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Abstract

In this paper, we generalize the multidimensional discrimination and difficulty parameters in the multi-
dimensional two-parameter logistic model to account for nonidentity latent covariances and negatively
keyed items. We apply Reckase’s maximum discrimination point method to define them in an arbitrary
algebraic basis. Then, we define that basis to be a geometrical representation of the measured construct.
This results in three different versions of the parameters: the original one, based on the item parameters
solely; one that incorporates the covariance structure of the latent space; and one that uses the correlation
structure instead. Importantly, we find that the items should be properly represented in a test space, distinct
from the latent space. We also provide a procedure for the geometrical representation of the items in the
test space and apply our results to examples from the literature to get a more accurate representation of the
measurement properties of the items. We recommend using the covariance structure version for describing
the properties of the parameters and the correlation structure version for graphical representation. Finally,
we discuss the implications of this generalization for other multidimensional item response theory models
and the parallels of our results in common factor model theory.

Keywords: item vector representation; multidimensional item difficulty; multidimensional item discrimination; multidimen-
sional two-parameter logistic model; test space

Multidimensional item response theory (MIRT) models have been widely used since their inception.
The so-called multidimensional two-parameter logistic (M2PL; McKinley & Reckase, 1983) model is
among the most important and widely used ones. This is partly due to its close relationship with the
common factor model (McDonald, 1999) but also to the formal tractability of its formulation. It consists
of a generalization of the two-parameter logistic model (Birnbaum, 1968) to more than one latent trait
(McKinley & Reckase, 1983). Its usefulness lies in describing the variability of the population when the
correct response does not depend on a single trait, more specifically, when a deficit in one trait and
a surplus in another cancel out their effects. Because of this property, it is sometimes referred to as a
compensatory model.

Reckase (1985) argues for the need to take dimensionality into account when characterizing the sta-
tistical properties of multidimensional items. As such, he outlines a general procedure for determining
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their difficulty. Following this procedure, he also derives a multidimensional difficulty (MID) parameter
for M2PL items. This parameter consists of two parts: the first is a scalar value representing the distance
from the origin of the multidimensional latent space to the maximally discriminating locus of the item,
and the second is the direction of the vector from the origin to that same locus. Following a similar
rationale, Reckase and McKinley (1991) derive a multidimensional discrimination (MDISC) parameter
definition for that model.

A crucial assumption that leads to those formulations is that the axes of the latent space are orthog-
onal (Ackerman, 1994b, 2005b; see also Reckase, 1985, p. 404, Equation (7)). Of course, orthogonality
is a property of a geometrical space instead of a latent trait space. Thus, nothing prevents a researcher
from interpreting an abstraction such as a latent trait space, regardless of its structure, as an orthogonal
space—exploratory factor analysis software, such as SPSS (IBM Corp., 2022) or the R package psych
(Revelle, 2024), graphically represents factor loadings on orthogonal axes even after an oblique rotation.
Nevertheless, the assimilation of correlated latent traits to non-orthogonal axes is prevalent in the
common factor literature (see, e.g., Harman, 1976). Indeed, the cosine between any two axes (or, more
generally, vectors) is considered the geometrical equivalent of the correlation between the variables they
represent. This assumption is not easily found in the MIRT literature though, which mostly deals with
uncorrelated dimensions (see Reckase, 2009, for a comprehensive treatment of the topic). This fact is
probably due to the different aspects that these two theoretical programs focus on; factor analysis aims
at a clear interpretation of the latent covariance structure and thus focuses on finding a structure matrix
as simple as possible. The MIRT literature, on the other hand, intends to model responses to certain
stimuli and estimate person scores, with model interpretation secondary in relevance. Nevertheless, the
confluence of the two theoretical approaches into a common modern measurement theory (McDonald,
1999) requires the relaxation of traditional constraints on both approaches. It is not uncommon
to find recent examples of MIRT models where the correlation matrix of the latent dimensions is
freely estimated (see, e.g., Reckase, 2009, pp. 224–228). Despite this, the correspondence between
correlated latent traits and orthogonal coordinate axes is usually implicit in the MIRT literature without
further consideration (see Zhang & Stout, 1999, for a notable exception). Moreover, disregarding this
geometrical interpretation may lead to critical misconceptions about the measurement model.

Take the following as an example: a hypothetical complex item measures two latent traits with equal
validity—that is, its discrimination parameters are equal with value a. Applying Reckase and McKinley’s
(1991) formula, we would find that MDISC =

√
2a. Assume that we apply this item in two groups where,

taken to the extreme, the two measured dimensions are orthogonal in the first group and perfectly
correlated in the second one. While the previous formula seems correct in the first group, one can
intuitively say that, because the two dimensions are perfectly aligned in the second group, the item
MDISC should be the algebraic sum of both components, that is, 2a. Similarly, the correlation between
two simple items, each one measuring a distinct dimension, should be uncorrelated in the first group,
but perfectly correlated in the second one. As the cosine between variables is usually understood as the
geometrical representation of their correlation, the cosine between the two items should be 1 in the
second group. However, using an orthogonal representation would yield null cosines in both cases.

Therefore, the representation of a latent space where the traits are correlated is more accurate on a
geometrical coordinate system with non-orthogonal axes (Ackerman, 2005a, p. 16, fn 1) and (possibly)
nonstandard units, often referred to as general Cartesian coordinates (Harman, 1976, p. 60). Such a
space has the advantage that the basis vectors and the axes they yield have a meaningful interpretation
(albeit counterintuitive, as we will see) in a multivariate statistical sense. The general case of MIRT
model estimation implies estimating possibly nonstandard latent dimensions and nonnull covariances
among them (a more realistic case than an identity matrix). Assuming orthonormality among traits is
usually unrealistic, whether in the cognitive domain (e.g., Reckase, 2009) or in the noncognitive domain
(e.g., Thielmann et al., 2022). Moreover, certain applications impose the estimation of nonidentity
latent covariance matrices (e.g., multigroup equating) even when interpreting the latent dimensions
as substantive constructs is not a goal (for multidimensional linking and equating procedures, see
Chapter 9 in Reckase, 2009). As we will argue, the usual definitions of the MID and MDISC parameters
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do not generalize to the non-orthonormal geometry necessary to accurately represent correlated
latent spaces.

Negative loadings/discrimination parameters are often irrelevant in MIRT applications in the cogni-
tive testing domain. It has been argued that discrimination parameters “are constrained to be positive”
(Ackerman, 1996, p. 315) or that “in an [independent-clusters] solution, the loadings can always
be selected to be positive” (McDonald, 2000, p. 110). However, when such instances of negative
parameters appear, literature often dismisses them as “particularly puzzling” (p. 109) or implicitly
assumes item malfunctioning without further discussion (e.g., Ackerman, 2005a). In the noncognitive
domain, however, the use of so-called negatively keyed items—items that tap the negative pole of a
certain trait and thus usually reverse-scored—is widespread (consider, e.g., the statement “Neglect my
duties” in the Conscientiousness item of the Big-Five Factor Markers; International Personality Item
Pool, n.d.). Instruments that combine positively and negatively keyed items are relatively common,
and complex indicators may even have discrimination parameters with opposite signs for different
latent dimensions (see, e.g., McLarnon et al., 2016, for item parcels with both positive and negative
loadings, on method factors in the case of the negative ones). Following Ackerman (2005a), one can
easily note that a monotonically decreasing probability for a certain dimension is given by a nonpositive
discrimination parameter (and an unchanging probability by a null discrimination parameter, which
also applies to cognitive instruments), contrary to the constraints imposed by Reckase (1985, p. 411)
for determining the MID. However, the multidimensional item parameters can also be defined for items
with monotonically nonincreasing probabilities, as we will see.

The main objective of this paper is thus to provide a generalization of the MIRT parameters in two
aspects: first, in an oblique coordinate system that can be soundly applied to the correlated trait case, and
second, to items that yield monotonic response probabilities, but in the broader sense of unchanging
monotonicity. Additionally, we aim to provide a method for graphically representing these items in the
fashion of Ackerman (1994a) but taking the non-orthogonality of the coordinate axes into account.
To pursue these objectives, we first define the generalization of the M2PL model and describe its scope
of application, which will require introducing some linear algebra concepts and results. Then, we follow
the method outlined by Reckase (1985) and Reckase and McKinley (1991) to obtain the formulation
of the multidimensional parameters. We will introduce three different versions, showing that either the
original or one of the new ones is obtained as a function of how we define and interpret the latent
space. (Interestingly, we will show that, when the latent space basis is defined as a geometric mapping
of the covariance structure, we arrive at a definition of the norm that is given by the Mahalanobis, 2018,
distance.) Next, we discuss their properties, propose a graphical representation method based on the
new formulation, and present two examples of the application of our results. These examples, from the
cognitive and noncognitive domains, respectively, are taken from the MIRT literature: one of them is a
classic dataset, often used to exemplify the use of the M2PL model (Reckase, 2009), and the other one
is an application in marketing research (Tezza et al., 2018). We conclude with a discussion about the
applicability and generalization of our results.

1. Model formulation

Consider a basis B = {b1, . . . ,bn}, with B not necessarily orthonormal. Let Θ be an n-dimensional
latent space in basis B (with n any positive integer), where a respondent is represented by vector θ ∈ Θ.
According to the M2PL model, the probability of a positive response to item i is

P(Xi = 1∣ai,di,θ) = Pi =
1

1+exp[−(aT
i θ+di)]

, (1)

where ai is an n-dimensional vector of discrimination parameters and di is an intercept parameter
related to the location of the item in the latent space.
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We pause here for a few remarks. First, as we are not constraining ourselves to cognitive traits,
we speak of positive instead of correct responses. This may imply giving a correct response indeed, if
we are talking about a cognitive test. However, it may mean endorsing an item (or a certain response
option) in a noncognitive domain. Second, as responses are not necessarily interpreted as correct or
incorrect, parameter di is said to be related to the item location instead of the item difficulty. Third,
although not explicitly stated, ai is a vector of nonnegative real numbers in Reckase (1985)—a decrease
in the probability of a correct response with an increase in ability makes little sense. In our case, ai is
a vector of real numbers; the value of the k-th component aik can be negative if the item is negatively
keyed for latent dimension k. Fourth, ai is expressed in some algebraic basis, which the MIRT literature
implicitly assumes to be the canonical basis (and also the same as B; we will show that neither of these
assumptions is necessary, though). Finally, it is worth highlighting that this model generally assumes
within-item multidimensionality, which will be present whenever more than one component of ai is
nonnull. However, the model can also account for between-item multidimensionality if the ai parameter
only has one nonnull component.

Following Reckase’s (1985) procedure, we must find in the first place the point of maximum slope
of Pi in Θ. Because the slope is dependent on the direction considered, we need to reparameterize
Equation (1) in polar coordinates, as in Reckase (1985). However, Reckase’s Equation (3) implicitly
assumes orthogonality. To contemplate the general case, we need to introduce a few linear algebra results
before proceeding further.

2. Linear algebra of non-orthogonal coordinates

Let us consider an orthonormal basis U = {u1, . . . ,un} in Θ with the dot product as inner product. Let
θB = coordB (θ) and θU = coordU (θ) be the coordinates of any θ ∈ Θ in B and U , respectively, such
that θ = ∑n

k=1 θBk bk = ∑n
k=1 θUk uk. That is, the geometric representation of the algebraic vector θ in each

of the two bases is given by the linear combination of the element vectors of the basis, scaled by the
coordinates of θ in that basis. However, note that, as Θ is originally represented in B, the geometric
coordinates θB of θ in B are equal to the algebraic ones, that is, in Equation (1), we identify θ = θB.

Let P = U(I)B be the change-of-basis matrix between the two bases; then, we have that

θU = PθB. (2)

The k-th column of P is given by the coordinates of bk in basis U ; formally, if bUk = coordU (bk), then

P = [bU1 , . . . ,bUn ] . (3)

As the norm of θ must be invariant (i.e., ∥ θ ∥B = ∥ θ ∥U ), we need to define B in Θ with inner product
⟨,⟩B as

∥ θ ∥2 = (θU)
T

θU = (θB)
T

PTPθB. (4)

Thus, inner product ⟨,⟩B has M=PTP as its Gram matrix, that is, ⟨θj,θk⟩B = θBj
TMθBk , with mjk = ⟨bj,bk⟩

as the j,k-th element of M.

2.1. Test space definition
Let A be the vector space made up by the set of ai vectors, with the operations sum and product
by a scalar as in R

n. We want Reckase’s (1985) definition of the multidimensional parameters in
rectangular coordinates to be a particular case of our more general definition; we can thus consider
an orthonormal basis U∗ in A such that aU

∗

i = coordU∗(ai) corresponds in the model to θU . Since the
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response probability to the M2PL, given by Equation (1), must be invariant with respect to the change of
basis expressed in Equation (2), aT

i θ = aU
∗

i
T

θU = aU
∗

i
T

PθB. Therefore, we find a basis B∗ = {v1, . . . ,vn}
in A defined by

aU
∗

i = (P−1)TaB
∗

i , (5)

where aB
∗

i = coordB∗ (ai) and (P−1)T is a change-of-basis matrix. Note that (P−1)T determinesB∗ and,
as ai is expressed in this basis, its geometric coordinates in B∗ are equal to its algebraic ones, that is, in
Equation (1), we identify ai = aB

∗

i .
As we did withU before, we can conveniently assume that the inner product inU∗ is the dot product.

Then, as both U∗ and U are orthonormal in R
n, to make Reckase’s (1985) definition a particular case

of ours, we can, without loss of generality (i.e., applying an arbitrary rotation), consider that U = U∗.
As P (and consequently PT) is invertible, M is also invertible, and M−1 = P−1(P−1)T . The norm of ai
thus fulfills

∥ ai ∥2 = aU
∗

i
T

aU
∗

i = aB
∗

i
T

P−1(P−1)TaB
∗

i = aB
∗

i
T

M−1aB
∗

i .

Therefore, an inner product ⟨,⟩B∗ with Gram matrix M−1 can be defined, such that ⟨ai,ak⟩ =
aB

∗

i
T

M−1aB
∗

k keeps the norm of ai invariant. Following Zhang and Stout (1999), we shall refer to
space A as the test space, as it is the space where the items (i.e., the test elements) are represented.

2.2. Direction cosines in the latent space
The cosine between two vectors

cosγjk =
⟨θj,θk⟩

∥ θj ∥∥ θk ∥
(6)

is independent of whether the inner product is standard or not. Therefore, to compute the direction
cosine cosγBk of vector θ along dimension k, we plug it into Equation (6) along with the corresponding
basis vector bk:

cosγBk = ⟨bk,θ⟩B
∥ bk ∥∥ θ ∥ =

1
∥ bk ∥

1
∥ θ ∥bBk MθB. (7)

Let us consider now the vector cosγB, made up by the n direction cosines of θ with the basis vectors
of B.

Proposition 1. Under the previously defined conditions, for all θ ∈ Θ,

cosγB = D−
1
2 MθB

∥ θ ∥ (8)

with

D =
⎛
⎜
⎝

∥ b1 ∥2

⋱
∥ bn ∥2

⎞
⎟
⎠
.

Therefore,

θB = M−1D
1
2 cosγB ∥ θ ∥ . (9)
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Proof.
For every k, k = 1, . . . ,n,

cosγBk = ⟨bk,θ⟩B
∥ bk ∥∥ θ ∥ =

coordT
B (bk)MθB

∥ bk ∥∥ θ ∥ = eT
k MθB

∥ bk ∥∥ θ ∥ =
MkθB

∥ bk ∥∥ θ ∥,

with ek is the k-th standard unitary vector and Mk is the k-th row of M.
Therefore, cosγB = D−

1
2 MθB
∥θ∥ and θB = M−1D

1
2 cosγB ∥ θ ∥. ◻

We can also obtain a result that relates the direction cosines of any two bases.
Proposition 2. Let us consider another basis C = {w1, . . . ,wn} in Θ and the inner product ⟨,⟩C that keeps
the norm of the space invariant.

Let cosγU and cosγC be the vectors of direction cosines of θ in U and C, respectively.
Then,

cosγC = H−
1
2 (P−1L)TD

1
2 cosγB, (10)

where

H =
⎛
⎜
⎝

∥ w1 ∥2

⋱
∥ wn ∥2

⎞
⎟
⎠

and L = U(I)C .
Proof.
Let us call θC = coordC (θ), and let L = U(I)C be the change-of-basis matrix, such that θU = LθC .
Then, we have that B(I)C = B(I)UU(I)C = P−1L.
The inner product ⟨,⟩C that keeps the norm invariant is defined by ⟨θj,θk⟩C = θCj

TLTLθCk , and we
define K = LTL.

By Proposition 1, for each case, we have

i. θU = cosγU ∥ θ ∥.
ii. θB = M−1D

1
2 cosγB ∥ θ ∥.

iii. θC = K−1H
1
2 cosγC ∥ θ ∥.

Given i,

θU = PθB = cosγU ∥ θ ∥
and

θU = LθC = cosγU ∥ θ ∥ .
Using ii and iii, we get that

PM−1D
1
2 cosγB ∥ θ ∥= cosγU ∥ θ ∥

and

LK−1H
1
2 cosγC ∥ θ ∥= cosγU ∥ θ ∥ .

Therefore,

PM−1D
1
2 cosγB = LK−1H

1
2 cosγC,

and thus cosγC = H−
1
2 (P−1L)TD

1
2 cosγB. ◻
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3. Model recasting into polar coordinates

Applying Proposition 1 to the model formulation in Equation (1), the M2PL model is expressed in polar
coordinates as

Pi =
1

1+exp[−(aT
i M−1D 1

2 cosγB ∥ θ ∥ +di)]
. (11)

As Equation (11) shows, the inner product matrix is involved in the expression of the model in
polar coordinates. Importantly, this shows that the orthogonality of the latent space in Reckase (1985)
is assumed as early as in Equation 3 (p. 403), as we stated before.

4. Point of maximum slope

Following the procedure outlined by Reckase (1985) and Reckase and McKinley (1991), we first compute
the point of maximum slope by finding the root(s) of the second derivative with respect to ∥ θ ∥.

The slope in direction γB is given by

δPi

δ ∥ θ ∥ = Pi (1−Pi)aT
i M−1D

1
2 cosγB (12)

and

δ2Pi

δ∥ θ ∥2 = (aT
i M−1D

1
2 cosγB)

2
Pi (1−Pi)(1−2Pi), (13)

The root we are interested in is found for Pi = .5 (the other ones occur when Pi equals 0 and 1, which
result in improper values of ∥ θ ∥).

The slope in direction γB = γBi when Pi = .5 is given by

δPi

δ ∥ θ ∥∣Pi=.5
= 1

4
aT

i M−1D
1
2 cosγBi . (14)

Notation aside, these equations differ from Reckase’s (1985) Equations (3)–(6) only in the term M−1D
1
2 .

To compute the direction of the maximum slope, Reckase leverages the property that the sum of the
squared direction cosines equals 1 (see Equation 7 therein, p. 404). However, this assertion implicitly
assumes orthogonal coordinates, so it does not apply in general to cosγB. Instead, we may consider the
direction cosine vector with an orthonormal basis U . Now, applying Proposition 2 (with both L and H
equal to the identity matrix), we obtain

cosγU = (P−1)TD
1
2 cosγB,

P−1 cosγU = M−1D
1
2 cosγB.

(15)

Therefore, substituting in (14),

δPi

δ ∥ θ ∥∣Pi=.5
= 1

4
aT

i P−1 cosγUi (16)

and, by Equation (5),

δPi

δ ∥ θ ∥∣Pi=.5
= 1

4
aU

∗

i
T

cosγUi . (17)
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We are thus considering the direction cosines with respect to the orthonormal axes, so we can just apply
Reckase’s (1985) results, obtaining

cosγUi = aU
∗

i√
aU∗i

TaU∗i

. (18)

Substituting cosγUi (Equation (15)) and aU
∗

i (Equation (5)) by their respective expressions results in the
expression for the direction cosine vector of item i in Θ,

cosγBi = D−
1
2 aB

∗

i√
aB∗i

TM−1aB∗i

, (19)

which gives the direction from the origin to the point where the slope is maximum. Finally, to
determine the signed distance Di from the origin to that point, we solve Equation (11) for Pi = .5 to
get ∥ θ ∥= −di(aT

i M−1D
1
2 cosγBi )

−1
. Using Equation (19),

Di =
−di√

aB∗i
TM−1aB∗i

. (20)

The slope Si at the point defined by Equations (19) and (20) is given by Equation (14). Substituting
Equation (19) in Equation (14), (Reckase & McKinley, 1991),

Si =
1
4

√
aB∗i

TM−1aB∗i , (21)

and thus, we have that

cosγBi = D−
1
2 ai

∥ ai ∥
,

Di =
−di

∥ ai ∥
, (22)

Si =
1
4
∥ ai ∥ .

5. Relationship between test space and latent space

Before presenting the results about the parameters, we make a few remarks regarding the vector space
A. As shown before, this space is an entity by itself, distinct from the latent space Θ. Despite this,
the dot product in the exponent of Equation (1) induces a bijective relationship between their two
sets of respective bases. Explicitly, if θ is represented in basis B with inner product Gram matrix M,
ai is represented in basis B∗ with inner product Gram matrix M−1, for any pair of bases B and B∗.
Only when the two bases are orthonormal, the two spaces share a common inner product (i.e., the dot
product), and thus can be mistaken. However, it is worth noting that, although their representation can
be superimposed in this case, they are still two different spaces.

We make a few observations here. First, the transformation to the orthonormal bases of the two
spaces allows mapping the M2PL parameters interchangeably in the two spaces, by projecting one space
onto the other; that is, we can set

θU = θU
∗

(23)

for any point, θ or ai. This allows representing the coordinates of the latent space vectors in the test space
and, conversely, the coordinates of the discrimination vectors in the latent space: by Equations (2), (5),
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and (23), any coordinate vector θB in B can be expressed in B∗ as

θB
∗

= PTPθB = MθB, (24)

and vice versa. As we can see, the invariance of the model holds, regardless of the space in which we
represent the coordinates.

Second, and most importantly, given that the test space is defined as the set of item parameters (see
Section 2.1), then they should be represented in this space, and not in the latent space. Therefore, we
may find the direction angles of ai in the test space: applying Proposition 1, if αi is the vector of direction
angles of ai, in the test space A, we get

cosαB
∗

i = (D′)−
1
2 M−1aB

∗

i
∥ ai ∥

, (25)

with D′ a diagonal matrix where d′k = m−1
kk = ∥ vk ∥2. As we will see later, this representation is very

convenient, as the direction of the item vectors with respect to the coordinate axes has a direct,
meaningful interpretation.

6. Generalized multidimensional parameters

The multidimensional item location (MIL) is defined as the distance and direction from the origin
to the point of maximum slope (Reckase, 1985). By analogy with the unidimensional case, MDISC is
defined as 4Si (Reckase & McKinley, 1991). Hence, we may define the MIL and MDISC using Equations
(20), (21), and (25). However, as they depend on the inner product matrix M, the choice we make of
this matrix will lead us to different definitions of the parameters.

6.1. Agnostic version
Up to this point, we have derived the maximum slope and its location in the latent space Θ independently
of its basis B. If we assume that B is orthonormal, that is, B ≡ U , P will also be orthonormal, and
thus M = PTP = I. In such a case, the multidimensional item location and discrimination simplify to
the expressions derived by Reckase (1985) and Reckase and McKinley (1991). As these expressions
implicitly assume the orthonormality of B, which bears no meaning besides its pure algebraic purpose,
we shall refer to them as the agnostic version of the parameters:

MDISCag ∶=
√

aT
i ai,

MILag ∶= {
−di

MDISCag
,

ai

MDISCag
} .

6.2. Covariance-based version
On the other hand, we can let the geometrical representation of the latent space Θ account for its
covariance structure, thus givingB a statistical meaning in the context of our MIRT modeling approach.
To do that, we may assume that θB is a random vector distributed with covariance Σ = ΣB = SRS,
being Σ an n-dimensional positive definite matrix, R its corresponding correlation matrix (also positive-
definite), and S a scaling diagonal matrix with s2

kk = σ2
kk (i.e., the variances).

To make the representation of Θ meaningful, the axes in B must have an interpretation in terms of
the latent space structure. Although we do not know, in principle, what the interpretation of a latent
space basis should be, we may assume that it must be somewhat related to the covariance structure.
Therefore, an orthonormal basis should represent independent, standard coordinates. Formally, if ΣU is
the covariance matrix of θU , then ΣU = I, which implies that Equation (2) actually represents a whitening
transformation (Fukunaga, 2013). Given this, ΣU = PΣPT , and thus

Downloaded from https://www.cambridge.org/core. 01 Feb 2026 at 05:10:53, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core
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PΣPT = I,
Σ = P−1(P−1)T = M−1.

Therefore, we may define P such that M =Σ−1; in this case, D′ = S2, resulting in the direction cosines
defined by

cosα = S−1Σai

MDISCΣ
. (26)

Along with the expressions for the MDISC and the signed distance, this results in a covariance-based
version of the parameters:

MDISCΣ ∶=
√

aT
i Σai,

MILΣ ∶= {
−di

MDISCΣ
,

S−1Σai

MDISCΣ
} .

According to Reckase and McKinley (1991), the multidimensional parameters must meet three
conditions for being regarded as a valid generalization of the (unidimensional) item response theory
(IRT) parameters:

1. If an item measures only dimension k, then MDISC = aik.
2. The distance Di has the same relationship with the intercept as bi in the unidimensional case, that

is, di = −DiMDISC.
3. MDISC is four times the maximum slope Si.
The second property derives straightforwardly from Equation (20), and the third one is implicit in

the definition of the MDISC. However, when an item measures only dimension k, simple arithmetic
can show that MDISC = m−1

kk aik. In the covariance-based case, this means that MDISCΣ = σkkaik and,
as σkk is generally different from 1, MDISCΣ does not fulfill the first property (we shall refer to this
property as scale invariance, henceforth). Nevertheless, MDISCΣ can be interpreted as a scaled version
of the parameter, with the standard deviation of the corresponding dimension as a scaling factor.
This transformation may be made in the unidimensional case as well, thus finding a standard-metric
discrimination parameter (i.e., referred to a unitary variance space). Moreover, it is important to notice
that, when the latent trait inner product Gram matrix is defined as M =Σ−1, the norm of a trait vector in
the latent space is given by the Mahalanobis distance, that is, ∥ θ ∥=

√
θTΣ−1θ (Mahalanobis, 2018).

6.3. Correlation-based version
Despite MDISCΣ not being scale-invariant, we have argued that it is still a valid generalization of the
IRT parameters. However, it may be convenient to find yet another generalization, one that accounts for
the latent space structure while still fulfilling this property. To do this, let us assume a matrix Q = PS−1,
such that I = QΣQT . Then, we have that

PS−1ΣS−1PT = PS−1SRSS−1PT = PRPT .

That is, defining P as QS can be interpreted as re-scaling the transformed parameter back to
its original metric. In this case, we get that M−1 = P−1(P−1)T = R. Therefore, we can also define a
correlation-based version of the multidimensional parameters as

MDISCR ∶=
√

aT
i Rai,

MILR ∶= {
−di

MDISCR
,

Rai

MDISCR
} .

As we can see, this version also fulfills the scale invariance property, as the m−1
kk elements are

the diagonal elements of R, which are always equal to 1. It is important to note, though, that
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this transformation does not have another desirable property, which we have used to justify the
covariance-based version: the θU coordinates resulting from transforming θB to the orthonormal
basis U are not generally uncorrelated, as one would expect (save some exceptions, e.g., when all the
variances are equal). Nevertheless, it is important to note how the MDISCR accounts for the correlation
structure of the latent space while still being scale invariant. This will be very useful for the purpose of
representing the items graphically, as we will see later.

7. Vector representation

According to Ackerman (1994a), the most appropriate way of representing multidimensional items
is in vector form. This allows representing several items altogether and analyzing them in terms of
their multidimensional parameters (Ackerman, 1996). An item vector will be applied at a direction
and (signed) distance from the origin of the coordinate system given by its MIL parameter, and will
have a length equal to its MDISC parameter. Its direction will also be given by the direction component
of MIL, so its orientation will always pass through the origin. Based on these conditions, we need to
compute the origin and end coordinates of the vector, denoted by oB

∗

i and eB
∗

i , respectively.
In an orthogonal basis, it is easy to compute the coordinates, as they are simply the orthogonal

projections onto the corresponding axis. In the oblique case, it is not so simple, though, but we can take
advantage of the orthonormalization introduced above. In basis U∗, the origin and end coordinates are
oU

∗

i =Di cosαU
∗

i and eU
∗

i = oU
∗

i +MDISCi cosαU
∗

i , respectively, and they correspond to the coordinates
inB∗ transformed according to Equation (5), that is, oU

∗

i = (P−1)ToB
∗

i and eU
∗

i = (P−1)TeB
∗

i . Applying
Proposition 2 in the test space, we have that

PT cosαU
∗

i = M(D′)
1
2 cosαB

∗

i .

Therefore, the coordinates result in

oB
∗

i =DiM(D′)
1
2 cosαB

∗

i (27)

and

eB
∗

i = oB
∗

i +MDISCiM(D′)
1
2 cosαB

∗

i . (28)

Equations (27) and (28) express the item coordinates in terms of their multidimensional parameters.
However, it is worth noting that the latent space Gram matrix also plays a role in computing these
coordinates and will therefore have an effect on the representation. Of course, from Equations (27) and
(28), it is easy to express the coordinates in terms of the parameters in the original model formulation.
Given ai = aB

∗

i , we can express the coordinates in terms of the model parameters as

oB
∗

i = −diai

∥ ai ∥2 (29)

and

eB
∗

i = oB
∗

i +ai. (30)

However, formulating them in terms of the multidimensional parameters allows studying the items in
terms of their multidimensional properties. In the following, we see how to geometrically interpret these
multidimensional parameters.

7.1. Geometric properties of the items
We have seen how the two new versions of the parameters fulfill the three conditions proposed by
Reckase and McKinley (1991) for valid generalizations of the IRT parameters to the multidimensional
case, being the scale invariance of the MDISCΣ the only exception. From a geometrical perspective,
the item MDISC is simply interpreted as the length of its corresponding vector. Regarding the MIL
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parameter, we will consider now two more properties related to each of its two components: the distance
to the origin and the measurement direction.

The (signed) distance to the origin, given by the first component of MIL, has an interesting property:
by the definition of the inner product, MDISC is strictly positive for nonnull vectors. Therefore, the
sign of Di is the opposite of the sign of di. The implication is that the item is displaced along its
measurement direction forward or backward with respect to the origin, depending on whether di is
negative or positive, respectively. As the MDISC appears in the denominator of Di, that displacement
will be inversely proportional to the discrimination of the item. That is, the less discriminating the item
is, the further away it will be from the origin. Of course, it is also directly proportional to the intercept
parameter di. This implies that, if di = 0, Di = 0 as well, regardless of the MDISC.

The measurement direction is given by the signs of cosαB
∗

i , which, also due to the strict positiveness
of MDISC, are equal to the signs of ai. This property leads directly to generalizing the parameters to the
monotonically nonincreasing case: the measurement direction relative to dimension k will be negative
when Pi is monotonically decreasing with respect to variations along θk. When Pi is constant with respect
to variations along θk, sign(cosαik) = 0, which means that MIL is orthogonal to the k-th axis. However,
note that this does not necessarily imply that the vector is parallel to any other axis (or strictly contained
in the hyperplane formed by other axes, for that matter); this will always be true for the MILag due to
the orthogonality assumption, but it will depend on the correlation matrix R for the other two versions
of the parameter.

8. Graphical representation

The geometric properties are easier to apprehend with a visual representation of the items. To do that, we
need to choose a version of the parameters that yields their most faithful representation. We have already
seen that the agnostic version disregards the latent space structure. Therefore, it will only be useful in
the unlikely case that we have no information of such structure. When we have an estimate of the latent
space covariances, we may use either the covariance-based version or the correlation-based version.
However, we have already seen how the distance to the origin depends on the MDISC. In addition,
in the covariance-based version, the term M(D′)

1
2 becomes Σ−1S = S−1R−1, which, as we have argued

before, implies a change of scale. In the case of the correlation-based version, however, M(D′)
1
2 is simply

R−1, being the coordinates scale-invariant. For graphical representation purposes, the correlation-based
version will thus be preferred.

Plotting on a display usually requires providing coordinates in a rectangular Cartesian system.
Therefore, we must compute the equivalent rectangular coordinates of our general, possibly nonrectan-
gular coordinates. Coordinates in a rectangular Cartesian system are commonly assumed to be simply
represented in the canonical basis. To represent an item in the test space properly, however, we must use
its basis B∗, which implies pre-multiplying its coordinates by (P−1)T to find the equivalent coordinates
in the canonical basis. Hence, we will need a convenient value for (P−1)T that allows us to represent the
test space structure and the items in a rectangular Cartesian system.

The general procedure for plotting an item i consists of the following steps:

1. Compute MDISCRi and MILRi, the item MDISCR and MILR parameters, respectively.
2. Compute the origin coordinates oB

∗

i = DRiR−1 cosαRi, with DRi and cosαRi the distance and
direction component, respectively, of MILRi.

3. Compute the end coordinates eB
∗

i = oi+MDISCRiR−1 cosαRi.
4. Define (P−1)T such that P−1(P−1)T = R.
5. Compute the rectangular coordinates oU

∗

i and eU
∗

i by pre-multiplying oB
∗

i and eB
∗

i , respectively,
by the transformation matrix (P−1)T (oU

∗

i = (P−1)ToB
∗

i ; eU
∗

i = (P−1)TeB
∗

i ).
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Figure 1. Item vector plots with uncorrelated (a) and correlated latent dimensions. The latter coordinates are computed with (b)

the agnostic multidimensional parameters or with the correlation-based ones, which are then plotted either (c) in an oblique basis,

appropriate for the covariance structure, or (d) in the canonical basis.

Note: The items are represented along with a bivariate standard normal distribution, with null correlation (a) or correlation ρ = .5

(b–d). The contour plots represent (from outer to inner) 10%, 50%, and 90% of the maximum density.

Instead of Steps 1–3, one can alternatively compute oB
∗

i and eB
∗

i directly from Equations (29) and (30).
Note, however, that these equations are not independent of R, as it is used in the computation of ∥ ai ∥,
and thus this matrix is necessary in any case to compute the coordinates.

8.1. Graphical representation example
Up to now, all our derivations have considered n-dimensional spaces, that is, multidimensional parame-
ters and item vector coordinates can be computed in an arbitrary large number of dimensions. However,
as plotting more than two dimensions is difficult on a bidimensional display (and hardly possible at
all for more than three dimensions with the currently available technology), we limit ourselves to the
bidimensional case here. The example in Figure 1 showcases the test space representation of a set of
items under two different latent trait distributions. In formal terms, the proper axis labeling of this
figure should correspond to the vectors that make up basis B∗, in this case, v1 and v2; the coordinates
represent the coefficients that multiply each basis vector to obtain the corresponding coordinate in the
test space. However, these coefficients correspond to the values of a vector in the test space, whether
aB

∗

i for ai or θB
∗

for θ (as given by Equation (24)). For the sake of simplicity, we label the axes as θ1
and θ2, highlighting the comparison of the items with the latent trait vectors. However, note that these
coordinates actually correspond to the components of θB

∗

, that is, θB
∗

1 and θB
∗

2 .
The parameters of the items in Figure 1 are shown in Table 1, both in the original M2PL metric

and in the multidimensional metric under the two cases, which differ in the latent trait correlation.
In the first case (columns ρ = 0), the two latent dimensions are independent; in the second one
(ρ = .5), the correlation between them is .5. The same M2PL parameters are used in both cases, but their

Downloaded from https://www.cambridge.org/core. 01 Feb 2026 at 05:10:53, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


14 Daniel Morillo-Cuadrado and Mario Luzardo-Verde

Table 1. Item parameters for the graphical representation example.

Multidimensional parameters

M2PL ρ = 0 ρ = .5

Item ai1 ai2 di MDISCi Di αi1 αi2 MDISCi Di αi1 αi2

1 2.00 2.00 0.00 2.828 0.000 45.0 45.0 3.464 0.000 30.0 30.0

2 2.00 −1.00 1.00 2.236 −0.447 26.6 116.6 1.732 −0.577 30.0 90.0

3 −0.50 1.00 −0.50 1.118 0.447 116.6 26.6 0.866 0.577 90.0 30.0

4 0.00 1.20 0.50 1.200 −0.417 90.0 0.0 1.200 −0.417 60.0 0.0

5 −0.50 −1.00 −0.50 1.118 0.447 116.6 153.4 1.323 0.378 139.1 160.9

Note: M2PL =multidimensional two-parameter logistic model; ρ = correlation; aik = item discrimination parameter (in dimension k); di = item
intercept parameter; MDISCi = multidimensional item discrimination parameter; Di = distance component of the multidimensional item
location parameter; αik = direction component of the multidimensional item location parameter (in dimension k). The multidimensional
components are the correlation-based version.

(correlation-based) multidimensional parameters change with the correlation. (If we used the agnostic
version instead, the multidimensional parameters, given by the values under ρ = 0, would be the same
in both cases.)

Panel (a) of Figure 1 shows the item representation in the uncorrelated case, whereas the ρ = .5
case is shown in panels (b)–(d) under different conditions: with item coordinates computed from the
agnostic version of the parameters (panel [b]) or from the correlation-based version, either using an
appropriate oblique basis (panel [c]) or plotting them directly in the canonical basis (panel [d]). Keeping
the horizontal axis invariant in panel (c) allows for a better comparison with the other plots; therefore,
we have chosen a (P−1)T that only rotates the vertical axis (Harman, 1976):

(P−1)T ∶= [ 1 ρ
0
√

1−ρ2 ] .

In all four panels, the contours of a bivariate standard normal density with the corresponding
correlation are plotted along with the items (from outer to inner, the contours represent 10%, 50%,
and 90% of the density at the mode). The stretched ellipses in panel (c) are the result of transforming
the distribution in the latent space to the test space, according to Equation (24). This implies that the
covariance matrix of the distribution projected into the test space is transformed inversely as in the
latent space, that is, ΣB

∗

= (Q−1)TΣQ−1.
Panels (a) and (b) of Figure 1 show that, even if the agnostic coordinates are the same in both

cases, their relative position with respect to the latent trait distribution is not—illustrating the effect of
disregarding the covariance structure. The correlation-based coordinates, plotted in panels (c) and (d),
are also different in general from their agnostic counterpart (panel [b]). Although they do not vary in
some cases (items 1 and 4), the difference is especially salient in the location of items 2 and 3, which are
close to the 90% contour in the agnostic version but almost on the 50% contour in the correlation-based
one. Panel (d) also illustrates the effect of plotting the coordinates directly on the canonical basis; the
item locations and their positions relative to the distribution are correctly represented (which makes
comparing with panel [b] easier), but their discrimination parameters and angles with the axes are
distorted. For example, items 4 and 5 appear equally discriminating, when Table 1 and panel (c) of
Figure 1 show they are not, and item 1 forms 45-degree angles with both axes instead of the 30-degree
ones shown in Table 1.

A comparison of panels (a) and (c) allows understanding the effect of a positive correlation on
the MDISCR (and consequently the MILR) value of an item: the components of the discrimination
parameters tend to sum up in the same direction as they get more aligned. Thus, if the discrimination
parameters have the same sign, as in items 1 and 5, the MDISCR value tends to increase; on the contrary,
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when the discrimination parameters have opposite signs, they tend to cancel each other out, and
MDISCR decreases, as happens with items 2 and 3. This effect can be especially noticed by comparing
the MDISCR values of items 3 and 5: their discrimination parameters are equal in absolute value, so
their MDISCR values are equal in the orthogonal space; however, the effect of the correlation shrinks
the former and stretches the latter. Finally, note that item 4 has one discrimination parameter equal to 0,
so its MDISCR is unaffected by the correlation.

We can also see how the sign of di affects the distance to the origin: an item vector is applied at the
origin when its value is null (item 1) and tends to be shifted against the item direction when its value
is positive (items 2 and 4) and towards the item direction when it is negative (items 3 and 5). Finally,
we can see how the direction is determined by the discrimination parameters and the correlation; the
sign of the discrimination parameters determines where the item will point at; thus, an item with two
positive (negative) discrimination parameters will point at the first (third) quadrant, whereas an item
with opposite-sign discrimination parameters will be in the second or fourth quadrant. The direction
relative to the axes will be given by the relative absolute value of the two parameters, but also by the
correlation: items 2 and 3 especially illustrate this effect, as each of them is orthogonal to one of the axes
in the oblique space, even when they are not parallel to the other one.

9. Application to examples from the literature

In the following, we apply our results to two instances taken from the MIRT literature. The first one
draws from a classic example by Reckase (2009), who presents a three-dimensional instrument made up
of 30 items. It is supposed to be a cognitive test (it is unclear whether the item parameters are estimated
from actual empirical data, or they are a fictional example, created ad hoc for simulation purposes), so
all the discrimination parameters are positive. The second example, taken from Tezza et al. (2018), is
an application of the M2PL to assess the quality of e-commerce websites. Besides being an empirical
example, applied to actual test data, it pertains to the noncognitive domain and contains items with
negative discrimination parameters. This is convenient for exemplifying our results with items with
opposite-sign discrimination parameters.

The two examples are represented in Tables 2 and 3, respectively. Each of these tables shows
the original M2PL parameters (the estimation errors in Tezza et al., 2018 are omitted for clarity),
along with the agnostic version of the multidimensional parameters; the MDISCag and the Dag
are coincident with their respective original sources (see Table 6.1 in Reckase, 2009, p. 153, and
Table 5 in Tezza et al., 2018, p. 926). In the first case, the direction angles are also coincident
with the values provided in the original (Tezza et al., 2018 do not provide these results). In order
to facilitate the comparison, the covariance-based version of each parameter is provided in the
column next to its corresponding agnostic version. The interested reader can explore the complete
code for these examples in the indexed Software Heritage repository for this paper, specifically:
swh:1:cnt:fd94bc78c3443fa0207429a4aa3098b2961fc75e;anchor=swh:1:dir:6195936c6e16023c4a0b6a4
500b81a34469d64f1;path=/src/Empirical_example.R.

9.1. Reckase (2009)
Table 2 shows the parameters of the 30-item test in the Reckase (2009) example: there are three 10-item
blocks assumed to approximate a simple structure: items 1–10 measure dimension 1, items 11–20
dimension 3, and items 21–30 dimension 2 (see Table 6.1 in Reckase, 2009, p. 153). In his example,
Reckase tests the estimation of these items on two simulated datasets: in the first one, the latent trait
distribution is standard with null correlations; however, the second one has

⎛
⎜
⎝

1.210 0.297 1.232
0.297 0.810 0.252
1.232 0.252 1.960

⎞
⎟
⎠
,
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Table 2. Agnostic and covariance-based multidimensional item parameters in Reckase (2009), with a (rank-complete)
three-dimensional covariance matrix.

Multidimensional parameters

M2PL MDISCi Di αi1 αi2 αi3

Item ai1 ai2 ai3 di ag. Σ ag. Σ ag. Σ ag. Σ ag. Σ

1 0.75 0.02 0.14 0.18 0.761 0.996 −0.240 −0.183 11.0 6.9 88.1 71.9 79.2 30.1

2 0.46 0.01 0.07 −0.19 0.465 0.588 0.414 0.327 8.6 5.7 88.8 72.2 81.4 31.3

3 0.86 0.01 0.40 −0.47 0.951 1.442 0.489 0.323 25.1 13.6 89.6 73.8 64.9 23.3

4 1.01 0.01 0.05 −0.43 1.015 1.171 0.427 0.370 2.7 1.9 89.5 72.4 87.3 35.0

5 0.55 0.02 0.15 −0.44 0.572 0.789 0.774 0.561 15.2 9.1 88.0 72.1 75.0 27.9

6 1.35 0.01 0.54 −0.58 1.457 2.140 0.401 0.273 21.6 12.1 89.7 73.6 68.4 24.7

7 1.38 0.09 0.47 −1.04 1.456 2.098 0.715 0.496 19.1 10.8 86.6 71.6 71.3 26.3

8 0.85 0.04 0.26 0.64 0.891 1.255 −0.722 −0.512 17.0 9.9 87.5 72.0 73.2 27.1

9 1.01 0.01 0.20 0.01 1.031 1.351 −0.012 −0.009 11.3 7.2 89.7 73.0 78.7 29.7

10 0.92 0.01 0.30 0.09 0.970 1.381 −0.094 −0.066 18.3 10.6 89.3 73.2 71.7 26.2

11 0.00 0.24 0.80 0.81 0.840 1.191 −0.962 −0.679 89.8 35.6 73.1 68.1 16.9 10.4

12 0.00 0.19 1.19 −0.19 1.210 1.716 0.154 0.109 90.0 35.9 80.9 72.8 9.1 5.6

13 0.06 0.09 0.71 0.45 0.715 1.061 −0.634 −0.427 85.4 34.0 83.1 73.9 8.3 5.0

14 0.02 0.33 2.14 −1.84 2.167 3.088 0.849 0.596 89.5 35.7 81.2 73.0 8.8 5.5

15 0.03 0.05 0.86 0.41 0.857 1.229 −0.483 −0.337 88.3 35.7 86.8 76.3 3.6 2.3

16 0.02 0.15 0.93 −0.30 0.947 1.364 0.317 0.220 88.5 35.2 80.9 72.8 9.2 5.8

17 0.03 0.29 1.36 −0.18 1.386 1.990 0.132 0.092 88.9 35.2 78.0 71.0 12.0 7.4

18 0.00 0.22 0.90 0.51 0.927 1.317 −0.553 −0.389 89.8 35.6 76.1 69.9 13.9 8.6

19 0.00 0.47 0.73 1.13 0.871 1.188 −1.302 −0.954 89.7 36.8 57.2 57.9 32.8 20.5

20 0.01 0.09 0.64 0.02 0.649 0.925 −0.035 −0.025 89.4 35.7 81.6 73.2 8.4 5.3

21 0.31 0.97 0.00 0.62 1.018 1.029 −0.606 −0.600 72.4 54.1 17.6 18.5 89.8 64.1

22 0.18 0.50 0.00 −0.20 0.530 0.544 0.369 0.359 69.9 51.8 20.1 20.8 89.8 62.4

23 0.41 1.11 0.20 −0.37 1.204 1.370 0.305 0.268 70.0 44.4 22.4 29.3 80.4 52.0

24 0.15 1.73 0.03 −1.76 1.732 1.625 1.015 1.082 84.9 65.5 5.2 7.1 88.9 72.3

25 0.15 0.67 0.00 −0.24 0.686 0.673 0.355 0.362 77.1 58.5 12.9 14.0 89.8 67.5

26 0.29 1.24 0.02 0.49 1.275 1.263 −0.386 −0.390 76.9 57.5 13.1 15.0 89.0 66.2

27 0.13 1.49 0.00 −0.34 1.494 1.393 0.228 0.245 84.9 66.5 5.2 6.0 89.8 73.6

28 0.05 0.48 0.00 0.29 0.478 0.449 −0.606 −0.645 83.7 65.3 6.3 7.2 89.9 72.7

29 0.21 0.46 0.01 0.01 0.508 0.540 −0.012 −0.011 65.1 47.2 24.9 25.4 89.3 58.7

30 0.18 1.12 0.09 0.03 1.137 1.128 −0.029 −0.029 81.1 58.3 9.9 14.8 85.6 64.9

Note: M2PL=multidimensional two-parameter logistic model; aik = item discrimination parameter (in dimension k); di = item intercept param-
eter; MDISCi =multidimensional item discrimination parameter; Di = distance component of the multidimensional item location parameter;
αik = direction component of the multidimensional item location parameter (in dimension k); ag. = agnostic version; Σ = covariance-based
version.
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Table 3. Agnostic and covariance-based multidimensional item parameters in Tezza et al. (2018).

Multidimensional parameters

M2PL MDISCi Di αi1 αi2 αi3 αi4

Item ai1 ai2 ai3 ai4 di ag. Σ ag. Σ ag. Σ ag. Σ ag. Σ ag. Σ

3 1.43 0.65 −0.34 0.66 4.23 1.737 1.943 −2.435 −2.178 34.6 29.3 68.0 70.5 101.3 100.1 67.7 50.6

6 2.29 0.98 −0.03 0.39 4.88 2.521 2.659 −1.935 −1.835 24.7 23.1 67.1 68.4 90.7 90.6 81.1 60.6

8 −0.02 0.29 −0.99 −0.70 0.79 1.247 1.251 −0.634 −0.631 90.9 103.9 76.6 76.6 142.6 142.3 124.2 124.5

10 0.51 −0.15 0.39 1.20 2.09 1.369 1.538 −1.526 −1.359 68.1 49.9 96.3 95.6 73.5 75.3 28.8 24.1

12 0.66 1.47 −0.06 −0.02 2.53 1.613 1.609 −1.569 −1.572 65.8 66.1 24.3 24.0 92.1 92.1 90.7 81.3

19 1.20 0.14 0.75 0.92 1.50 1.694 1.937 −0.886 −0.774 44.9 36.0 85.3 85.9 63.7 67.2 57.1 43.7

21 1.73 1.26 2.35 0.74 5.57 3.264 3.417 −1.707 −1.630 58.0 53.6 67.3 68.4 43.9 46.5 76.9 65.2

22 1.11 0.94 0.33 −0.48 4.02 1.567 1.424 −2.566 −2.822 44.9 49.9 53.1 48.7 77.8 76.6 107.8 91.4

23 1.22 0.42 0.44 0.91 3.61 1.639 1.891 −2.202 −1.909 41.9 33.1 75.2 77.2 74.4 76.5 56.3 42.3

25 0.27 2.39 1.54 −0.61 5.34 2.920 2.898 −1.829 −1.843 84.7 89.5 35.1 34.4 58.2 57.9 102.1 100.0

27 0.61 −0.39 0.24 1.13 −0.62 1.363 1.552 0.455 0.399 63.4 46.8 106.6 104.5 79.9 81.1 34.0 27.7

28 0.24 −0.31 1.17 1.01 −1.33 1.595 1.654 0.834 0.804 81.3 67.1 101.2 100.8 42.8 45.0 50.7 48.0

29 0.70 −0.71 0.39 0.92 −2.07 1.412 1.584 1.466 1.307 60.3 47.6 120.2 116.6 74.0 75.7 49.3 40.7

30 1.40 0.30 1.31 0.90 1.38 2.139 2.363 −0.645 −0.584 49.1 41.9 81.9 82.7 52.2 56.3 65.1 51.8

32 0.96 0.38 0.86 0.47 1.62 1.424 1.545 −1.138 −1.048 47.6 42.0 74.5 75.8 52.8 56.2 70.7 56.4

33 2.50 1.91 0.49 1.00 6.07 3.337 3.625 −1.819 −1.675 41.5 36.9 55.1 58.2 81.6 82.2 72.6 56.5

35 1.60 0.20 −0.13 0.61 2.43 1.729 1.942 −1.406 −1.252 22.3 18.2 83.4 84.1 94.3 93.8 69.3 49.9

37 0.62 0.05 0.22 0.77 −0.36 1.014 1.187 0.355 0.303 52.3 38.6 87.2 87.6 77.5 79.3 40.6 31.0

38 1.16 0.04 1.60 0.39 0.73 2.015 2.103 −0.362 −0.347 54.8 51.3 88.9 88.9 37.4 40.5 78.8 66.0

40 0.82 0.11 0.06 0.68 −0.15 1.073 1.264 0.140 0.119 40.1 30.2 84.1 85.0 86.8 87.3 50.7 37.1

(Continued)
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Table 3. Continued.

Multidimensional parameters

M2PL MDISCi Di αi1 αi2 αi3 αi4

Item ai1 ai2 ai3 ai4 di ag. Σ ag. Σ ag. Σ ag. Σ ag. Σ ag. Σ

43 0.84 0.42 −0.35 0.75 −4.36 1.252 1.439 3.483 3.030 47.9 37.6 70.4 73.0 106.2 104.1 53.2 41.0

45 0.68 1.11 0.60 −0.21 4.44 1.449 1.409 −3.065 −3.152 62.0 65.0 40.0 38.0 65.5 64.8 98.3 87.5

46 0.70 0.59 1.40 0.83 1.23 1.867 1.988 −0.659 −0.619 68.0 58.7 71.6 72.7 41.4 45.2 63.6 56.1

47 1.37 1.51 0.21 0.14 5.40 2.054 2.091 −2.628 −2.582 48.2 47.0 42.7 43.8 84.1 84.2 86.1 70.8

48 1.89 0.73 0.81 0.72 3.12 2.298 2.524 −1.358 −1.236 34.7 30.3 71.5 73.2 69.4 71.3 71.7 54.2

52 0.82 0.63 1.14 0.24 1.82 1.558 1.607 −1.168 −1.132 58.2 55.3 66.1 66.9 43.0 44.8 81.1 69.3

55 1.09 0.14 0.14 0.99 1.52 1.486 1.752 −1.023 −0.867 42.8 32.0 84.6 85.4 84.6 85.4 48.2 35.5

56 2.57 1.03 0.66 0.84 6.78 2.968 3.246 −2.285 −2.089 30.0 26.4 69.7 71.5 77.2 78.3 73.6 54.9

57 −1.98 2.04 −0.26 1.63 −3.05 3.287 2.868 0.928 1.064 127.0 117.6 51.6 44.7 94.5 95.2 60.3 73.0

59 −0.55 0.27 2.00 −0.18 3.94 2.099 2.118 −1.877 −1.860 105.2 107.1 82.6 82.7 17.7 19.2 94.9 100.9

60 −1.30 0.20 0.22 2.03 5.74 2.429 1.946 −2.363 −2.949 122.4 104.5 85.3 84.1 84.8 83.5 33.3 39.1

61 −0.86 0.62 0.79 0.90 0.40 1.599 1.392 −0.250 −0.287 122.5 111.0 67.2 63.6 60.4 55.4 55.8 66.5

64 −0.51 0.47 2.08 −0.34 5.59 2.219 2.250 −2.519 −2.485 103.3 106.7 77.8 77.9 20.4 22.4 98.8 104.0

65 −1.00 0.86 2.58 0.19 6.71 2.904 2.878 −2.311 −2.332 110.1 108.7 72.8 72.6 27.3 26.3 86.2 94.2

66 0.73 0.06 1.56 0.31 5.02 1.751 1.802 −2.867 −2.786 65.4 61.7 88.0 88.1 27.0 30.0 79.8 70.5

69 −0.25 0.19 −0.97 0.30 1.10 1.063 1.034 −1.035 −1.064 103.6 97.2 79.7 79.4 155.9 159.7 73.6 78.8

70 −0.29 0.48 0.63 0.51 −0.57 0.986 0.924 0.578 0.617 107.1 95.3 60.9 58.7 50.3 47.0 58.8 64.8

71 −0.31 0.79 −0.15 1.01 2.28 1.328 1.230 −1.717 −1.854 103.5 85.6 53.5 50.0 96.5 97.0 40.5 43.9

74 −1.14 1.18 −0.36 1.29 −1.77 2.118 1.819 0.836 0.973 122.6 110.1 56.1 49.6 99.8 101.4 52.5 62.7

75 −0.35 0.79 −0.33 0.43 0.53 1.020 0.959 −0.520 −0.553 110.1 100.7 39.2 34.5 108.9 110.1 65.1 72.4

Note: M2PL=multidimensional two-parameter logistic model; aik = item discrimination parameter (in dimension k); di = item intercept parameter; MDISCi =multidimensional item discrimination
parameter; Di = distance component of the multidimensional item location parameter; αik = direction component of the multidimensional item location parameter (in dimension k); ag.= agnostic
version; Σ = covariance-based version.
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as a covariance matrix, which corresponds to a correlation matrix of

⎛
⎜
⎝

1 0.3 0.8
0.3 1 0.2
0.8 0.2 1

⎞
⎟
⎠
.

As we can see in Table 2, the agnostic versions of the multidimensional parameters (columns
labeled ag.) coincide with Reckase’s columns A, B, and α1–α3. However, when we consider the latent
space structure (columns labeled Σ), we notice several differences. First, the MDISCi parameters tend
to be larger than their agnostic counterparts. This happens because all the discrimination parameters
and the latent space correlations are positive; in this respect, these items are similar to item 1 in Table 1
and Figure 1. However, for the items mostly aligned with dimension 2 (items 21–30), as the MDISCi
parameters are also scaled by a standard deviation smaller than 1, their values decrease, being some
of them smaller than the agnostic versions. The Di parameters decrease or increase, consequently (see
Equation (11)), thus being most of them smaller than the agnostic ones (again, with the exceptions only
happening in the items aligned with dimension 2). Finally, we see that the direction angles are not as
clearly separated as one might expect from the agnostic versions. This effect is more pronounced among
the items aligned with dimensions 1 and 3, which are strongly correlated. In this situation, we notice
that the angles tend to be much smaller, as the high correlation induces an alignment between the two
dimensions (compare item 1 in the two test spaces in Table 1 and Figure 1).

The latter effect can be better noticed in another case, in which Reckase uses the same item
parameters to demonstrate the over-specification of dimensions (see p. 183). In that example, he uses a
covariance matrix that practically has rank 1, implying that the (alleged) three latent dimensions collapse
into a single one. This makes the latent space unidimensional in practice, which in turn restricts the
dimensionality of any response dataset generated from a test measuring those traits. Therefore, “the
data could be well fit by a unidimensional IRT model” (Reckase, 2009, p. 189). In such a case, when all
the items are strictly aligned with the one dimension being measured, we should expect the direction
angles to be extremely close to 0 for all items. The reader interested can check that this is the case for
the covariance-based version of the direction angles in the table in the Supplementary Material.

9.2. Tezza et al. (2018)
Tezza et al. (2018) provide us with another example that showcases the effect of correlated dimensions
on negative discrimination parameters. In their model, dimensions 1 and 4 are estimated to have a
correlation of .4. With this latent space structure, items that strongly discriminate in either or both of
these two dimensions drastically change their multidimensional parameters from the agnostic to the
covariance-based version (see Table 3)—this happens, for example, with items 57 and 60. These items
also have different-sign discrimination parameters in dimensions 1 and 4, so their situation is similar
to items 2 and 3 in Table 1 and Figure 1, thus the decrease in their MDISCi parameter. The effect on the
direction is also apparent in the angles these items make with these dimensions, which change up to
almost 20○, compared with at most 7○ in the other two dimensions, and around 1○ in most cases.

On the other hand, cases such as items 12 and 59, which have relatively low discrimination
parameters on those two dimensions (compared with the ones in dimensions 2 and 3, respectively),
are barely affected. The most extreme change in these two examples occurs in the direction of item 12
with respect to dimension 4. We see how the large discrimination in dimension 1, when combined with
the correlation with dimension 4, induces a decrease in the angular direction with that dimension. In
this case, because the discrimination in dimension 4 is so low, the situation is very similar to item 4 in
Table 1 and Figure 1.

10. Discussion

Reckase (1985) proposed a definition of the MIL parameter general enough to “be used with any model
that yields probabilities that increase monotonically with an increase in ability on any dimension”
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(p. 411). However, this definition implicitly assumes the orthonormality of the latent space. Applying the
general procedure outlined by Reckase (1985), and later extended by Reckase and McKinley (1991), we
have obtained a set of multidimensional parameters that generalize the original results in two aspects:
(1) to a non-orthonormal space that accounts for the covariance structure of the multivariate latent
variable and (2) to any case of unchanging monotonicity. The latter may seem superfluous, given that
several examples in the literature already make use of this generalization (e.g., the one we have used
to illustrate it; Tezza et al., 2018). However, this generalization has never been formalized until now.
Therefore, we highlight here the interest of showing how the item psychometric properties are paralleled
by their geometrical properties, and how this holds for any case of unchanging monotonicity of the item
response function. Regarding the first generalization, it is worth noting that Zhang and Stout (1999)
already proposed a formulation of the MDISC equivalent to our covariance-based version, but for a
more general, semi-parametric formulation (although constrained to nondecreasing monotonicity).
However, they provided no formal proof for this result either. Our results provide this formal derivation,
although only for the specific case of the M2PL model.

With that purpose in mind, we have defined two new versions of these parameters: one that takes into
account the whole covariance structure and another that considers only the correlations among latent
dimensions. The covariance-based parameters have the drawback of not fulfilling the first of Reckase
and McKinley’s (1991) properties, namely, the scale invariance property. However, we have provided
a rationale for the violation of this property, arguing that it is also paralleled in unidimensional IRT.
Given its equivalence to the inner product definition in a space with an identity covariance matrix, it
also refers the item parameters to an orthonormal metric, comparable across different latent spaces.
More importantly, the covariance-based version of the multidimensional parameters is invariant to
changes of the latent-space basis. This is especially relevant in applications where potentially different
bases are involved (e.g., multigroup IRT, equating, and linking). Furthermore, we have found that using
this version yields a norm in the latent space given by the Mahalanobis distance. This statistical distance
not only takes the latent covariance structure into account but also makes the latent space norm invariant
to changes of basis. Given these considerations, we propose adopting the covariance-based version of
the multidimensional parameters as the most general definition and refer to them simply as the MDISC
and MIL parameters. The correlation-based version, on the other hand, has the advantage of being scale-
invariant, which is convenient for fidelity when representing the items. However, as it has been defined
ad hoc to fulfill this specific property, it lacks the other desirable ones the covariance-based version has
(i.e., norm invariance and yielding a diagonal latent covariance matrix in the corresponding orthogonal
basis). Therefore, we recommend its use for graphical representation purposes only, although in many
applications, both versions will fortunately be coincident. As for the agnostic version, we recommend
it only in the (unlikely) case of having no information about the latent space structure or when such
structure is irrelevant (e.g., plotting the discrimination parameters for interpretation purposes).

One may consider that the formal derivations presented here are overly complicated, when one might
simply transform the space to rectangular Cartesian coordinates with Equations (2) and (5) and then
compute the parameters in the transformed space using the procedure of Reckase (1985) and Reckase
and McKinley (1991). After all, interpreting the axes of this space as substantive latent traits depends
on “the distinction between coordinate axes and the constructs that are the target of the instrument”
(Reckase, M. D., personal communication, April 28, 2015). Such a procedure will, of course, yield
identical results, given the invariance of MDISCΣ to a change of basis. However, the representation in
the test space allows us to obtain the direction cosines relative to the original latent trait axes, which may
be useful if they represent actual, substantive traits. Computing the parameters in the orthonormalized
(or just orthogonalized) space, by contrast, would require transforming the cosines back to the original,
non-orthonormal basis. Nevertheless, most available MIRT software solutions, such as flexMIRT (Cai,
2024), IRTPRO (Cai, 2017), or the R package {mirt} (Chalmers, 2012), initially estimate an uncorrelated
solution (at least in the exploratory case) and apply an oblique rotation afterward. Taking advantage of
the invariance property, we may compute the parameters in the orthogonal space (in fact, this is exactly
what {mirt} functions MDISC() and MDIFF() do). Then, we may compute the direction cosines in the
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rotated solution by applying Equation (26). What a test practitioner should be aware of, however, is that
applying Reckase and McKinley’s (1991) formula after any non-orthonormal transformation will yield
an MDISCag value specific to that basis, unlike the invariant value of MDISCΣ.

On the other hand, establishing the relationship between the original basis and the orthonormalized
basis has provided us with an important insight: the distinction between the latent space and the test
space. Our derivations show that, to properly represent the items, we need to define a vector space that
has the latent covariance (or correlation) matrix as its inner product matrix. The latent space, where
the person parameters are represented, has the inverse of the covariance (correlation) matrix as its
inner product matrix, though. (Note that in the original derivations by Reckase, 1985, and Reckase
& McKinley, 1991, both matrices simplify to the identity matrix, so there was no need to make this
distinction.) This implies that the axes defined by the test space basis, and not the ones defined by the
latent space basis, are a geometrical representation of the covariance structure. Indeed, the cosines of
the angles among the test space axes are the geometric equivalent of the correlations. This result is both
surprising and counterintuitive; several instances in the MIRT literature suggest that “the angle between
the axes [of the latent ability space] represents the degree of correlation” (Ackerman, 2005a, p. 16).
In fact, we have only defined the latent space as a geometrical artifact for obtaining the multidimensional
parameters. Interpreting the items in the latent space could only lead researchers to wrong conclusions.
We hope our results help shed a clearer light on this often misunderstood topic.

It is worth noting that a similar relationship exists in the common factor literature between the
primary factors and Thurstone’s reference axes (Harman, 1976, p. 276). Nevertheless, one must not make
the mistake of assimilating the test space and the common-factor space. Their parameterization, albeit
related (McDonald, 1999), is different, and we do not mean to imply that the derivations made here are
directly generalizable to the common factor model. Those relationships deserve further exploration on
their own.

Making a distinction between the two spaces can also have a significant impact on our understanding
of multigroup MIRT applications, which involve several latent spaces. Although the usual transforma-
tions among coordinate systems still apply under this consideration (see Chapter 8 in Reckase, 2009, for
an exhaustive discussion on the topic), the different geometric bases on which each of the two spaces
is represented must be considered. However, as they are mutually dependent, any transformation in
any of them will imply the inverse transformation in the other one, thus preserving their relationship.
Nevertheless, using non-orthogonal rotation matrices for aligning the items (in a common-item design
procedure) or persons (in a common-person one; see Chapter 9 in Reckase, 2009) may have additional
implications; for example, besides a rescaling and an origin translation, a transformation as defined, for
instance, in Equation (8.31) of Reckase (2009), may imply a rotation that can be non-orthogonal, thus
affecting the relative alignment among the test space axes, and subsequently among the latent space
ones. Moreover, even if the transformation in one space is scale-invariant (i.e., the transform matrix has
unitary diagonal elements), it may induce a rescaling in the other one, given by the diagonal elements
of the inverse transform matrix. These implications will require future exploration of the relationships
between the latent and test spaces as mathematically separate entities.

We have seen that taking the latent space structure into account may have a substantial effect on
the resulting values and interpretation of the parameters, something not contemplated by the original
(hereby referred to as agnostic) version. Interpreting the item properties correctly requires a solid
understanding of their relationship with the latent covariance structure, and we have shown that this
can only be achieved with a proper geometrical representation. Simple items are not affected much
by this issue, but as MIRT evolves and converges with the common factor psychometric tradition,
we find MIRT models applied more often to new problems, involving complex multidimensional
item structures (even including items with opposite-signed loadings). Our results will be especially
relevant in those cases where the interpretation of the items may be affected more drastically. For
example, using the agnostic version of the parameters and/or an orthogonal plot, the alignment of
an item with the trait axes could be easily misinterpreted. Then, the information it provides about
each of those traits (and, subsequently, its quality for assessing them) could be either downplayed or
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exaggerated. Once again, this is paramount in multigroup applications, where differences in the latent
space structure are critical and the agnostic version could overlook relevant differences in the values
of the multidimensional parameters. Different covariance structures across groups may significantly
affect them due to differences in either the variances or the correlation structure. Therefore, even
when the model parameters are equal across groups, the multidimensional parameters may not be
the same if the covariance structures differ. Conversely, the same multidimensional parameters may
correspond to different parameter models. The subsequent invariance of either the M2PL parameters
or the multidimensional ones may lead to different interpretations of the same model when applied to
different groups. Although this is an empirical question that requires further research, it could have
significant implications for future theoretical developments in the understanding of MIRT theory.

Finally, we must also warn against generalizing these results to other IRT models without further
consideration. First, we have only considered the case of dichotomous items, whereas noncognitive
applications often (and sometimes cognitive ones as well) require modeling several response categories.
Although proposals such as the graded-scale (Samejima, 1968) and the nominal response (Bock, 1972)
models are closely related to the two-parameter logistic model, it would be hasty to assume that these
parameters generalize in any way to the multidimensional versions of those models without a formal
proof. The same can be said for the multidimensional parameters of other models for dichotomous
items different from the M2PL model. We expect this work to help set the foundations for investigating
those generalizations. Hopefully, this will contribute to a better understanding of the underlying
multidimensional measurement theory, its implications, and its interpretation.

Supplementary material. To view supplementary material for this article, please visit http://doi.org/10.1017/psy.2025.10063.
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