Pancreatic B-cell dysfunction and glucose toxicity in non-insulin-dependent diabetes

BY PETER R. FLATT, YASSER H. A. ABDEL-WAHAB, ALISON C. BOYD, CHRISTOPHER R. BARNETT AND FINBARR P. M. O’HARTE

School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA

Regulation of insulin secretion in response to feeding is determined by the direct actions of glucose and amino acids on the pancreatic B-cell together with indirect effects mediated by activation of hormonal and neural arms of the entero-insular axis (Berggren et al. 1992; Morgan, 1992; Havel et al. 1994; Flatt, 1996). These signals are integrated at the level of the pancreatic B-cell such that insulin is secreted to regulate nutrient metabolism and glucose homeostasis appropriately. In non-insulin-dependent diabetes mellitus (NIDDM), defects in insulin action and the mechanisms that regulate insulin secretion are key to the glucose intolerance and metabolic disarray associated with the disease (Kahn & Porte, 1990; Leahy, 1990; Flatt et al. 1992). Possible molecular mechanisms underlying pancreatic B-cell dysfunction in NIDDM include site-specific defects in the stimulus–secretion coupling pathway and alterations in B-cell responsiveness consequent to environmental changes in diabetes. Deleterious effects of hyperglycaemia, so-called glucose toxicity (Unger & Grundy, 1985), represent an important means through which changes in internal environment impair B-cell function and both the secretion and action of insulin. The participation and interaction of site-specific defects and environmental factors in pancreatic B-cell dysfunction of NIDDM are considered in the framework of our current understanding of the regulation of B-cell function and stimulus–secretion coupling (Flatt, 1992; Flatt & Lenzen, 1994). Particular attention is drawn to the results of our recent and ongoing studies indicating an important role for glycation of functionally-important B-cell proteins in the glucose toxicity and functional demise of insulin-secreting cells.

B-CELL STIMULUS–SECRETION COUPLING

Glucose insensitivity of the pancreatic B-cells is the hallmark of defective insulin secretion in NIDDM (Kahn & Porte, 1990; Leahy, 1990; Flatt et al. 1992). Glucose is not only the principal regulator of B-cell function, but this sugar also modulates the insulinotropic potency of virtually all other secretagogues, including entero-insular hormones and neurotransmitters (Berggren et al. 1992). Signals generated by these stimuli are normally integrated at the level of the B-cell through a network of second-messenger pathways leading to insulin secretion. It follows, therefore, that a lesion at any one point in the sequence of events linking B-cell glucose recognition to hormone discharge might contribute to defective insulin secretion and glucose intolerance in NIDDM. Potential sites contributing to defective B-cell stimulus–secretion coupling in NIDDM include all known steps in the secretory process (for recent comprehensive review, see Flatt, 1992; Flatt & Lenzen, 1994). As illustrated in Fig. 1, the normal secretory pathway by which glucose induces insulin secretion begins with the transport of the sugar into the B-cell by means of the high-capacity GLUT-2 glucose transporter. Phosphorylation of glucose to glucose-6-phosphate by glucokinase (EC 2.7.1.2) and subsequent metabolism, involving mitochon-
drial FAD-glycerophosphate dehydrogenase (GDH), results in the optimal generation of ATP. The increased cellular ATP: ADP results in closure of ATP-sensitive K+ channels (K–ATP channels) in the B-cell membrane, membrane depolarization and opening of voltage-dependent Ca2+ channels. Ca2+ influx and the increase in intracellular Ca2+ ([Ca2+]i) triggers the exocytotic machinery culminating in insulin secretion. A secondary effect of elevation of [Ca2+]i is activation of adenylate cyclase (EC 4.6.1.1) and phospholipase C (EC 3.1.4.3). Generation of cyclic AMP, diacylglycerol and inositol 1,4,5-trisphosphate serve to amplify [Ca2+]i signal by effects on cellular stores and by promoting phosphorylation of proteins that sensitize the secretory process to Ca2+. These same enzymes are also directly activated by specific membrane receptors for hormonal and neural elements of the entero-insular axis (Berggren et al. 1992; Flatt, 1996).

SITE-SPECIFIC DEFECTS IN B-CELL DYSFUNCTION

Site-specific defects in the B-cell stimulus-secretion pathway (Flatt et al. 1992) have been revealed in studies investigating defective insulin secretion using islets derived from various animal models of NIDDM (Fig. 2). The extent to which these defects are due to genetic predisposition (primary defects) or represent secondary (acquired) features consequential to alterations in B-cell environment or external influences in diabetes remains to be established. The main site-specific defects uncovered in specific examples of NIDDM are discussed briefly.

GLUT-2 transporter

Decreased expression of the GLUT-2 glucose transporter has been demonstrated in both human NIDDM and in several animal models of diabetes (Thorens et al. 1992; Unger, 1992; Ohneda et al. 1993). In diabetic mice, this decrease has been shown to be reversible and caused by environmental factors, although the role played by hyperglycaemia is uncertain (Thorens et al. 1992; Ogawa et al. 1995). Since glucose transport is not normally a rate-limiting step for B-cell glucose metabolism, it is questionable whether abnormalities in the expression of the GLUT-2 glucose transporter play a particularly notable role relative to defects at more influential distal sites in the secretory process (Ohneda et al. 1993). Furthermore, rare mutations of GLUT-2 detected in individuals with NIDDM are unlikely to be a major determinant of the disease (Tanizawa et al. 1994a; Shimada et al. 1995).

Glucokinase

Alterations in glucokinase activity can be predicted to disturb insulin secretion in altering the rate of signal-generating metabolic flux in the B-cell (Matchinsky, 1990; Lenzen, 1992). Alterations of glucokinase and hexokinase (EC 2.7.1.1) activities have been linked with disturbances of insulin secretion (Matchinsky, 1996). Most notable are the functionally-important mutations of glucokinase detected in a subset of individuals with

Fig. 1. Overview of mechanisms involved in glucose-induced insulin secretion. AC, adenylate cyclase (EC 4.6.1.1); CICR, Ca2+-induced Ca2+ release; ER, endoplasmic reticulum; Gi, Gs, inhibitory and stimulatory G-protein respectively; PKA, protein kinase A; PKC, protein kinase C; PLC, phospholipase C (EC 3.1.4.3); R, receptor agonist; VDCC, voltage-dependent Ca2+ channels; IP3, inositol 1,4,5-trisphosphate; DAG, diacylglycerol; IAPP, islet amyloid polypeptide; CCK, cholecystokinin; GRP, gastrin-releasing peptide; GLP-1, glucagon-like peptide 1 (7–36) amide; GIP, gastric inhibitory polypeptide.

Downloaded from https://www.cambridge.org/core. IP address: 54.70.40.11, on 26 Dec 2017 at 00:57:25, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1079/PNS19970029
Glucose toxicity
Lipotoxicity
β-cell hyperstimulation
Islet architecture
Islet peptides
Autonomic nerves
Low birth weight

Fig. 2. Site-specific defects and environmental disturbances possibly contributing to defective insulin secretion in non-insulin-dependent diabetes mellitus. GDH, FAD-glycerophosphate dehydrogenase; glucokinase, EC 2.7.1.2.

maturity-onset diabetes of the young (MODY) who display abnormal insulin secretion (Velho et al. 1992). However, it appears that mutations of the glucokinase gene are not commonly associated with classical NIDDM (Tanizawa et al. 1994b; Stone et al. 1996).

Glucose-6-phosphatase (glucose cycling)
An abnormally high rate of glucose cycling, i.e. the conversion of glucose to glucose-6-phosphate by glucokinase followed by reconversion back to glucose by the action of glucose-6-phosphatase (EC 3.1.3.9), has been reported in islets of various animal models of NIDDM. These include ob/ob mice, GK rats and rats treated with streptozotocin during the neonatal period (Kahn et al. 1994). Consumption of one molecule of ATP for every molecule of glucose cycled might, by decreasing the ATP pool, interfere with the regulation of K-ATP channels and contribute to defective insulin secretion in NIDDM. Further studies with human islets will allow evaluation of the importance of this defect.

Mitochondrial FAD-glycerophosphate dehydrogenase
Activation of mitochondrial GDH by [Ca^{2+}], results in the preferential metabolism of glucose by aerobic rather than anaerobic glycolysis (Sener & Malaisse, 1992). Thus, by
optimizing the generation of ATP from glucose, GDH participates, like glucokinase, in the crucial glucose-sensing process of the B-cell. Alterations in the activity of islet GDH have been demonstrated in human NIDDM and various animal models of experimentally-induced and spontaneous diabetes, including adult rats treated neonatally with streptozotocin, GK rats, \(fa/fa\) rats and C57BL/KsJ \(db/db\) mice (Malaisse, 1994; Fernandez-Alvarez et al. 1994). Other animal models of NIDDM, such as \(ob/ob\) mice, have normal islet GDH activity (Malaisse, 1994). However, other studies challenge the view that the irregularities of GDH observed may not represent an acquired defect consequent to diabetes (MacDonald et al. 1996). The development of a polymorphic genetic marker for GDH will enable assessment of its role in the pathogenesis of human NIDDM (Ferrer et al. 1996). However, it has recently been suggested that mutations in this gene are unlikely to contribute to MODY or NIDDM in white Europeans (Warren-Perry et al. 1996).

Generation of ATP

Generation of ATP and alteration in intracellular ATP: ADP is a key step linking metabolic and cationic events in the insulin secretory pathway. However, very few studies have actually addressed the possible link between defective insulin secretion and perturbations of the intracellular ATP generation. One problem is the difficulty of monitoring functionally important alterations in cellular ATP adjacent to the plasma membrane K-ATP channels. Nevertheless, compromised ATP generation has been shown to be associated with the glucose unresponsiveness of fetal rat pancreatic B-cells (Rorsman et al. 1989).

ATP-sensitive potassium channels

Disturbances in the regulation of \(K^+\) permeability and defective insulin secretion have been observed in spontaneously diabetic \(db/db\) mice and diabetic Chinese hamsters (Meissner & Schmidt, 1976; Berglund et al. 1980; Frankel & Sehlin, 1987). Patch-clamp studies using both the cell-attached and inside-out configurations have been used to directly investigate the regulation of the K-ATP channels. Studies using the neonatal-streptozotocin-treated rat model and GK rats have indicated that the inhibitory action of glucose on B-cell K-ATP channels is impaired in NIDDM (Tsuura et al. 1992a,b). However, the inhibitory effect of ATP applied directly to inside-out patches was preserved. This would suggest that the glucose insensitivity of the K-ATP channel reflects impaired ATP generation rather than a defect in structure or function of the channel itself. Recent studies have ruled out a possible role of genetic variations in K-ATP channel genes in MODY and human NIDDM (Zhang et al. 1995; Iwasaki et al. 1996; Tanizawa et al. 1996).

Cytoplasmic free calcium ions

Disturbances in the regulation of B-cell \(Ca^{2+}\) fluxes and \([Ca^{2+}]_i\), represent a common feature in animal models with defective insulin secretion. Abnormalities have been demonstrated in spontaneously-diabetic \(db/db\) mice, Spiny mice and neonatal-streptozotocin-treated rats (for review, see Flatt et al. 1992). Since \(Ca^{2+}\) plays a key role in B-cell signal transduction, any perturbation in \(Ca^{2+}\) regulation will result in disturbed insulin secretion. However, the extent to which abnormalities in the regulation of \([Ca^{2+}]_i\) reflect disturbances at earlier stages in the stimulus–secretion coupling pathway is unclear.
specific lesions in voltage-dependent Ca\(^{2+}\) channels, intracellular Ca\(^{2+}\) transport and the effects of Ca\(^{2+}\) on the exocytotic machinery are yet to be uncovered. Studies in glucose-infused rats indicate that hyperglycaemia may decrease B-cell Ca\(^{2+}\)-channel mRNA (Iwashima et al. 1993).

DISTURBANCES OF B-CELL ENVIRONMENT

Mutations and functional alterations in key proteins involved in the B-cell secretory machinery undoubtedly contribute to defective insulin secretion. However, such mutations will be exposed in early life during the functional maturation of the B-cell. Since the normal onset of NIDDM is in later life, important interactions are likely to exist between site-specific lesions and environmental factors in determining the functional demise of the B-cell.

NIDDM is associated with a significant number of disturbances of the B-cell environment including alterations in the concentrations of nutrients and hormones which affect insulin secretion (Kahn & Porte, 1990; Leahy, 1990; Flatt et al. 1992). As outlined in Fig. 2, such alterations can make an important contribution to B-cell dysfunction. This is particularly well illustrated with respect to hyperglycaemia-induced glucose toxicity. Such environmentally-induced changes may themselves manifest site-specific lesions within the B-cell secretory machinery.

Glucose toxicity

Investigations in human subjects and experimental animals in vitro using cultured isolated islets indicate that long-term exposure to a hyperglycaemic environment results in a gradual impairment of insulin secretion (Leahy, 1990; Simonson et al. 1992). This has given support to the concept of glucose toxicity and the view of hyperglycaemia as an inducer, as well as a consequence of B-cell dysfunction (Unger & Grundy, 1985).

Glucose toxicity and B-cell dysfunction. Glucose toxicity is well illustrated by the induction of defective insulin secretion in rats subjected to partial pancreatectomy or to continuous glucose infusions (Leahy, 1990; Flatt et al. 1992; Simonson et al. 1992). Interestingly, studies using isolated islets have revealed both species and strain differences in susceptibility to glucose toxicity. The B-cells of some strains of mice are particularly resistant to the adverse effects of hyperglycaemia (Svensson et al. 1993). In contrast, human islets and islets isolated from certain strains of rats are extremely susceptible to the detrimental effects of hyperglycaemia on insulin secretion (Bedoya & Jeanrenaud, 1991; Kaiser et al. 1991; Davalli et al. 1992; Eizirik et al. 1992). Other studies have shown rapid reversal of glucose toxicity on restoration of normoglycaemia (Anello et al. 1996). However, not all B-cell defects in spontaneous diabetes are normalized by this manoeuvre (Abdel-Halim et al. 1995), indicating the interplay between genetic and environmental factors in the functional disarray. Recent experiments in our laboratory have examined the effects of culture at high glucose concentration on the acute insulin secretory responsiveness of glucose-responsive BRIN-BD11 cells (McClenaghan et al. 1996). As shown in Fig. 3, exposure to a hyperglycaemic environment for 72 h markedly impaired the acute insulin-releasing action of glucose. These and other studies have shown that such differences cannot be attributed merely to changes in cellular insulin stores (Barnett et al. 1993).

Glycation and B-cell glucose toxicity. Despite accumulating evidence that glucose toxicity makes an important contribution to defective insulin secretion in NIDDM, relatively few studies have investigated the underlying molecular mechanism. Recent studies have been performed to assess the role of glycation of B-cell proteins in glucose
Fig. 3. Glucose toxicity and the impaired responsiveness of insulin-secreting cells to acute glucose challenge. BRIN-BD11 cells were cultured for 72 h at 11.1 (■) or 66.6 (□) mM-glucose before evaluation of acute (20 min) secretory responsiveness to glucose. Values are means with their standard errors represented by vertical bars for six to eight observations. Culture at 66.6 mM glucose significantly decreased the acute secretory response to glucose concentrations of 4.2-16.7 mM: compared with culture at 11.1 mM-glucose: *P < 0.05, ***P < 0.0001. (Data from Barnett et al. 1993.)

toxicity and defective insulin-secretion. Using BRIN-BD11 cells (McClenaghan et al. 1996), it has been demonstrated that the detrimental effects of hyperglycaemia on B-cell function were associated with a substantial increase in the glycation of intracellular proteins (Fig. 4). The extent of glycation was increased 3-5-fold by increasing the glucose

Fig. 4. Glycation of cellular proteins in insulin-secreting cells exposed to increasing concentrations of glucose in culture. BRIN-BD11 cells were cultured at 5.6, 11.1 or 66.6 mM-glucose for 72 h. Cells were extracted and dialysed against saline (9 g NaCl/l) before separation of glycated and non-glycated proteins by affinity chromatography. Results are expressed as a percentage of total protein. Values are means with their standard errors represented by vertical bars for six observations. Exposure to 11.1-66.6 mM-glucose significantly increased the extent of glycation: **P < 0.01.
concentration in culture from 5.6 mM to either 11.1 or 66.6 mM respectively. Since glycation can be expected to influence the activity of enzymes and other functional proteins in the B-cell, it is probable that glycation is an important mediator of B-cell glucose toxicity and defective insulin secretion.

Evidence for glycation of insulin and proinsulin. Our ongoing studies concerning identification of glycated B-cell proteins have initially focused on the most important protein in the B-cell, i.e. the insulin molecule itself (Abdel-Wahab *et al.* 1997). Incubation of insulin with glucose *in vitro* followed by analysis using reversed-phase HPLC revealed two peaks, corresponding to glycated and non-glycated insulins (O’Harte *et al.* 1996; Fig. 5). Studies have also shown that incubation of insulin *in vitro* with glucose induced a concentration- and time-dependent increase in the glycation of insulin (Abdel-Wahab *et al.* 1993) as measured by radioimmunoassay after separation of glycated and non-glycated

![Graph showing reversed-phase HPLC separation of glycated and non-glycated insulin following incubation with 220 mM-D-glucose for 24 h at 37°C.](https://www.cambridge.org/core/terms).
insulins by affinity chromatography using Glycogel B (Pierce & Warriner, Chester, Cheshire; Fig. 6). Similar studies (Abdel-Wahab et al. 1997) have shown that metabolites of glucose, such as glyceraldehyde-3-phosphate and glucose-6-phosphate, are significantly more reactive than glucose itself (Fig. 7(A)). Furthermore, the precursor proinsulin molecule is also susceptible to glycation (Fig. 7(B)).

Glycation of insulin and proinsulin within the B-cells. The characteristics of the GLUT-2 glucose transporter in the B-cell membrane ensure that rapid fluctuations in extracellular glucose concentrations are matched by similar changes in glucose concentrations within the B-cells. It follows, therefore, that the hyperglycaemia of NIDDM will be mirrored by elevated glucose concentrations within the pancreatic B-cells. It is not surprising, therefore, that culture of BRIN-BD11 cells under hyperglycaemic conditions was associated with the concentration-dependent glycation of cellular immunoreactive insulin (Abdel-Wahab et al. 1997; Fig. 8(A)). Comparison with the characteristics of extracellular glycation (Figs. 6–7) suggests that the milieu within the B-
Fig. 7. Glycation of insulin and proinsulin in vitro in presence of glucose and glucose metabolites. Bovine insulin (A) or recombinant human proinsulin (B) were incubated in phosphate-buffered saline (9 g NaCl/l, pH 7-4) containing glucose (□) or metabolites, glyceraldehyde-3-phosphate (■) and glucose-6-phosphate (▲), for 24 h at 37°C. Samples were dialysed, subjected to affinity chromatography, and glycated and non-glycated peptides were quantified by radioimmunoassay using an antibody with full cross-reactivity to insulin and proinsulin. Values are means with their standard errors represented by vertical bars for three to four observations. (A) Mean values were significantly different from those for same concentration of glucose: *P < 0.05. (B) Mean values were significantly different from those for 0 mM-glucose: *P < 0.05, **P < 0.001. (Data from Abdel-Wahab et al. 1997.)
cell is particularly favourable for glycation of insulin. It is also apparent from Fig. 8(B) that the glycation of cellular insulin (or proinsulin) is rapid, occurring within 2 h exposure to hyperglycaemia. In accordance with these observations, glycated insulin has been shown to be elevated in the pancreas of various animal models of diabetes, including hydrocortisone-treated rats, streptozotocin-treated mice and genetically-obese–diabetic \(ob/ob\) mice (Abdel-Wahab et al. 1996). As shown in Fig. 9, glycated insulin was elevated in both pancreatic stores and plasma of \(ob/ob\) mice. Further analysis of the glycated fractions in the pancreas (Abdel-Wahab et al. 1996) revealed substantial glycation of both proinsulin and insulin stores (Fig. 10).

Decreased biological activity of glycated insulin. In order for glycation of insulin to be of pathophysiological significance in NIDDM, it is essential to show that glycation to a level achievable in the B-cell \textit{in vivo} is associated with a measurable decrease in insulin biological activity. As shown in Fig. 11, a preparation of 20% glycated insulin clearly exhibited diminished ability to lower plasma glucose concentrations in normal mice compared with non-glycated insulin (Abdel-Wahab et al. 1994). Extension of these observations to human subjects infused with HPLC-purified peptides (Hunter et al. 1996) revealed a decreased potency of glycated insulin, as evidenced by lower glucose infusion rates to maintain steady-state euglycaemia (Fig. 12).

Involvement of glycation of B-cell proteins in non-insulin-dependent diabetes mellitus. On the basis of the recent observations referred to previously, glycation of B-cell proteins may be considered as a potentially-important novel compounding factor in the B-cell dysfunction, glucose intolerance and metabolic disarray of NIDDM. As illustrated in Fig. 13, it is possible to envisage two interacting vicious spirals through which hyperglycaemia-induced glycation of insulin and other functionally-important B-cell proteins contribute directly to both the defective insulin secretion and insulin resistance of NIDDM. Furthermore, since glycation of proinsulin may interfere with enzymic processing, glycation of this prohormone might contribute to the incomplete processing and elevated levels of circulating proinsulin encountered in NIDDM (Flatt et al. 1992; Abdel-Wahab et al. 1996). Future studies are required to develop this hypothesis and to identify the proteins and the glycation sites involved.

Lipotoxicity

Recently, much attention has focused on possible detrimental effects of elevated lipid concentrations on B-cell function in NIDDM (Grill et al. 1994; Unger, 1995; Prentki & Corkey, 1996). Studies \textit{in vivo} in human subjects and using isolated islets in tissue culture have clearly demonstrated B-cell lipotoxicity, resulting in impaired insulin secretory responses to glucose and other stimuli (Sako & Grill, 1990a; Zhou & Grill, 1994; Paolisso et al. 1995). The mechanisms likely to be involved include alterations in B-cell glucose metabolism and ATP generation due to activity of the glucose–fatty acid cycle (Randle et al. 1994; Zhou et al. 1996). Recent studies by Zhou et al. (1996) have shown that stimulation of fatty acid oxidation in islets inhibits glucose oxidation by decreasing pyruvate dehydrogenase (EC 1.2.4.1; PDH) enzyme activity with parallel enhancement of PDH kinase. Future studies will assess the effects of lipid-lowering agents and inhibitors of fatty acid oxidation on B-cell dysfunction in NIDDM.

Pancreatic B-cell hyperactivity

Studies of experimental and spontaneous diabetes have provided evidence for a link between B-cell hyperactivity and defective insulin secretion (Flatt et al. 1992). In various
Fig. 8. Glucose concentration- and time-dependent glycation of insulin in clonal B-cells maintained in tissue culture. BRIN-BD11 cells were cultured for: (A) 72 h with 1.4–33.3 mM glucose, or (B) 2–48 h with 5.6 (●) or 33.3 (▲) mM glucose. Cells were extracted, dialysed and glycated and non-glycated insulin fractions were separated by affinity chromatography. Insulin was determined by radioimmunoassay in both separated fractions, and the percentage glycated insulin was calculated. Results are expressed as means with their standard errors represented by vertical bars for four to six observations. (A) Exposure to 11.1–33.3 mM glucose significantly increased glycation compared with 1.4 mM and 5.6 mM: **P < 0.01, ***P < 0.001 respectively. (B) Exposure to 33.3 mM glucose increased glycation at each time point compared with 5.6 mM glucose at the same time: **P < 0.01. (Data from Abdel-Wahab et al. 1997.)
Fig. 9. Plasma glucose, glycated haemoglobin (Hb) and glycated pancreatic and plasma insulin in adult lean \(\text{CQ} \) and genetically-obese-diabetic \(\text{ob/ob} \) \(\text{CQ} \) mice. Glycated and non-glycated insulins were measured in pancreatic extracts and pooled plasma samples by radioimmunoassay following separation by affinity chromatography. Quantification of glycated plasma insulin in normal mice was not possible due to the low circulating insulin concentrations in these animals. Values are means with their standard errors represented by vertical bars for five observations. Mean values were significantly different from those of control animals: **\(P < 0.01 \).

Fig. 10. Glycated insulin and proinsulin in pancreatic extracts of adult lean \(\text{CQ} \) and genetically obese-diabetic \(\text{ob/ob} \) \(\text{CQ} \) mice. Total glycated immunoreactive insulin (IRI; insulin + proinsulin), glycated insulin and glycated proinsulin are shown as single determinations from pooled pancreatic extracts (n 5–8). Following isolation of glycated peptides by affinity chromatography, insulin and proinsulin were separated by HPLC before measurement by radioimmunoassay with a fully cross-reacting insulin antibody. (Data from Abdel-Wahab et al. 1997.)
Fig. 11. Insulin-induced decrease in plasma glucose in normal mice injected with glycated (◼) or non-glycated (□) insulin with 2 g glucose/kg body weight. Effects of glycated and non-glycated insulin at 0.05 and 0.25 units/kg on glucose-lowering activity were examined 30 min after intraperitoneal injection with 2 g D-glucose (390 g/l)/kg body weight. The extent of glycation of the former insulin preparation was 20%. Values are means with their standard errors represented by vertical bars for five observations. Glycated insulin exhibited decreased biological potency compared with non-glycated insulin at both concentrations tested: ***$P < 0.001$. (Data from Abdel-Wahab et al. 1994.)

Fig. 12. Glucose infusion rates to maintain euglycaemia in human subjects in response to glycated (◼) and non-glycated (□) insulin. The effect of HPLC-purified glycated and non-glycated human insulin (2 h at 0.4 mU/kg per min) on peripheral glucose uptake was compared on two separate occasions in seven healthy overnight-fasted 20–22-year old male volunteers. Values are means with their standard errors represented by vertical bars. Mean value was significantly different from the glucose infusion rate to maintain steady-state euglycaemia using non-glycated insulin: *$P < 0.02$. (Data from Hunter et al. 1996.)
models of NIDDM, loss of an insulin response to glucose shows a close correlation with the extent of hyperinsulinaemia (Flatt et al. 1992). Interventions, such as fasting in ob/ob mice, which decrease the extent of hyperinsulinaemia and hyperglycaemia have also been reported to improve insulin secretory responsiveness (Flatt & Bailey, 1981). Defective insulin secretion in glucose-infused rats may partly reflect induction of B-cell hyperactivity as well as the direct deleterious effects of hyperglycaemia (Sako & Grill, 1990b; Kaiser et al. 1991). Such observations suggest that hyperinsulinaemia due to excessive B-cell stimulation caused by an overactive entero-insular axis may contribute to defective insulin secretion in syndromes of NIDDM (Bailey & Flatt, 1988).

A component of the B-cell glucose toxicity induced in vivo or in tissue culture has been suggested to be secondary to chronic glucose-induced hyperstimulation of insulin secretion (Sako & Grill, 1990b; Kaiser et al. 1991; Bjorklund & Grill, 1993; Leahy et al. 1993). Such studies have used diazoxide to pharmacologically restrain insulin secretion during artificial exposure of normal B-cells to hyperglycaemia. Extrapolation of these observations to the natural environment of glucose-insensitive B-cells in spontaneous diabetes is not straightforward. However, it appears likely that the mechanism by which hyperglycaemia induces B-cell glucose toxicity involves both B-cell hyperactivity and glycation of functionally-important cellular proteins.

Islet architecture and peptides

Alterations in the relative proportions of the various islet cell types in diabetes (Kloppel et al. 1992) can be expected to modify interactions between the B-cells and the surrounding A-cells and D-cells leading to disturbances in insulin secretion (Marks et al. 1992). Such effects may be compounded further by alterations in islet vasculature and blood flow which normally progresses from the B-cell core to peripherally-located A-cells and D-cells (Marks et al. 1992). Changes in the secretion and actions of various other local modulators of insulin secretion are also likely to be important (Berggren et al. 1992; Holst, 1992; Flatt, 1996). These include atrial natriuretic peptide, biogenic amines, corticotrophin-releasing factor, diazepam-binding inhibitor, islet amyloid polypeptide (IAPP), neuropeptide Y, opiate peptides, pancreastatin, peptide YY, thyrotropin-releasing hormone and a growing number of other less-well-known peptides. Most notable in this list are pancreastatin and
IAPP. Both are released from the B-cell and have been proposed to contribute to B-cell dysfunction by exerting an inhibitory tone on insulin secretion (Tatemoto et al. 1986; Flatt et al. 1992; Clark, 1992).

B-cell innervation

The islet autonomic innervation plays an important role in the fine-tuning of insulin secretion (Holst, 1992). Alterations in autonomic tone occur in NIDDM, as illustrated by the well-known deleterious effect of hyperglycaemia on nerve conduction velocity. The possibility that the B-cell innervation may also be disrupted in diabetes is illustrated well by ultrastructural observations in diabetic Spiny mice and Chinese hamsters (Orci et al. 1970; Diani et al. 1983), and by alterations in the levels of neuropeptides in the islets of various diabetic models (Bailey & Flatt, 1988). Alterations in the actions of the classical and peptidergic neurotransmitters in diabetes, including acetylcholine, noradrenaline, cholecystokinin, somatostatin, galanin, gastrin-releasing peptide, vasoactive intestinal peptide and neuropeptide Y (Holst, 1992), may contribute to the amplification or suppression of insulin secretion through parasympathetic and sympathetic nerves respectively (Flatt, 1996).

Fig. 14. Scheme for interactions between site-specific defects, external disturbances, glycation of B-cell proteins and secretory hyperactivity in pancreatic B-cell dysfunction and hyperglycaemia of non-insulin-dependent diabetes mellitus (NIDDM).
CONCLUDING REMARKS

Pancreatic B-cell dysfunction in NIDDM is the consequence of site-specific defects in the stimulus–secretion coupling pathway and numerous diabetes-related changes in external influences on the B-cell (Fig. 14). There is undoubtedly a great heterogeneity in the molecular mechanisms underlying defective insulin secretion in NIDDM as evidenced in animals and human subjects (Kahn & Porte, 1990; Leahy, 1990; Flatt et al. 1992). However, accumulating evidence suggests that abnormalities in the early steps of B-cell glucose recognition and toxic effects of glucose mediated through glycation of B-cell proteins may be of particular importance.

The authors’ research on mechanisms of pancreatic B-cell dysfunction and glucose toxicity is generously supported by the British Diabetic Association, Wellcome Trust, Department of Health and Social Services (N. Ireland), NI DevR Funding and University of Ulster Research Committee.

REFERENCES

© Nutrition Society 1997