean values were significantly different from baseline value: *P<O.O2, **P<O.Ol, ***P<O.OOl. 
Based on data from Powers et al. (1983b). 

1983b, 1985; Fig. 1). These results suggested that correcting a riboflavin deficiency 
improved the supply of Fe to the erythroid marrow. The Fe could come from Fe stores or 
directly from the diet. 

In order to clarify the mechanism whereby riboflavin influences Fe metabolism in man 
we investigated the effects of riboflavin deficiency in rats on Fe absorption. 

E F F E C T S  I N  T H E  G A S T R O I N T E S T I N A L  T R A C T  

Fe absorption was measured in young female rats fed on a riboflavin-deficient diet for 
7 weeks and compared with absorption in weight-matched control animals (Powers et al. 
1988). A test meal extrinsically labelled with 59Fe was fed to all animals and the 
whole-body radioactivity measured in a small-animal gamma counter (NE 81 12; Nuclear 
Enterprises, Edinburgh) daily for 15 d. We took care to standardize Fe intakes over 3 d 
before the feeding of the test meal, a factor which would have influenced results 
(Fairweather-Tait et al. 1985). The percentage of the dose absorbed at the time of the 
test meal was calculated from an extrapolated plot of percentage dose retained over the 
15 d after the test meal. There was a 15% reduction in the dose absorbed by the 
riboflavin-deficient animals when compared with that of the controls (Fig. 2 ) .  Unexpec- 
tedly, riboflavin deficiency was associated also with a substantial increase in the rate of 
loss of 59Fe, post-absorption. At this time Adelekan & Thurnham (19866) reported that 
riboflavin deficiency in the young rat was associated with a delay and a reduction in the 
appearance in the plasma of a gastric dose of 59Fe. It is unclear whether differences in 
dietary Fe before the test dose could have influenced results but these findings supported 
our view that riboflavin deficiency impairs the absorption of Fe. We subsequently 
confirmed that riboflavin deficiency induced in the young rat leads to an impaired 
absorption of Fe and increases the rate of Fe loss (Powers et al. 1991). All the 
post-absorption Fe loss was faecal, confirming that the loss was gastrointestinal. A recent 
report of reduced uptake of Fe by brush-border-membrane vesicles from riboflavin- 
deficient rats is compatible with a reduced Fe absorption (Butler & Topham, 1993). 

We were unable to demonstrate that correcting a riboflavin deficiency in adult males 
improved Fe absorption when measured by neutron-activation analysis using the stable 
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Fig. 2. Effects of riboflavin deficiency in weanling rats on the absorption and the daily post-absorption loss of 
iron following a test meal extrinsically labelled with s9Fe. (O) ,  Weight-matched controls; (ma), riboflavin- 
deficient. Values are mean with their standard errors represented by vertical bars. 

isotope 58Fe (Fairweather-Tait et al. 1992). However, there was a very large variability in 
Fe absorption between subjects and we believe that the method used was insufficiently 
sensitive to detect small improvements in Fe absorption. This study did show, however, 
that improving riboflavin status elicited a significant increase in the concentration of 
circulating haemoglobin. Whether this reflects an increase in Fe absorption after all or an 
increased efficiency of utilization of Fe for haem synthesis is not yet known. 

Our attention has subsequently focused on the intestinal mechanisms whereby 
riboflavin exerts an effect on Fe absorption and gastrointestinal loss. We suggested that 
the enhanced rate of endogenous Fe loss seen in riboflavin deficiency was caused by an 
increase in the rate of turnover of epithelial cells of the small intestine. An exploratory 
experiment was carried out in young rats in which we estimated the number of cells in 
mitosis per crypt in the upper part of the small intestine, following intraperitoneal 
injection with the metaphase arrest agent, vincristine. This method of measuring crypt 
cell proliferation has been well-validated (Wright & Appleton, 1980; Wright & Irwin, 
1982). Riboflavin deficiency in young rats resulted in a doubling of the mitotic index. 
This apparent increase in proliferative response was characterized also by an increase in 
crypt depth and width in the duodenum (Table 3). These observations encouraged us to 
look more closely at the cytokinetics of the duodenum. In order to confirm that an 
increased mitotic index actually reflected an increased rate of production of cells in the 
crypts of the small intestine we adopted the stathmokinetic method to measure crypt cell 
production rate (CCPR). Young rats received an intraperitoneal injection of vincristine 
and were killed by cervical dislocation at fixed time-points up to 90 min after the 
injection. The small intestine was removed from each animal and segments stained for 
nuclear material. The number of cells in metaphase arrest per crypt was measured after 
microdissection. CCPR was calculated as the slope of the regression of metaphase arrest 
values v. time after injection. Riboflavin deficiency was associated with a doubling of the 
CCPR in the upper and small intestine compared with weight-matched and ad lib.-fed 
control animals (Powers et al. 1993; Table 3). 

More recently these studies have been developed to include villi morphometry and the 
kinetics of cell movement on the villi. Female Wistar rats were weaned onto a diet 
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Table 3. Morphological and cytokinetic characteristics of the small intestine in ribopavin 
deficiency? 

(Mean values with their standard errors) 

Variable 

Villus length (pm) 
No. of cells per villus 
Crypt depth (pm) 
Crypt width (pm) 
Crypt cell production rate 

(hen crypts per h) 
Enterocyte transit rate (pm/h) 
Villus no. (per 10 mm 

length duodenum) 

Riboflavin-deficient 
Weight-matched 

controls Ad lib.-fed controls 

Mean SEM 

622* 25 
111** 3.0 
253*** 6-4 
63** 32.1 

20*** 2.3 
7.2*** 0.54 

1335** 115 

Mean 

532 
99 

196 
55 

11 
3.5 

1780 

SEM Mean SEM 

21 
2- 1 
6.0 
2.2 

2.8 
0.25 

88 

549 42 
99 3.8 

188 9.1 
59 2.3 

8 0.7 

Mean values were significantly different from those of controls: *P<0.05, **P<O.Ol, ***P<0401 
t Based on data from Powers et al. (1993) and Williams et al. (1994a,b, 1995). 

deficient in riboflavin; after receiving this diet for 5 weeks they were compared with 
weight-matched and ad lib.-fed controls that had received a complete diet. Sections of 
the duodenum were cut and stained for the measurement of villus height, and enterocyte 
number on the villi, using light microscopy. The villi from the riboflavin-depleted 
animals were longer and had a greater number of enterocytes per villus column than 
either control group (Williams et al. 1995; Table 3) .  Despite the increase in villus height 
and cellularity in riboflavin deficiency the total DNA content of the small intestine was 
not influenced, suggesting that riboflavin deficiency may interfere with the usual increase 
in the number of villi during post-weaning development. We have confirmed very 
recently that riboflavin deficiency induced at weaning does impair the increase in villus 
number that we observe over 5 weeks post-weaning in weight-matched controls 
(Williams et al. 1994a; Table 3). An increase in villus height may be a mechanism 
whereby a riboflavin-deficient animal attempts to compensate for a reduction in villus 
number and thereby maintain the absorptive surface area of the small intestine. Studies 
of the time-scale for these changes during riboflavin depletion are helping to clarify this. 

The net absorptive efficiency of the surface of the small intestine will be determined by 
the number of functionally mature enterocytes on the villi. These cells are produced from 
stem cells in the crypts, differentiate as they progress towards the villus, and mature as 
they move along the villus. Functional maturity of enterocytes is conventionally 
expressed as the activity of certain enzymes with absorptive function, in particular, 
disaccharidases and alkaline phosphatase (EC 3.1.3.1; King et al. 1983). It is unclear how 
such activity relates to the absorption of Fe and whether, therefore, the capacity of an 
enterocyte for Fe absorption changes in the same manner as the cell moves along the 
villus. What one would predict, whatever the mechanism for Fe absorption, is that the 
shorter the time an enterocyte remains on a villus the shorter its absorptive life. We have 
studied whether riboflavin deficiency influences the rate of transit of enterocytes onto 
and along the villi using a technique which labels cells as they are produced in the crypts, 
for later identification on the villi. 
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The method adopted to measure the rate of transit of cells along villi uses 
bromodeoxyuridine (Budr), a thymidine analogue, which is incorporated into DNA 
during the ‘S’ phase of cell division (Wynford-Thomas & Williams, 1986). After 
intraperitoneal injection Budr is taken up by proliferating cells, including those in the 
crypts of the small intestine. The time that elapses between the injection and placing 
tissue in fixative will determine the location of the labelled cells on the villi. The Budr can 
be detected in histological sections of the tissue using a monoclonal-antibody technique. 
We have demonstrated an increased rate of transit of cells from the crypts and along the 
villi of the small intestine in weanling riboflavin-deficient rats compared with weight- 
matched controls (Williams et at. 19946; Table 3). Despite an increased villus length in 
riboflavin deficiency, the leading edge of the cohort of labelled cells had covered a 
greater percentage of the villi than in the control animals. If, as these results suggest, 
riboflavin deficiency leads to enterocytes spending a shorter time on the villi, we would 
predict that the absorptive capacity of the villi is reduced. This may be a factor 
determining the effect of riboflavin deficiency on Fe absorption. The mechanism for the 
regulation of Fe absorption in the small intestine is still not fully understood, but may 
include a role for newly identified Fe-binding proteins integrin and mobilferrin, at the 
surface of, and in the cytosol of, enterocytes (Conrad ef  at. 1993). The concentration of 
these Fe-binding proteins and the number of Fe-binding sites they display may regulate 
the transfer of Fe from the lumen to the blood plasma and may be influenced by the 
lifespan of the enterocyte on the villus surface. Also, an enhanced rate of loss of 
endogenous Fe would be predicted. 

Studies are currently in progress to determine the reversibility of the morphometric 
and cytokinetic changes observed when riboflavin deficiency is induced at or before 
weaning. The neonatal period is one of structural and functional maturation of the small 
intestine and riboflavin deficiency during this period may have long-term consequences. 
It is unlikely that Fe is the only nutrient whose metabolism is influenced by the profound 
morphometric and cytokinetic changes seen in the small intestine in riboflavin deficiency. 

The mechanism whereby riboflavin exerts its effect on cell proliferation is not yet 
known. We are planning to extend our studies to the use of tissue-culture techniques to 
address this question. 

CONCLUSIONS 

Riboflavin deficiency alters the body’s normal handling of Fe. It impairs absorption and 
increases the rate of gastrointestinal loss of endogenous Fe. It may also reduce the 
efficiency of Fe utilization for haem synthesis. The effects on absorption and gastro- 
intestinal loss appear to result from a hyperproliferation of crypt cells and an increased 
rate of transit of enterocytes along the villi, probably leading to functionally immature 
villi. A failure to increase villus number in the small intestine observed post-weaning in 
riboflavin deficiency would predictably reduce the absorptive surface area and contribute 
to the effect on Fe absorption. An increase in villus length may be an adaptation to the 
observed failure to increase villus number. The effects of changes in the small intestine 
are unlikely to be specific to Fe. 

All studies involving human subjects were carried out with the approval of the University 
of Cambridge Ethics Committee. The studies described here were carried out with the 
collaboration of many colleagues whose assistance the author gratefully acknowledges. 
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