Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T00:19:41.930Z Has data issue: false hasContentIssue false

Unusual cryptosporidiosis cases in Swedish patients: extended molecular characterization of Cryptosporidium viatorum and Cryptosporidium chipmunk genotype I

Published online by Cambridge University Press:  15 August 2013

MARIANNE LEBBAD*
Affiliation:
Department of Diagnostics and Vaccinology, Swedish Institute for Communicable Disease Control, SE-171 82 Solna, Sweden
JESSICA BESER
Affiliation:
Department of Diagnostics and Vaccinology, Swedish Institute for Communicable Disease Control, SE-171 82 Solna, Sweden
MONA INSULANDER
Affiliation:
Department of Communicable Disease Control and Prevention, Stockholm County Council, SE-118 91 Stockholm, Sweden
LILLEMOR KARLSSON
Affiliation:
Department of Clinical Microbiology, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
JENS G. MATTSSON
Affiliation:
National Veterinary Institute, SE-751 89 Uppsala, Sweden
BO SVENUNGSSON
Affiliation:
Department of Communicable Disease Control and Prevention, Stockholm County Council, SE-118 91 Stockholm, Sweden
CHARLOTTE AXÉN
Affiliation:
National Veterinary Institute, SE-751 89 Uppsala, Sweden
*
*Corresponding author: Department of Diagnostics and Vaccinology, Swedish Institute for Communicable Disease Control, SE-171 82 Solna, Sweden. E-mail: marianne.lebbad@smi.se

Summary

Most human cases of cryptosporidiosis are caused by Cryptosporidium parvum or Cryptosporidium hominis, but the use of molecular diagnostic methods has revealed that several other less common species or genotypes can also be involved. Here, we describe two unusual causes of cryptosporidiosis, one being the recently described species Cryptosporidium viatorum and the other Cryptosporidium chipmunk genotype I. Two Swedish patients who were infected with C. viatorum had travelled to Kenya and Guatemala, respectively, and two others had been infected with Cryptosporidium chipmunk genotype I in Sweden. None of these four patients were immunocompromised, and all four showed classical symptoms of cryptosporidiosis. We performed extensive molecular characterization, including analysis of four loci. The two C. viatorum isolates were found to differ slightly at the 70-kDa heat shock protein locus, which may indicate a local geographical variation in this species that has previously been described exclusively on the Indian subcontinent.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abe, N. (2010). Genotype analysis of Cryptosporidium meleagridis isolates from humans in Japan. Japanese Journal of Infectious Diseases 63, 214215.CrossRefGoogle ScholarPubMed
Alves, M., Xiao, L., Sulaiman, I., Lal, A. A., Matos, O. and Antunes, F. (2003). Subgenotype analysis of Cryptosporidium isolates from humans, cattle, and zoo ruminants in Portugal. Journal of Clinical Microbiology 41, 27442747. doi: 10.1128/JCM.41.6.2744-2747.2003.CrossRefGoogle ScholarPubMed
ANOFEL Network (2010). Laboratory-based surveillance for Cryptosporidium in France, 2006–2009. Euro Surveillance 15, 19642.Google Scholar
Chalmers, R. M. (2012). Waterborne outbreaks of cryptosporidiosis. Annali dell'Istituto Superiore di Sanità 48, 429446. doi: 10.4415/ANN_12_04_10.CrossRefGoogle ScholarPubMed
Chalmers, R. M., Elwin, K., Thomas, A. L. and Joynson, D. H. (2002). Infection with unusual types of Cryptosporidium is not restricted to immunocompromised patients. Journal of Infectious Diseases 185, 270271. doi: 10.1086/338196.CrossRefGoogle Scholar
Elwin, K., Hadfield, S. J., Robinson, G. and Chalmers, R. M. (2012 a). The epidemiology of sporadic human infections with unusual cryptosporidia detected during routine typing in England and Wales, 2000–2008. Epidemiology and Infection 140, 673683. doi: 10.1017/S0950268811000860.CrossRefGoogle ScholarPubMed
Elwin, K., Hadfield, S. J., Robinson, G., Crouch, N. D. and Chalmers, R. M. (2012 b). Cryptosporidium viatorum n. sp. (Apicomplexa: Cryptosporidiidae) among ravelers returning to Great Britain from the Indian subcontinent, 2007–2011. International Journal for Parasitology 42, 675682. doi: 10.1016/j.ijpara.2012.04.016.CrossRefGoogle Scholar
Feltus, D. C., Giddings, C. W., Schneck, B. L., Monson, T., Warshauer, D. and McEvoy, J. M. (2006). Evidence supporting zoonotic transmission of Cryptosporidium spp. In Wisconsin. Journal of Clinical Microbiology 44, 43034308. doi: 10.1128/JCM.01067-06.CrossRefGoogle ScholarPubMed
Feng, Y., Alderisio, K. A., Yang, W., Blancero, L. A., Kuhne, W. G., Nadareski, C. A., Reid, M. and Xiao, L. (2007). Cryptosporidium genotypes in wildlife from a New York watershed. Applied and Environmental Microbiology 73, 64756483. doi: 10.1128/AEM.01034-07.CrossRefGoogle ScholarPubMed
Glaberman, S., Sulaiman, I. M., Bern, C., Limor, J., Peng, M. M., Morgan, U., Gilman, R., Lal, A. A. and Xiao, L. (2001). A multilocus genotypic analysis of Cryptosporidium meleagridis. Journal of Eukaryotic Microbiology (Suppl.), 19S22S.Google ScholarPubMed
Insulander, M., Silverlas, C., Lebbad, M., Karlsson, L., Mattsson, J. G. and Svenungsson, B. (2013). Molecular epidemiology and clinical manifestations of human cryptosporidiosis in Sweden. Epidemiology and Infection 141, 10091020. doi: 10.1017/S0950268812001665.CrossRefGoogle ScholarPubMed
Jiang, J., Alderisio, K. A. and Xiao, L. (2005). Distribution of Cryptosporidium genotypes in storm event water samples from three watersheds in New York. Applied and Environmental Microbiology 71, 44464454. doi:10.1128/AEM.71.8.4446-4454.2005.CrossRefGoogle ScholarPubMed
Katoh, K. and Toh, H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9, 286298. doi:10.1093/bib/bbn013.CrossRefGoogle ScholarPubMed
Kvac, M., Hofmannova, L., Bertolino, S., Wauters, L., Tosi, G. and Modry, D. (2008). Natural infection with two genotypes of Cryptosporidium in red squirrels (Sciurus vulgaris) in Italy. Folia Parasitologica 55, 9599.CrossRefGoogle ScholarPubMed
Peng, M. M., Meshnick, S. R., Cunliffe, N. A., Thindwa, B. D., Hart, C. A., Broadhead, R. L. and Xiao, L. (2003). Molecular epidemiology of cryptosporidiosis in children in Malawi. Journal of Eukaryotic Microbiology 50 (Suppl), 557559.CrossRefGoogle ScholarPubMed
Silverlas, C., Mattsson, J. G., Insulander, M. and Lebbad, M. (2012). Zoonotic transmission of Cryptosporidium meleagridis on an organic Swedish farm. International Journal for Parasitology 42, 963967. doi:10.1016/j.ijpara.2012.08.008.CrossRefGoogle Scholar
Spano, F., Putignani, L., Mclauchlin, J., Casemore, D. P. and Crisanti, A. (1997). PCR-RFLP analysis of the Cryptosporidium oocyst wall protein (COWP) gene discriminates between C. wrairi and C. parvum, and between C. parvum isolates of human and animal origin. FEMS Microbiology Letters 150, 209217.CrossRefGoogle Scholar
Sulaiman, I. M., Morgan, U. M., Thompson, R. C., Lal, A. A. and Xiao, L. (2000). Phylogenetic relationships of Cryptosporidium parasites based on the 70-kilodalton heat shock protein (HSP70) gene. Applied and Environmental Microbiology 66, 23852391.CrossRefGoogle ScholarPubMed
Sulaiman, I. M., Lal, A. A. and Xiao, L. (2001). A population genetic study of the Cryptosporidium parvum human genotype parasites. Journal of Eukaryotic Microbiology (Suppl.), 24S27S.Google ScholarPubMed
Sulaiman, I. M., Lal, A. A. and Xiao, L. (2002). Molecular phylogeny and evolutionary relationships of Cryptosporidium parasites at the actin locus. Journal of Parasitology 88, 388394.CrossRefGoogle ScholarPubMed
Svenungsson, B., Insulander, M., De Jong, B. and Lebbad, M. (2009). [Cryptosporidiosis – strongly underdiagnosed diarrheal disease. Specimen taking should be increased in unclear diagnoses.] In Swedish. Lakartidningen 106, 18101813.Google Scholar
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28, 27312739. doi: 10.1093/molbev/msr121.CrossRefGoogle ScholarPubMed
Xiao, L. (2010). Molecular epidemiology of cryptosporidiosis: an update. Experimental Parasitology 124, 8089. doi: 10.1016/j.exppara.2009.03.018.CrossRefGoogle ScholarPubMed
Xiao, L., Morgan, U. M., Limor, J., Escalante, A., Arrowood, M., Shulaw, W., Thompson, R. C., Fayer, R. and Lal, A. A. (1999). Genetic diversity within Cryptosporidium parvum and related Cryptosporidium species. Applied and Environmental Microbiology 65, 33863391.CrossRefGoogle ScholarPubMed
Xiao, L., Limor, J., Morgan, U. M., Sulaiman, I. M., Thompson, R. C. and Lal, A. A. (2000). Sequence differences in the diagnostic target region of the oocyst wall protein gene of Cryptosporidium parasites. Applied and Environmental Microbiology 66, 54995502.CrossRefGoogle ScholarPubMed
Xiao, L., Bern, C., Limor, J., Sulaiman, I., Roberts, J., Checkley, W., Cabrera, L., Gilman, R. H. and Lal, A. A. (2001). Identification of 5 types of Cryptosporidium parasites in children in Lima, Peru. Journal of Infectious Diseases 183, 492497. doi:10.1086/318090.CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Lebbad Supplementary Material

Supplementary Data

Download Lebbad Supplementary Material(PDF)
PDF 251.4 KB