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Abstract

Background. Reward can influence cognitive control; however, dysfunctional interactions
between reward and cognitive control in adolescents with major depressive disorder (MDD)
remain unclear.

Methods. We recruited 35 adolescents with MDD and 29 healthy controls (HC) who completed
the AX version of the Continuous Performance Test (AX-CPT) under reward and non-reward
conditions, while undergoing functional Near-Infrared Spectroscopy (fNIRS).

Results. Adolescents with MDD exhibited slower response times and higher error rates
compared to healthy controls. Under reward conditions, they responded more quickly but
made more errors. Hierarchical Drift Diffusion Modeling (HDDM) revealed that adolescents
with MDD showed a reduced starting bias toward more rewarding responses and a broader
decision threshold in reward contexts. Neuroimaging results indicated that the MDD group
showed diminished activation differences in the left dorsolateral prefrontal cortex (DLPFC), left
ventrolateral prefrontal cortex (VLPFC), and right VLPFC in response to cues requiring high
versus low cognitive control. Additionally, they exhibited weaker functional connectivity
between these regions during reward-related cognitive control. Correlation analyses further
showed that greater anhedonia severity was associated with poorer behavioral performance and
less flexible activation in the prefrontal cortex.

Conclusions. Cognitive control impairments in depressed adolescents may be related to
dysfunction in the motivational system. Our findings provide behavioral, computational, and
neural evidence for the Expected Value of Control (EVC) theory. Diminished reward sensitivity
and inflexible cognitive control may jointly contribute to these deficits, highlighting the
importance of considering motivational factors in the diagnosis and intervention of cognitive
control impairments in adolescents with depression.

Introduction

The increasing rates of depression among adolescents represent a significant global mental health
concern (Avenevoli, Swendsen, He, Burstein, & Merikangas, 2015; Mojtabai, Olfson, & Han,
2016). The onset of depression during this critical developmental period adversely affects
functioning across multiple domains, including increased risk of academic failure, truancy,
family conflict, substance abuse, and the persistence and recurrence of depression into adulthood
(Kessler, Avenevoli, & Merikangas, 2001). Cognitive control refers to a set of processes that
enable the flexible adaptation of thought and behavior in accordance with current goals (Miller &
Cohen, 2001). Impaired cognitive control has been observed in adolescents with Major Depres-
sive Disorder (MDD) (Cataldo, Nobile, Lorusso, Battaglia, & Molteni, 2005; Peterson et al., 2022;
Romer & Pizzagalli, 2021; Vijayakumar et al., 2015; Wilkinson & Goodyer, 2006). While deficits
in cognitive control are central to understanding and treating depression (Beloe & Derakshan,
2019; De Voogd, Wiers, Zwitser, & Salemink, 2016), existing research has primarily focused on
charting these deficits, with limited attention to their underlying mechanisms. To address this
gap, the present study draws on motivational theories of cognitive control to examine how reward
modulates cognitive control processes in adolescents with depression.

Building on this framework, the Expected Value of Control (EVC) theory offers a mechanistic
perspective, suggesting that such deficits in depression may stem from altered expectations about
the value of exerting control (Grahek, Shenhav, Musslick, Krebs, & Koster, 2019). This model
conceptualizes cognitive control as a decision-making process involving the allocation of control,
a process influenced by motivational factors, with reward playing a critical role (Shenhav,
Botvinick, & Cohen, 2013). When deciding whether to exert cognitive control, individuals weigh
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the anticipated reward against the effort cost required to obtain it,
thereby forming an evaluation of the expected value of control
(Fromer, Lin, Wolf, Inzlicht, & Shenhav, 2021). Individuals tend
to allocate cognitive control resources when the anticipated payoft
outweighs the cost; otherwise, such allocation is less likely
(Shenhav, Fahey, & Grahek, 2021). Previous studies have consist-
ently found that depressed adolescents exhibit decreased reward-
related brain responses during both the anticipation and feedback
phases (Auerbach et al., 2021; Forbes et al., 2008; Rzepa, Fisk, &
McCabe, 2017; Sharp et al., 2014; Stringaris et al., 2015; Webb et al.,
2016), potentially reflecting reduced motivation to seek rewards or
greater difficulty in experiencing pleasure during reward processing
(Kujawa & Burkhouse, 2016). Consequently, depressed adolescents
may underestimate anticipated rewards and overestimate the effort
costs associated with exerting control, resulting in diminished
expectations about the expected value of control. The reduced
EVC decreases the likelihood of allocating cognitive control,
thereby impairing task performance. Recent empirical evidence
has provided initial validation for the EVC framework. For example,
Toobaei, Taghavi, Goodarzi, Sarafraz, and Jobson (2023) reported
significantly reduced EVC in individuals with MDD. A subsequent
study demonstrated that depressed adults exhibited lower accuracy
under high-reward conditions relative to both healthy controls
and their own performance in low-reward contexts, suggesting a
reduced EVC and impairments in reward-modulated cognitive
control (Toobaei, Taghavi, & Jobson, 2025). However, these
findings have been limited to adult samples. Whether such
deficits manifest during adolescence remains insufficiently
explored, making it crucial to clarify their developmental onset
for extending the theoretical relevance of the EVC framework to
adolescents.

Adolescence represents a critical developmental period charac-
terized by the rapid maturation of both the reward system and the
prefrontal cognitive control system (Casey, Jones, & Hare, 2008;
Somerville & Casey, 2010). Prior research has emphasized that
achieving a functional balance between these systems constitutes
a central developmental task during this stage (Ernst & Fudge,
2008). However, aberrant development or dysregulation within
either system has been implicated in the pathogenesis of depression
(Davey, Yicel, & Allen, 2007). This vulnerability is hypothesized to
be particularly pronounced during adolescence and may be char-
acterized by two core features: reduced neural responsiveness to
rewards and impaired engagement of the prefrontal cortex during
cognitive control tasks (Forbes & Dahl, 2011). Empirical studies
have shown that adolescents with depression exhibit diminished
enhancement of cognitive control under reward conditions
(Hardin, Schroth, Pine, & Ernst, 2007; Jazbec, McClure, Hardin,
Pine, & Ernst, 2005) and are less likely to select high-reward options
compared to their non-depressed counterparts (Forbes, Shaw, &
Dahl, 2006). However, these studies have primarily conceptualized
the impairment as a reduced capacity to exert control, rather than
viewing cognitive control as a decision-making process, as posited
by the EVC framework. Consequently, existing research has pre-
dominantly relied on behavioral measures such as accuracy and
response times, which may not fully capture the motivational
dynamics involved in control allocation.

The Drift-Diffusion Model (DDM), with over 45 years of
application (Ratcliff, 1978), is a well-established tool for investi-
gating mechanisms of reward processing and cognitive control
(Ballard, Waskom, Nix, & D’Esposito, 2024; Dillon et al., 2024;
Lam et al., 2021; Liu et al., 2022). By modeling full response times
(RT) distributions for both correct and incorrect responses, the
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DDM enables a more nuanced analysis of decision-making and
captures trial-level variability. Prior research has demonstrated
that the DDM can reveal cognitive deficits often overlooked by
traditional analyses of mean RT and accuracy (Pe, Vandekerc-
khove, & Kuppens, 2013; White, Ratcliff, Vasey, & McKoon,
2010). Reward-related cognitive control reflects a dynamic,
evidence-based decision-making process in which individuals
adapt response strategies based on task demands and anticipated
outcomes. Following the development of the EVC framework,
researchers have increasingly recognized the potential value of
integrating EVC with the DDM, as both frameworks conceptual-
ize control allocation as a computational decision-making process
(Grahek, Musslick, & Shenhav, 2020; Musslick, Shenhav, Botvi-
nick, & Cohen, 2015). The DDM captures this process by decom-
posing observable behavior into four key parameters: drift rate,
decision threshold, starting bias, and non-decision time. Empir-
ical studies have linked greater depressive symptom severity with
reduced drift rate (Pitliya, Nelson, Hajcak, & Jin, 2022), elevated
decision thresholds (Lawlor et al., 2019; Shen et al., 2024; Vaghi
et al,, 2022), and altered starting biases (Pitliya et al., 2022),
suggesting the utility of the DDM in elucidating the cognitive
mechanisms underlying depressive symptomatology within the
context of reward.

This study combines the AX version of the Continuous Per-
formance Test (AX-CPT) with functional Near-Infrared Spectros-
copy (fNIRS) to investigate how reward conditions influence
cognitive control processes in adolescents with MDD. The lateral
prefrontal cortex (LPFC) has been implicated in implementing
control signals to support task performance (Dixon & Christoff,
2012; Jimura, Locke, & Braver, 2010; Ott & Nieder, 2019).
Specifically, it adjusts the intensity of these signals based on
cost—benefit evaluations, facilitating the adaptive regulation of
cognitive control (Shenhav, Cohen, & Botvinick, 2016). Both the
dorsolateral (DLPFC) and ventrolateral prefrontal cortex
(VLPFC) have been empirically implicated in implementing
reward-enhanced control processes (Kennerley & Wallis, 2009;
Savine & Braver, 2010). The AX-CPT paradigm allows for the
differentiation between proactive and reactive control. Proactive
control involves the sustained maintenance of goal-relevant
information in anticipation of future demands, whereas reactive
control entails resolving interference as it arises during task
execution (Braver, 2012). Sustained activation in the DLPFC is
associated with proactive control (Braver, 2012; Braver, Paxton,
Locke, & Deanna, 2009), while the VLPFC supports preparatory
processes underlying reactive response inhibition and contrib-
utes to flexible cognitive adjustments. Findings regarding
DLPFC and VLPFC activation in depressed adolescents during
cognitive control tasks have been inconsistent. While some
studies report reduced DLPFC activation (Colich, Foland-Ross,
Eggleston, Singh, & Gotlib, 2015; Halari et al., 2009), a meta-
analysis focusing on adolescent depression found increased
activation in both the DLPFC and VLPFC (Miller, Hamilton,
Sacchet, & Gotlib, 2015). Notably, these tasks did not involve
reward contexts. Therefore, it remains unclear how adolescents
with MDD modulate prefrontal activation during reward-
related cognitive control. It is plausible that reward-related
flexibility within these prefrontal regions are compromised,
reflecting a reduced capacity to adapt cognitive control based
on reward. This possibility provides additional neural evidence
in support of the EVC theory.

Building on previous findings, we formulated the following
hypotheses. Firstly, we anticipated that adolescents with MDD
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would exhibit poorer behavioral performance compared to healthy
controls (HC) in both reward and non-reward conditions. Second,
we hypothesized that differences between the MDD and HC groups
would be more pronounced in the reward condition due to aberrant
reward processing and reduced EVC in MDD patients. Addition-
ally, we hypothesized that the MDD group would exhibit slower
drift rates, wider decision thresholds, and less biased starting points
toward accuracy under reward conditions. Lastly, given the mixed
evidence regarding DLPFC and VLPFC activation during cognitive
tasks in adolescents with MDD, we postulated that adolescents with
MDD would show less flexible modulation of prefrontal activation
in response to reward-based cognitive demands, without specifying
the direction of activation differences.

Methods
Participants

Participant recruitment was guided by a power analysis con-
ducted using G*Power 3.1.9, which determined that a sample
size of 56 would be adequate to achieve a power level (1 — B) of
0.95, based on anticipated effect sizes from a previous study on
rewarded cognitive control (Chaillou, Giersch, Hoonakker,
Capa, & Bonnefond, 2017). Seventy-four adolescents (aged
12-18 years) participated in this study, including 42 patients
with a primary DSM-5 diagnosis of MDD and 32 healthy
controls (HC). Participants were recruited through flyers posted
at Chengdu Fourth People’s Hospital and nearby schools, as
well as through online advertisements (e.g., via WeChat public
accounts). As in previous studies involving adolescents and
social rewards (Davis et al., 2022), each participant received a
compensation of 50 RMB for completing the tasks. If necessary,
additional subsidies for transportation and meals were also
provided. The diagnosis of MDD was confirmed by licensed
psychiatrists based on DSM-5 criteria and a Hamilton Depres-
sion Rating Scale (HAMD) score of >18. HCs were eligible if
neither they nor their first-degree relatives had a current or past
diagnosis of MDD. Exclusion criteria for all participants
included any current or lifetime physical disorders (n = 1 from
the MDD group), neurological disorders, or other Axis I dis-
orders (n = 4, all from the MDD group). Due to technical issues
affecting fNIRS data quality, five participants were excluded
from the analysis (two from the MDD group and three from the
HC group), resulting in a final analysis of 64 participants (see
Table 1). Written informed consent was obtained from all
participants and their legal guardians, and the study protocol
was approved by the Ethics Committee of the Fourth People’s
Hospital of Chengdu.

Clinical assessments

Prior to the experiment, participants completed two question-
naires: (1) The Beck Depression Inventory-II (BDI-II; Beck,
Steer, Ball, & Ranieri, 1996), consisting of 21 items measuring
depressive symptom severity. Higher total scores indicate more
severe depression levels. (2) The Behavioral Inhibition System
and Behavioral Activation System Scale (BAS/BIS; Carver &
White, 1994), comprising 18 items assessing BAS sensitivity
and six items evaluating BIS sensitivity. BAS items can be cat-
egorized into three domains: “Reward Responsiveness,” “Drive,”
and “Fun Seeking,” each containing six items. Elevated scores
indicate greater BAS/BIS sensitivity.
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Table 1. Demographical characteristics of the MDD and HC group (M + SD)

MDD (n = 35) HC (n =29) Statistics
Age (year) 153+15 15.8+ 0.6 p=0.102 t=—1.668
Gender (M:F) 6:29 9:20 p=0.192  4=1706
Medication 35:0° - - -
(yes: no)
In-hospital 25: 10 - - -
(yes: no)
In-hospital 15.7+6.7 = = =
Period (day)
BDI-II 34.4+13.3 42 +3.6 p <0.001 t=12.830
BAS-R 3.0+£0.7 3.6+0.3 p <0.001 t=4.632
BAS-D 2307 3.1+£04 p <0.001 t=5.049
BAS-FS 26+0.7 3.0£04 p = 0.005 t=20912
BIS 3.4+0.6 3.1+£0.5 p =0.015 t=— 2510

Abbreviations: BDI: Beck Depression Inventory; BAS-R: Behavioral Activation System-Reward;
BAS-D: Behavioral Activation System-Drive; BAS-FS: Behavioral Activation System-Fun
Seeking; BIS: Behavioral Inhibition System.

2See Supplementary Table S1 in Supplementary Materials A for the medications.

AX version of continuous performance task (AX-CPT)

The AX Continuous Performance Task (AX-CPT), implemented
using E-Prime software (Psychology Software Tools, Inc., Pitts-
burgh, PA), was employed in this study to assess cognitive control
processes. In this paradigm, participants were presented with two
types of cues (A or B) followed by two types of probes (X or Y),
resulting in four possible cue—probe combinations: AX, AY, BX,
and BY trials. Participants were instructed to make a target
response only to AX trials and a non-target response to all other
trial types (i.e., AY, BX, and BY). Cue B allowed participants to
determine the correct response immediately, placing minimal
demand on cognitive control. In contrast, when cue A appeared,
participants needed to wait for the subsequent probe to identify the
correct response, thus imposing greater cognitive demands.

In the present study, AX trials constituted 70% of the total trials,
with the remaining trials (AY, BX, and BY) occurring at frequencies
of 10%, 12.5%, and 7.5%, respectively (Lesh et al., 2015). Due to the
high frequency of AX trials, participants were likely to develop a
response bias upon encountering either the A cue or the X probe.
Consequently, the task requires participants to engage both pro-
active and reactive control mechanisms. Upon presentation of a cue
(A or B), participants are required to actively maintain cue-related
information throughout the delay period, reflecting the use of
proactive control. This enables them to prepare for the forthcoming
probe. Once the probe (X or Y) is presented, participants must
engage reactive control to determine whether the response should
be a target or non-target.

Each trial begins with the presentation of a fixation cross for a
jittered duration of 300, 600, or 900 ms, followed by the cue, which
is displayed for 300 ms. A 4700-ms delay then ensues, during which
participants are expected to maintain the cue information using
proactive control. The probe is subsequently presented for 300 ms,
followed by a blank screen lasting 1700 ms. After the probe appears,
participants are required to engage in reactive control to evaluate
the probe and determine the correct response. Participants were
instructed to press the “F” key for a target response and the “J” key
for a non-target response. The assignment of response keys was
counterbalanced across participants. Feedback is presented for
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1000 ms, followed by a jittered inter-trial interval of 3500 to
4500 ms. The total duration of each trial ranges from approximately
11,800 to 13,400 ms (Braver et al., 2009) (see Supplementary Figure S1
in Supplementary Materials B).

The task comprised two Non-reward and two Reward blocks,
presented in an alternating order. Each block consisted of 40 trials,
preceded by a 20-second fixation period. The task duration was
approximately 20 min. In the Reward block, participants were
instructed to respond as quickly as possible within a preset time
frame to earn rewards. The preset time was determined based on
the average response time during the practice session for the same
paradigm (10 trials). To enhance the task’s ecological validity and
account for social-processing deficits in depression (Sequeira, Silk,
Hutchinson, Jones, & Ladouceur, 2021), we present a thumbs-up
image, commonly used in social media and research (Davis et al.,
2022; Demurie, Roeyers, Baeyens, & Sonuga-Barke, 2012; Liang
et al., 2023). Correct and timely responses were rewarded with a
picture of a thumbs-up, whereas incorrect or slow responses were
followed by the display of a two-bar equals sign. Conversely, in the
Non-reward block, participants received feedback displaying the
two-bar equals sign, regardless of their response.

Functional near-infrared spectroscopy (fNIRS) data acquisition
and analysis

fNIRS is a non-invasive method characterized by high temporal
resolution and reasonable spatial resolution, making it suitable for
both adolescent populations and individuals with neurological
disorders (Westgarth, Hogan, Neumann, & Shum, 2021). In this
study, data were acquired using the NIRSport system (NIRSport,
NIRx Medical Technologies, Glen Head, NY, USA) emitting near-
infrared light at two wavelengths (typically 760 nm and 850 nm) to
measure changes in oxyhemoglobin and deoxyhemoglobin con-
centrations in the cortical regions. Data were recorded continu-
ously at a sampling rate of 7.81 Hz. Eight sources and seven
detectors were positioned to cover the prefrontal cortex, forming
a total of 20 channels. The average distance between sources and
detectors was approximately 3 cm. Based on the channel locations
derived from the 10-20 system, the 20 channels in the prefrontal
cortex were divided into five Regions of Interest (ROIs), including
the right ventrolateral prefrontal cortex (rVLPFC), left ventrolat-
eral prefrontal cortex (IVLPFC), right dorsolateral prefrontal
cortex (rDLPFC), left dorsolateral prefrontal cortex (IDLPFC)
and central prefrontal cortex (Gilman et al., 2022). The corres-
ponding relation between ROIs and channels was as follows:
IDLPFC included channels 1, 2, and 5; rDLPFC included channels
15, 17, and 18; IVLPFC included channels 3, 4, and 6; rVLPFC
included channels 16, 19, and 20 (Supplementary Figure S2 in
Supplementary Materials C).

Raw {NIRS data underwent preprocessing using nirsLAB soft-
ware (http://nirx.net/nirslab-1/) (Dou, Lei, Cheng, Wang, & Lep-
péanen, 2020). Preprocessing involved the following steps: first,
spike artifacts were smoothed using a semi-automated procedure,
and contaminated data were replaced by linear interpolation. Next,
discontinuities exceeding 5 SD from the variance of the rest of the
data were automatically detected and removed. Subsequently, the
fNIRS data were bandpass-filtered (0.01-0.2 Hz) to remove high-
frequency physiological artifacts (including cardiac and respiratory
signals) as well as low-frequency drift, consistent with methods
used in studies of depressed adolescents (Liu et al., 2023; Liu, Wang,
Wang, Xiao, & Shi, 2022) and cognitive control tasks (Ding et al.,
2024; Ding, Wang, Wang, Li, & Li, 2023). The data were then
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converted into concentration changes of oxygenated hemoglobin
(HbO) and deoxygenated hemoglobin (HbR) using the modified
Beer—Lambert law (Cope & Delpy, 1988). Given that HbO exhibits
a higher signal-to-noise ratio compared to HbR and offers better
contrast-to-noise ratio, only HbO concentration changes were
analyzed (Strangman, Culver, Thompson, & Boas, 2002). Finally,
in line with previous studies (Holper, Brincke, Wolf, & Murphy,
2014; Lei & Rau, 2022), A[HbO] was obtained by subtracting the
20-second resting baseline before each block from the 5-second
post-stimulus period. We normalized signals as Z-scores, because
the absolute concentration values significantly differed among
participants. We obtained the Z-scores (z) by the A[HbO] divided
by the standard deviations during the baseline period (o):
z = A[HbO]/o (Dou et al., 2020).

Statistical analysis

For the behavioral data, we analyzed the overall error rates and
response times. A 2 (Group: MDD vs. HC) x 2 (Condition: Non-
Reward vs. Reward) repeated measures analysis of variance
(ANOVA) was conducted for both indices. When Mauchly’s test
indicated a violation of the sphericity assumption, the Greenhouse—
Geisser correction was applied to adjust the degrees of freedom. A
significant interaction effect was followed up with simple effects
analyses to examine group differences under each condition and
condition differences within each group. Pairwise comparisons
were Bonferroni-corrected, with the significance level set at
a = 0.05. Additionally, the AX-CPT task allowed for the analysis
of error rates and RTs across the four cue-probe conditions. There-
fore, a 2 (Group: MDD vs. HC) x 2 (Condition: Non-Reward
vs. Reward) x 4 (Cue-Probe Condition: AX vs. AY vs. BX vs. BY)
repeated measures ANOVA was conducted for both indices. Results
of these analyses are provided in Supplementary Materials D.

For the fNIRS data, the average A[HbO] values from the three
channels interfacing with the left and right hemispheres of
the DLPFC and VLPFC were computed separately. Given that
the neural response during cue processing was used to detect the
utilization of proactive cognitive control, a 2 (Group: MDD
vs. HC) x 2 (Condition: Non-Reward vs. Reward) x 2 (Cue: A
vs. B) repeated measures ANOV A was performed on the four ROI
regions. To account for multiple comparisons, the significance
level was adjusted using Bonferroni corrections, with a threshold
p value of 0.0125 (0.05/4).

HDDM analysis

The Hierarchical Drift Diffusion Model (HDDM; Wiecki, Sofer, &
Frank, 2013) was applied to model response times (RT) distribu-
tions in a reward-modulated AX-CPT task. This Bayesian approach
estimates latent cognitive parameters from full RT distributions,
accounting for both group and individual variability. Based on prior
studies (Dillon et al., 2024; Pitliya et al., 2022), we expected evidence
accumulation to vary across groups and reward conditions, so
models were fit separately for each using Markov Chain Monte
Carlo (MCMC) sampling with 5,000 iterations and 2,500 burn-in
samples. Convergence was assessed using the Gelman-Rubin R-hat
statistic, with values below 1.1 indicating successful convergence.
Model comparison was conducted using the Deviance Information
Criterion (DIC), with the model having the smallest DIC value
considered the best fit. The model, including decision threshold (a),
starting point (z), and non-decision time (t), provided the best fit
(DIC = 1631.06). Accordingly, our analysis focused on these three
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key parameters. To examine group or condition differences, we
used Bayesian inference, which allows us to directly estimate the
probability that one group differs from another based on the
observed data (Giir et al., 2020; Shen et al., 2024). We reported
these results as posterior probabilities (PP) for the hypotheses of
interest. A posterior probability of 0.95 or higher was considered
statistically significant (Kruschke, 2021).

In the AX-CPT task, participants were required to accumulate
evidence about the cue-probe pairing in order to respond with
either a target response (AX) or a non-target response (AY, BX,
BY). The decision threshold represents the amount of evidence
required before making a choice. In this task, participants were
instructed to respond both accurately and quickly to gain a reward.
Thus, a lower decision threshold may reflect a strategic adjustment
to meet the dual demands of speed and accuracy in pursuit of
rewards. The starting point captures initial response bias, which
may be influenced by the higher frequency of A cues, potentially
favoring responses toward the target boundary. Moreover, the
higher frequency of A cues makes these cues more rewarding.
Non-decision time accounts for processes outside the decision
stage, such as stimulus encoding and motor response execution.
Lower non-decision time may reflect more efficient perceptual or
motor processing (Figure 1).

Results
Behavioral results

Error rates: The analysis revealed a significant main effect of
Condition (F (1, 62) = 12.208, p = 0.001, nzp = 0.165): the error
rates in the Reward condition (M + SD: 0.092 + 0.086) were higher
than those in the Non-Reward condition (0.059 + 0.053). The main
effect of Group was significant (F (1, 62) = 17.386, p < 0.001,
nzp = 0.219): the error rates in MDD group (0.102 + 0.009) were
higher than those in HC group (0.044 + 0.010). The interaction
effect of Condition and Group was also significant (F (1, 62) =
4.484, p = 0.038, ;72p = 0.067). Further simple effects analyses

showed that in the Non-Reward condition, the MDD group exhib-
ited significantly higher error rates than the HC group (F(1, 62) =
9.157, p = 0.004, 7°, = 0.129). In the Reward condition, the MDD
group also showed significantly higher error rates than the HC
group (F(1, 62) = 15253, p < 0.001, 7°, = 0.197). Notably, the
difference between the MDD and HC groups was larger in the
Reward condition (Figure 2A).

Response Times (RT) A significant main effect of Condition
was found (F (1, 62) = 49.870, p < 0.001, 1721, = 0.446): the RT in the
Reward condition (495.599 + 11.999) was faster than that in the
Non-Reward condition (619.150 + 21.964). The main effect of
Group was significant (F (1, 62) = 28.196, p < 0.001, 112p =0.313):
the RT in MDD group (639.062 + 20.711) was slower than that in
HC group (475.687 + 22.753). The interaction effect of Condition
and Group was also significant (F (1, 62) = 8.440, p = 0.005,
772 » = 0.120). Simple effects analyses revealed that both the MDD
group (F(1, 62) = 54.809, p < 0.001, nzp = 0.469) and HC group
(F(1, 62) = 7.898, p = 0.007, 1721, =0.113) displayed faster RT in the
Reward condition compared to the Non-Reward condition. As
expected, the MDD group exhibited slower RT than the HC group
in both the Non-Reward (F(1, 62) = 23.778, p < 0.001, 1721, =0.277)
and Reward condition (F(1, 62) = 21.996, p < 0.001, nzp =0.262)
(Figure 2B).

HDDM parameters

Both groups showed an initial bias toward the target boundary in
the Reward condition (MDD = 0.624; HC = 0.656). The MDD
group exhibited a lower bias than the HC group in this condition
(posterior probability [PP] = 0.996) and also showed lower bias in
the Reward compared to the Non-Reward condition (PP > 0.999).
Regarding decision thresholds, the MDD group demonstrated
significantly larger thresholds than the HC group in both the
Non-Reward (PP > 0.999) and Reward conditions (PP = 0.999).
Additionally, both groups showed higher thresholds in the
Non-Reward condition compared to the Reward condition
(MDD: PP > 0.999; HC: PP = 0.995). Both groups also exhibited

“Target Response” boundary

Non-decision
time (t)

>

Decision
threshold (a)

“Non-Target Response” boundary

>~
>

TIME

Figure 1. The Hierarchical Drift Diffusion Model (HDDM). The HDDM models decisions as evidence accumulation towards response boundaries, with a decision threshold
determining when a response is made. In this experiment, participants responded to target (AX) or non-target (AY, BX, and BY) cues. A lower decision threshold indicates that less
evidence is required before responding, suggesting a strategic shift toward faster responses in the context of social rewards. The starting point captures initial bias, influenced by A
cues frequency or reward presence, while non-decision time accounts for processes like stimulus encoding and motor execution. The Bayesian framework allows for enhanced
parameter estimation across reward conditions and groups, providing insights into how reward influences decision-making and cognitive efficiency.
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longer non-decision time in the Non-Reward condition than
in the Reward condition (MDD: PP = 0.996; HC: PP = 0.975)
(refer to Supplementary Table S3 and Supplementary Figure S3 in
Supplementary Materials E).

fNIRS results
Activation results

IDLPFC: The main effect of Cue was significant (F (1, 62) = 15.537,
p < 0.001, 7°, = 0.200): A cues (0.148 + 0.512) elicited greater
activation compared to B cues (0.086 + 0.531). Notably, a signifi-
cant three-way interaction among Group, Condition, and Cue was
observed (F (1, 62) =12.945, p = 0.001, nzp =0.173). To break down
this three-way interaction, we tested the two-way interaction of Cue
x Group in the Reward and Non-Reward conditions separately.
The interaction effect of Cue x Group was only significant in the
Reward condition (F (1, 62) = 27.778, p < 0.001, ’7217 =0.309). Simple
effects analysis indicated that A cues resulted in significantly greater
activation than B cues in the HC group (F (1, 62) = 59.999, p < 0.001,
7721, =0.492), whereas this difference was not significant in the MDD
group (F (1, 62) = 0.462, p = 0.499, 1721, = 0.007) (Figure 3A).

rDLPFC: The interaction effect between Condition and Cue was
significant (F (1, 62) = 7.153, p = 0.010, nzp =0.103). Simple effects
analysis revealed that A cues exhibited greater activation than B
cues in the Reward condition (F (1, 62) = 6.653, p = 0.012,
7721, = 0.097), while the difference was not significant in the Non-
Reward condition (F (1, 62) = 0.901, p = 0.346, 112p = 0.014)
(Figure 3B).

IVLPFC: The interaction effect among Group, Condition, and
Cue was significant (F (1, 62) = 7.918, p = 0.007, nzp =0.113). We
tested the two-way interaction of Cue x Group in the Reward and
Non-Reward conditions separately. The interaction effect of Cue x
Group was only significant in the Reward condition (F (1, 62) =
19.255, p < 0.001, 7°, = 0.237). Simple effects analysis indicated that
A cues resulted in significantly greater activation than B cues in the
HC group (F (1, 62) = 27.109, p < 0.001, ’721> = 0.304), whereas this
difference was not significant in the MDD group (F (1, 62) = 0.638,
p=0427, 7%, = 0.010) (Figure 4A).
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rVLPFC: The main effect of Cue was significant (F (1, 62) =
7.422,p=0.008, 1721, =0.107): A cues (0.191 + 0.528) showed greater
activation than the B cues (0.131 + 0.598). Additionally, the inter-
action effect among Group, Condition, and Cue was significant (F
(1, 62) = 6.477, p = 0.012, 112p = 0.095). We tested the two-way
interaction of Cue x Group in the Reward and Non-Reward con-
ditions separately. The interaction effect of Cue x Group was only
significant in the Reward condition (F (1, 62) = 11.205, p = 0.001,
n°p=0.153). Simple effects analysis indicated that A cues resulted in
significantly greater activation than B cues in the HC group
(F (1, 62) = 30.163, p < 0.001, 1721, = 0.327), whereas this difference
was not significant in the MDD group (F (1, 62) = 1.125, p = 0.293,
112p = 0.018) (Figure 4B).

The functional connectivity results

Our results demonstrated that, in the Reward condition following
A cues, the connectivity between the rDLPFC and rVLPFC
(CH17 vs. CH19, r = 0.153; CH17 vs. CH20, r = 0.274) in the
MDD group was significantly weaker compared to the HC group
(CH17 vs. CH19, r = 0.655, p = 0.003; CH17 vs. CH20, r = 0.750,
p =0.002) (Figure 5A). Furthermore, in the Non-Reward condition
following B cues, the connectivity between rDLPFC and rVLPFC
(CH15 vs. CH19, r = 0.095) in the MDD group was significantly
weaker than in the HC group (CH15 vs. CH19, r = 0.623, p = 0.002)
(Figure 5B).

Correlations between BIS/BAS scores and behavioral,
computational, and neural indicators

Based on the above findings, we conducted correlation analyses to
examine the relationships between BIS/BAS scores and behavioral,
computational, and neural measures. As group differences were
more evident under the reward condition, we report results from
this condition. Lower BAS-R and BAS-D scores were associated
with higher error rates, slower response times, a lower starting bias,
and smaller activation differences in the left DLPFC, left VLPFC,
and right VLPFC. Moreover, better behavioral performance (e.g.,
lower error rates, faster response times, lower decision thresholds,
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higher starting bias) was consistently associated with greater acti-
vation differences in the prefrontal cortex (see Figure 6B).

Discussion

In this study, we combined a reward-related AX-CPT paradigm
with functional Near-Infrared Spectroscopy (fNIRS) to examine
behavioral and neural alterations in adolescents with MDD. We
found that adolescents with MDD showed poorer behavioral per-
formance than healthy controls under both reward and non-reward
conditions, with particularly impaired performance in the reward
context. At the neural level, healthy adolescents exhibited greater
activation differences in the left DLPFC, left VLPFC, and right
VLPEC in response to cues requiring high versus low cognitive
control, whereas adolescents with MDD did not show such differ-
ential activation. Moreover, healthy adolescents demonstrated
stronger functional connectivity between the DLPFC and VLPFC.
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We also found that greater anhedonia severity was associated with
poorer behavioral and neural performance.

Consistent with our hypothesis, adolescents with depression
demonstrated impaired cognitive control, as evidenced by slower
response times and higher error rates, in line with prior research
(Peterson et al., 2022; Romer & Pizzagalli, 2021). This impairment
was more pronounced under the reward condition. Extending these
behavioral findings, the HDDM results revealed altered decision-
making processes, including higher decision thresholds and smaller
starting point biases, suggesting that depressed adolescents require
more evidence before making a decision and are less inclined to
favor the more frequently rewarded response (Pitliya et al., 2022;
Shen etal., 2024). Together, these results indicate deficits in reward-
modulated cognitive control in adolescents with MDD, which are
evident not only in overt behavioral measures, such as accuracy and
response times, but also in deeper impairments in the internal
decision-making process.
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Our results also showed that individuals with depression exhib-
ited higher error rates under the reward condition than under the
non-reward condition, which may reflect mechanisms proposed by
the Expected Value of Control (EVC) theory. In our study, the
reward condition demanded greater cognitive effort to reach the
expected outcome. However, due to their reduced sensitivity to
rewards, as indicated by the BIS/BAS scores, and a generally lower
sense of control over tasks (Pizzagalli, 2014), individuals with
depression tended to overestimate the effort required to attain
rewards. When the perceived cost exceeds the expected payoff,
their evaluation of the expected value of control diminishes, making
them less willing to invest effort. This, in turn, results in suboptimal
allocation of cognitive resources and compromised cognitive con-
trol. Although adolescents with depression responded faster under
the reward condition, this may be because faster responses do not
necessarily require greater cognitive control. This finding aligns
with previous research showing that individuals with depression
are less inclined to expend high effort for high reward (Hershenberg
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et al,, 2016; Horne, Topp, & Quigley, 2021). Moreover, our results
are consistent with findings from adult depression studies (Toobaei
et al,, 2023, 2025). Taken together, the behavioral and computa-
tional modeling results provide converging empirical support for
the EVC framework and suggest that motivational deficits may
contribute to impaired cognitive control in adolescents with
depression.

Distinct group differences emerged in patterns of cognitive
control activation, particularly in proactive control. Healthy ado-
lescents showed differential activation in response to cues signaling
high (A cues) versus low (B cues) cognitive control demands, while
adolescents with depression exhibited no such modulation. Fur-
thermore, healthy adolescents demonstrated stronger functional
connectivity between the VLPFC and DLPFC during A-cue trials.
These differences in activation and connectivity likely reflect
group-level variations in cognitive control flexibility, which is the
capacity to dynamically adjust control allocation in response to
changing task demands. Efficient cognitive control may depend on
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Figure 5. Functional connectivity results under (A) Reward condition and (B) Non-Reward condition. The left panel represents the average functional connectivity matrices
extracted from both groups. Each figure illustrates the functional connectivity matrices for each channel pair of HbO under Non-Reward and Reward conditions following A and B
cues, displayed as 20 x 20 square matrices. The right panel displays the chord diagram, representing the differences in functional connectivity between the two groups under

different reward and cue conditions.

the ability to allocate more resources to demanding tasks while
minimizing effort for easier ones. Supporting this interpretation,
our correlational analysis revealed that greater neural differenti-
ation between A and B cues was associated with better behavioral

https://doi.org/10.1017/5003329172510202X Published online by Cambridge University Press

performance. This pattern aligns with findings from a meta-
analysis, which reported that adolescents with depression showed
heightened activation in both regions during cognitive control tasks
but performed worse (Miller et al., 2015). This discrepancy may
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reflect an inefficient deployment of cognitive control, where ele-
vated activation fails to translate into effective regulation. Notably,
these group differences were observed only under reward condi-
tions, suggesting that impairments or inflexibility in prefrontal
cortex regulation become evident specifically when cognitive con-
trol is motivated by reward. This provides nuanced neural evidence
supporting the EVC framework, indicating that cognitive control
deficits in depression may be linked to reduced adaptability of
prefrontal regulation in reward-motivated contexts.

Our correlational analysis revealed that individuals with more
severe anhedonia exhibited poorer cognitive control under the
reward condition, as reflected in both behavioral performance
and neural activation. This finding further supports the notion that
cognitive control deficits in individuals with depression may be
linked to dysfunctions in the motivational system. Specifically,
BAS/BIS scores reflect elevated levels of anhedonia and a dimin-
ished capacity to anticipate pleasure from reward. The motivational
deficits may be associated with an increased estimation of the
cognitive effort required to obtain potential rewards, which could
in turn reduce the expected value of exerting control. This dimin-
ished valuation manifests behaviorally in impaired cognitive con-
trol, including increased error rates, prolonged response times,
elevated decision thresholds, and a reduced initial bias toward more
rewarding response. At the neural level, it is further characterized
by rigid activation patterns and attenuated functional connectivity
within prefrontal control network. Building on these results, we
propose a refined theoretical model of cognitive control impairments
in adolescents with depression, extending the EVC theory to earlier
developmental stages. Collectively, these findings contribute to con-
structing a comprehensive EVC framework by integrating behav-
ioral, computational modeling, and neuroimaging evidence. This
integrated model advances our understanding of cognitive control
dysfunction in depression from a developmental perspective.

This study also offers several clinical implications. First, while
cognitive control tasks can serve as supplementary tools in the
diagnosis of depression (Insel et al., 2010), some studies have failed
to observe cognitive control impairments in depressed adolescents
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(Colich etal., 2015; Mannie, Harmer, Cowen, & Norbury, 2009; Pan
etal, 2011). Notably, these studies did not include a reward-related
condition. Our findings suggest that cognitive control impairments
in depressed adolescents may be more pronounced under the
reward condition. These task-specific deficits not only support
the use of reward-related cognitive control tasks in diagnostic
practices but also reveal meaningful associations with core symp-
toms, such as anhedonia. Such insights could inform the develop-
ment of more personalized intervention strategies. Second, it is
important to incorporate reward-based approaches into cognitive
control interventions for depression. Current treatments often
focus primarily on improving cognitive control abilities (Beloe &
Derakshan, 2019; Edwards et al., 2022), while overlooking how
patients assess the value of cognitive effort. Enhancing patients’
expectations of rewarding outcomes, such as experiencing positive
emotions after recovery or imagining a more hopeful future, and
reinforcing their belief in their ability to exert control to achieve
these outcomes, may improve motivation and increase treatment
engagement. In addition, although all participants in our study
were diagnosed with severe depression, we also examined how
individual differences in depression severity were associated with
behavioral and neural measures (see Supplementary Materials H).
Under reward condition, higher BDI-II scores were associated with
poorer behavioral and inflexible neural performance. These find-
ings suggest that the observed effects may not be confined to
individuals with severe depression but may also extend across a
broader spectrum of depressive severity. Identifying similar impair-
ments in at-risk individuals could therefore aid in early prevention
or intervention efforts.

Several limitations should be acknowledged. First, all partici-
pants in the MDD group were receiving antidepressant treatment,
with varying durations of use. Therefore, the potential influence of
medication cannot be entirely ruled out. We conducted correl-
ation analyses between medication duration and behavioral,
computational, and neural measures in the MDD group (see
Supplementary Materials I), but found no significant associations.
This is consistent with a prior meta-analysis reporting no
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moderating effect of medication status on reward-related behav-
ior in MDD (Halahakoon et al., 2020). Nonetheless, the inability
to fully control for medication effects remains a limitation. Future
randomized controlled trials directly comparing medicated and
unmedicated patients are needed to more clearly elucidate the
impact of medication on reward-related cognitive control. Sec-
ond, although the ‘thumbs up’ symbol has been widely used in
previous studies (Davis et al.,, 2022; Rudolph, Davis, Skymba,
Modi, & Telzer, 2020), it may not fully capture the dynamics of
real social interactions and lacks the natural, biologically salient
features of stimuli such as smiling faces (Matyjek, Meliss, Dzio-
bek, & Murayama, 2020). While prior research has reported
comparable behavioral effects across various reward types
(Sailer, Wurm, & Pfabigan, 2023), further studies are needed
to investigate how different forms of social and non-social
rewards influence cognitive control, particularly in adolescents
who are highly sensitive to social cues (Telzer, Jorgensen, Prin-
stein, & Lindquist, 2020). Moreover, given the presence of feed-
back after each trial, we did not use the pre-stimulus period as
the baseline, as it may still reflect residual activity from the
preceding trial. Instead, a 20-second resting-state period prior
to each block was used for baseline correction. While this
approach may overlook dynamic changes in brain activation
throughout the task, it was adopted to balance task duration,
minimize participant fatigue, and maintain the reliability of the
fNIRS data. Future studies may explore the use of longer or
additional inter-trial intervals (ITIs) if experimental conditions
permit, to further refine baseline estimation.

In conclusion, this study investigated the neural mechanisms
underlying the interaction between reward and cognitive control in
adolescents with MDD. Our findings indicate that adolescents with
MDD (1) exhibited slower response times and higher error rates
than HC group; (2) faster response times but higher error rates
under reward conditions; (3) demonstrated a reduced starting bias
towards more rewarding response and a broader decision threshold
in reward contexts; and (4) showed inflexible activation patterns in
the DLPFC and VLPFC, along with weakened connectivity between
these regions during proactive control in reward pursuit. Together,
these results provide integrated behavioral, computational model-
ing, and neural evidence within the framework of the Expected
Value of Control (EVC) theory, supporting the notion of impaired
cognitive control in depressed adolescents.
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