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Abstract

In latent space item response models (LSIRMs), subjects and items are embedded in a low-dimensional
Euclidean latent space. As such, interactions among persons and/or items can be revealed that are
unmodeled in conventional item response theory models. Current estimation approach for LSIRMs is
a fully Bayesian procedure with Markov Chain Monte Carlo, which is, while practical, computationally
challenging, hampering applied researchers to use the models in a wide range of settings. Therefore, we
propose an LSIRM based on two variants of regularized joint maximum likelihood (JML) estimation:
penalized JML and constrained JML. Owing to the absence of integrals in the likelihood, the JML methods
allow for various models to be fit in limited amount of time. This computational speed facilitates a practical
extension of LSIRMs to ordinal data, and the possibility to select the dimensionality of the latent space using
cross-validation. In this study, we derive the two JML approaches and address different issues that arise
when using maximum likelihood to estimate the LSIRM. We present a simulation study demonstrating
acceptable parameter recovery and adequate performance of the cross-validation procedure. In addition,
we estimate different binary and ordinal LSIRMs on real datasets pertaining to deductive reasoning and
personality. All methods are implemented in R package ‘LSMjml’ which is available from CRAN.

Keywords: cross-validation; item response theory; latent space modeling; maximum likelihood

The latent space item response model (LSIRM) integrates latent space models from social network
analysis (Hoff et al., 2002) with item response theory (IRT) from psychometrics, extending traditional
IRT by embedding persons and items in a metric, multidimensional latent space. As such, LSIRMs may
reveal item–person interactions that generally remain unnoticed in conventional models giving more
insights about residual dependencies between persons, between items, and between items and persons.
This has been shown valuable in the substantive fields of intelligence (Kang & Jeon, 2024; Kim et al.,
2014), developmental psychology (Go et al., 2022), mental health (Jeon & Schweinberger, 2024), social
influence (Park et al., 2023), national school policy (Jin et al., 2022), and student monitoring (Jeon et al.,
2021). In addition, extensions of the LSIRM have enabled the analysis of multilevel structured data (Jin
et al., 2022), longitudinal data (Jeon & Schweinberger, 2024; Park et al., 2022), and response time data
(Jin et al. 2023; Kang & Jeon, 2024).

Estimation of LSIRMs has been dominated by the fully Bayesian, Markov Chain Monte Carlo
(MCMC) estimation scheme by Jeon et al. (2021), which has been implemented in R (Go et al., 2023),
JAGS, Stan, NIMBLE (Luo et al., 2023), and Shiny (Ho & Jeon, 2023). Although valuable due to its
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flexibility and its facilities for posterior diagnostics, the MCMC routines are numerically demanding,
which may hamper (applied) researchers from using the LSIRM in a wide range of settings that
may involve large-scale data. In addition, due to the numerical demanding nature of the MCMC
approach, model fit comparison is relatively challenging as it involves multiple models to be fit to
the data. Although there are alternatives like leave-one-out cross-validation using Pareto smoothing
(Vehtari et al., 2017), these will still be computationally intensive for models like the LSIRM. Currently,
researchers rely on spike and slab priors for model selection (e.g., George & McCulloch, 1997; Ishwaran
& Rao, 2005) to compare a given LSIRM with R dimensions to a baseline model with R= 0. This approach
is feasible in the MCMC framework as it does not increase the computational burden significantly.
However, tools to compare multiple competing models that differ in R have not yet been developed.

Therefore, in this study, we propose different joint maximum likelihood (JML)-based approaches
to fit various LSIRMs to data in a fast and efficient way, facilitating large-scale model application and
model selection. In the early years of IRT, JML (Birnbaum, 1968; Lord, 1980; Mislevy & Stocking, 1989)
was one of the dominant approaches to fit conventional IRT models to data using software packages
such as LOGIST (Wingersky, 1983) and BICAL (Wright & Mead, 1976). As computers were not as
fast as nowadays, a desirably practical property of JML was its numerical efficiency. That is, in JML, all
parameters are assumed to be fixed effects so that the likelihood function does not include any integrals.
These integrals make approaches such as MCMC and marginal maximum likelihood (MML; Bock &
Aitkin, 1981) relatively time-consuming, as they require numerical approximation due to the lack of
a closed form solution. However, over the years, popularity of JML decreased in favor of MML up
until recently, when JML was revived in IRT by the work of Chen et al. (2019, 2020) and Bergner et al.
(2022). In this work, the authors developed variations of JML that are suitable for estimation of high-
dimensional IRT models on large datasets, which is—even with today’s computers—still challenging
for the state-of-the art MCMC and MML approaches. In addition to IRT, some JML approaches have
been developed for latent space models for social network analysis. That is, Zhang et al. (2022) and
Ma et al. (2020) focused on a latent space model with high-dimensional covariates and JML estimation
of its parameters. In the approach by Zhang et al., the covariates enter the model via a generalized linear
latent variable model, whereas in Ma et al., these covariates are included as predictors next to the latent
space positions.

As the IRT models estimated by JML are typically high-dimensional, the complexity of these
models is commonly managed through regularization. Regularization is a technique originating from
ridge regression (Hoerl & Kennard, 1970) in which the regression parameters are pushed to zero
to prevent overfitting and to stabilize parameter estimates in the case of multicollinearity. Currently,
regularization includes a variety of techniques, such as penalization and constraints on the parameter
space, to promote parameter shrinkage (Hastie et al., 2009; Tibshirani, 1996) or to improve finite-sample
performance (Firth, 1993). For example, Chen et al. (2019) used constraints on the parameter space to
estimate a multidimensional exploratory IRT model, and Bergner et al. (2022) used L2 penalization of
the parameter space of a general family of IRT models for collaborative filtering.

In this study, we apply these two regularization strategies, constraining the parameter space and
penalizing regions of the parameter space, to provide an efficient and stable JML estimation algorithm
for the relatively complex LSIRM model. As the effects of regularization are comparable to the effects of
parameter priors on the likelihood function, we will show that our JML-based LSIRM is a special cases
of the existing MCMC-based LSIRM, providing a highly comparable but easier to estimate variant of the
LSIRM. As MCMC obviously has other practical advantages over JML (e.g., flexibility and full posterior
information), we present our JML approach as an extension of the current LSIRM modeling toolbox,
not as an alternative.

The models by Zhang et al. (2022) and Ma et al. (2020) discussed above are related but different
from our approach. That is, both Zhang et al. and Ma et al. focused on a unipartite (only modeling
one set of nodes, e.g., persons but not items) latent space model without IRT component, and an inner
product distance measure. Our model, however, is bipartite, includes an IRT model component, and
uses the Euclidean distance. All three of these aspects make our study to face very different challenges
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in the development of the JML approach. However, besides differences in the underlying model, our
estimation approach and that of Zhang et al. and Ma et al. are similar in spirit.

One of the key issues that arises in implementing a maximum likelihood scheme for the LSIRM is
that the model can only be identified up to a rotation of the latent space. In the MCMC framework
by Jeon et al. (2021), researchers addressed this problem by post-processing the MCMC chains using
Procrustes matching (Gower 1975; Sibson, 1979), which involves rotating the latent space to the space
from the MCMC iteration with the highest likelihood. Such an approach is infeasible in a maximum
likelihood framework. We therefore propose alternative constraints based on the echelon structure from
exploratory factor analysis (Dolan et al., 2009; McDonald, 2013). As these constraints are specified a
priori, this approach has the advantage that the orientation on which the results are produced is explicitly
defined, which facilitates comparisons to other methods.

Thus, using JML, the LSIRM can be estimated in a computationally fast and efficient way, allowing
researchers to fit different LSIRM models in a limited amount of time. A resulting advantage that we
demonstrate in this study is that the selection of the dimensionality of the latent space can be informed
by a K-fold cross-validation routine (e.g., Bergner et al., 2022; Haslbeck & van Bork, 2024). As discussed
above, it is currently not possible to compare models differing in the dimensions of the latent space.
This possibility, therefore, seems a valuable addition to the toolbox of researchers interesting in LSIRM
modeling. In addition, we demonstrate how it is straightforward to use our approach to fit LSIRMs to
ordinal data in a limited amount of time. Ordinal LSIRM have recently been development in an MCMC
framework (see De Carolis et al., 2025) but are time-consuming to fit.

The outline of this article is as follows: We first present the LSIRM and discuss MCMC estimation of
the model parameters. Next, we present the two JML variants and discuss the constraints needed to solve
the rotational indeterminacy of the latent space. Then, we outline the methods for parameter estimation,
a generalization to ordinal data, and a cross-validation approach to model selection. In the simulation
study, we demonstrate that the accuracy of the parameter recovery of our JML approach is comparable
to that of the MCMC approach and that the cross-validation approach successfully selects the correct
model in most cases. Next, in two illustrations, we apply a binary LSIRM to a dataset on deductive
reasoning and an ordinal LSIRM to a dataset on personality. We end with a general discussion.

1. Latent space item response models

The LSIRM is a statistical model for the dichotomous item responses Xpi ∈ {0, . . .C} of person
p = 1, . . . ,N on item i = 1, . . . ,n. It is assumed that, after accounting for the main effect of the person
by person intercept θp, and for the main effect of the item by item intercept βi, the person and item
residuals can be embedded in an R-dimensional Euclidean latent space using the R-dimensional vector
of person coordinates zp ∈RR and the R-dimensional vector of item coordinates wi ∈RR. As a result, the
conditional probability, P(Xpi = c∣θp,βi,zp,wi), is given by

P(Xpi = 1∣θp,βi,γ,zp,wi) = ω(θp+βi−γd(zp,wi)), (1)

where ω(.) is a logistic function, γ is the strictly positive weight parameter, and d(.) is a distance
function. Even though d(.) can be any distance function that obeys to the mathematical principles
of reflexivity, symmetry, and triangular inequality (e.g., Chebyshev distance, Minkowski distance, and
Manhattan distance), LSIRMs have generally been applied using the Euclidian distance, that is,

d(zp,wi) = ∥zp−wi∥2 =

�
��� R

∑
r=1

(zpr −wir)2, (2)

where zpr and wir are the rth element of zp and wi, respectively. In the present framework, d(.) is a
distance function; however, it can be any other function that models the relation of the latent space
coordinates. For instance, Zhang et al. (2022) and Ma et al. (2020) used an inner product similarity
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measure for d(.), which would give d(zp,wi) = zT
p wi. The advantage of the inner product is that it is

of low rank, resulting in tractable theoretical properties of the statistical model. However, the inner
product cannot be interpreted as a distance that is undesirable for the present aim. See Jeon et al. (2021)
for a discussion of the interpretational challenges of the inner product measure in LSIRMs.

The LSIRM above can be interpreted as a Rasch model (Rasch, 1960) in which the residuals are
further modeled using zp and wi. As a result, the LSIRM can give more insight in local dependencies of
the item response data due to interactions between items, interactions between persons, or interactions
between items and persons. For instance, such interactions may arise because of some items requiring a
more similar response processes than others, some persons sharing a relevant background characteristic
more than others (e.g., educational attainment and motivation), and some persons use a different
solution strategy on some of the items than others.

1.1. Estimation
MCMC sampling methods have been developed to fit the LSIRM (see, e.g., Jeon et al., 2021). By
specifying prior distributions for the model parameters presented above, it is possible to estimate an
additional nonnegative parameter σ2

θ , the variance of the person intercept. In addition, log(γ) = γ′ is
modeled to ensure that γ is strictly positive. Next, if we collect all θp parameters in the N-dimensional
vector θ and all βi parameters in in the n-dimensional vector β, and if we denote the full N×R matrix of
stacked zT

p vectors by Z, and the full n×R matrix of stacked wT
i vectors by W, the posterior distribution

of the model parameters is given by

f (θ,β,W,Z,γ′,σ2
theta∣X) ∝

⎡⎢⎢⎢⎢⎣

N
∏
p=1

n
∏
i=1

fX (Xpi∣θ,β,W,Z,γ′)
⎤⎥⎥⎥⎥⎦
×
⎡⎢⎢⎢⎢⎣

N
∏
p=1

fθ (θp∣σ2
θ) fz (zp)

⎤⎥⎥⎥⎥⎦

×[
n
∏
i=1

fw (wi) fβ (βi)]× fσ2 (σ2
θ)× fγ′ (γ′),

(3)

where fX(.) is the Bernoulli distribution with success probability given by Equation (1), and where fθ(.),
fz(.), fw(.), fβ(.), fσ2(.), and fγ′(.) are (hyper) prior distributions for, respectively, θp, zp, wi, βi, σ2

θ , and
γ′. In general, the following distributions are used (e.g., Go et al., 2023; Jeon et al., 2021): a univariate
normal for θp with mean 0 and variance σ2

θ (as discussed above), a univariate normal for βi with mean
0 and variance σ2

β , a multivariate orthogonal standard normal distributions for zp and wi, an inverse-
gamma distribution for σ2

θ with shape parameter aσ and scale parameter bσ , and a normal distribution
for γ′ with mean μγ and variance σ2

γ .

1.2. Identification
The item and person intercept parameters θp and βi are readily identified by fixing the prior mean of θp to
0 in the above. For zp and wi, fixing the R dimensions to be orthogonal with zero mean and unit variance
ensures that the locations of the zp and wi coordinates are uniquely identified. However, there still exists a
rotational indeterminacy. That is, any two of the R dimensions of zp and wi can be rotated by an arbitrary
angle α, resulting in a different solution with the same Euclidean distances ∥zp−wi∥2 and the same data
likelihood. In the MCMC framework to fit the LSIRM, this indeterminacy causes each sample from the
posterior parameter distribution to be potentially subject to a different rotation. Posterior sample means
are therefore confounded and cannot be used as parameter estimates. To solve this issue, researchers
rely on Procrustes matching (Gower, 1975; Sibson, 1979) in which each posterior sample of Z and W
is transformed to match a given target, respectively, T(z) and T(w). In general, these target matrices are
chosen to be the zp and wi samples from the MCMC iteration with the largest likelihood (Jeon et al.,
2021).
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1.3. Model selection
For model selection, Jeon et al. (2021) proposed the use of a spike and slab prior for γ′. Specifically,
instead of a normal prior, fγ′(.) is specified as a mixture of two normal distributions

fγ′(.) = (1−δ)× f (0)γ′ (γ′)+δ× f (1)γ′ (γ′),

where δ ∈ {0,1} is a dichotomous parameter, f (0)γ′ (.) is the spike prior with mean μ0 and variance σ2
0 ,

and f (1)γ′ (.) is the slab prior with mean μ1 and variance σ2
1 . The spike prior mean and variance should be

chosen so that the resulting distribution of untransformed γ has a mean close to 0 and a small variance,
while the slab prior mean and variance should reflect the more conventional prior mean and variance.
Next, by assuming δ to be Bernoulli distributed with success parameter πδ, and by specifying a Beta
prior for πδ, parameter δ can be sampled along with the other parameters in the model. Model selection
then involves the posterior probability that δ is equal to 1. If this probability is large (commonly a cutoff
of 0.5 is used), it is concluded that the LSIRM with the R under consideration accounts better for the
data than an IRT model without latent space (i.e., a one-parameter logistic model).

2. Joint maximum likelihood estimation

As discussed, the MCMC estimation scheme above can be time-consuming as sufficient samples need to
be drawn from the posterior parameter distribution. To have a fast alternative available, below we present
a JML estimation approach to estimate the parameters from the LSIRM. Implementing the LSIRM in a
maximum likelihood framework brings specific identification challenges, which we address below. In
addition, we discuss a model selection procedure based on K-fold cross-validation that is impractical
or infeasible for the more time-consuming estimation algorithms, and we present a generalization to
ordinal data.

In maximum likelihood estimation, the parameters of a statistical model are estimated by maximiz-
ing the likelihood of the data for the unknown model parameters. For LSIRM, this would involve the
joint log-likelihood function, log(fX (Xpi∣θ,β,W,Z,γ′)) with fX(.) from Equation (3), summed over
items and persons. However, without further constraints, this model is unidentified. First of all, in a
JML framework, all parameters are fixed effects so that σ2

θ is not a model parameter as it is absorbed in
the θp estimates. For the same reason, γ is not estimable as it is equivalent to the standard deviation of
zpk and wik. Thus, γ is absorbed in the zpk and wik estimates. Therefore, the JML-based LSIRM is given by

P(Xpi = 1∣θp,βi,zp,wi) = ω(θp+βi−d(zp,wi)), (4)

where d(.) is the Euclidean distance from Equation (2).
As discussed above, to introduce further sparsity into the model, we consider two different regu-

larization approaches based on either penalizing the joint likelihood or on constraining the maximum
norm of the parameter vectors in the joint likelihood. As both regularization effects can be conceived
as the effects of prior distributions, we intend to enhance the comparability of the JML results and the
MCMC results. Both JML variants are discussed below.

2.1. Penalized joint maximum likelihood
In the first approach referred to as penalized joint maximum likelihood (pJML), we use an L2
regularization penalty in the likelihood function. Although there are other options possible, we use
the L2 due to its correspondence to a normal prior. The log-likelihood function we consider is

�(θ,β,W,Z,∣X) =
N
∑
p=1

n
∑
i=1

log(fX (Xpi∣θ,β,W,Z))−

1
2 λ(

N
∑
p=1

θ2
p+

n
∑
i=1

β2
i +

n
∑
i=1

K
∑
k=1

w2
ik+

N
∑
p=1

K
∑
k=1

z2
pk),

(5)
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where λ is a penalty parameter and fX(.) is a Bernoulli distribution with success probability given by
Equation (4). Although, in the context of predictive accuracy, λ can be optimized using cross-validation,
here we take λ to be a prespecified parameter reflecting the precision of a zero-centered normal prior
distribution. In the remainder of this article, we use λ= 1 so that the regularization effect on θp,βi, zp, and
wi is comparable to that of standard normal priors typically used in MCMC estimation of the LSIRM.
For instance, in the R package lsirm12pl (Go et al., 2023), which we use to compare our results to in the
simulation study below, standard normal priors are used by default for βi, zp, and wi (θp has a normal
prior with variance σ2

θ as discussed above).
The resulting approach can be seen as a variant of the Bayesian joint modal estimation approach

used by Swaminathan and Gifford (1982, 1985, 1986) to fit one-, two-, and three-parameter logistic IRT
models in a Bayesian framework. That is, Equation (5) is proportional to the log-posterior distribution
of the parameters by which its maximum gives joint modal estimates of the parameters (i.e., MAP
estimates). Moreover, the pJML approach in Equation (5) is a special case of the MCMC-based LSIRM
in Equation (3). That is, fixing γ′ = 0, σ2

θ = 1,and σ2
β = 1 in the logarithm of Equation (3), the MCMC-

based LSIRM is equivalent to the pJML model in Equation (5) with λ = 1. The key difference that arises
in practice is that MCMC focusses on posterior means instead of posterior modes by which the pJML
model can be estimated much faster.

2.2. Constrained joint maximum likelihood
A next option referred to as constrained joint maximum likelihood (cJML) is to regularize the LSIRM
model in Equation (4) by constraining the maximum norm of the person and item parameter vectors
to some prespecified value. This approach has been proposed by Chen et al. (2019) for JML estimation
of the multidimensional two-parameter logistic IRT model. Thus, we constrain the vector of person
parameters τ1p = [θp,zp] and the vector of item parameters τ2i = [βp,wp] in the following way:

∥τ1p∥2 ≤ C1 and ∥τ2i∥2 ≤ C2, (6)

where C1 and C2 are the prespecified maximum parameter norms for the person and item parameter
vectors, respectively, and ∥.∥2 is the Euclidean norm. Thus, if T1 denotes a matrix of stacked τ1p vectors
and T2 denotes a matrix of stacked τ2i vectors, the likelihood function in this approach is given by

�(T1,T2∣X) =
N
∑
p=1

n
∑
i=1

log(fX (Xpi∣τ1p,τ2i))with τ1p,τ2i s.t. Equation (6). (7)

For a D-dimensional two-parameter logistic IRT model, Chen et al. (2019) proposed C1 =C2 = 5
√

D.
As both τ1p and τ2i have R+1 dimensions in our LSIRM model, we replace D by R+1. In addition, we
use C2 = 3

√
R+1 for the item parameters and C1 = 1

2 C2 for the person parameters. Below, we show that
these constraints are still less restrictive compared with the MCMC and pJML approaches.

The cJML model in Equation (7) can similarly be conceived as a joint modal estimation approach.
To this end, the constraints in Equation (6) are enforced by using priors fτ1(.) and fτ2(.) on τ1p and τ2i,
respectively. These priors are uniform on an (R+1)-dimensional Euclidean ball with radius C1 for the
person parameters and C2 for the item parameters, that is,

fτ1 (τ1p) ∝ I (∥∣τ1p∣∥2 < C1) (8)

and

fτ2 (τ2i) ∝ I (∥∣τ2i∣∥2 < C2), (9)

where I(.) is the indicator function. Although, in this study, we rely on Equation (7), the above joint
modal formulation of the cJML model is equivalent and explicates the difference with the pJML and
MCMC approaches, both of which use normal priors. Unlike the pJML, the cJML-based LSIRM model
is not strictly a special case of the MCMC-based LSIRM with standard normal priors discussed above.
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However, it is a special case in the more general framework of Equation (3) with γ′ = 0 and θp and zp
following the prior in Equation (8) and βi and wi following the prior in Equation (9).

To see that the cJML approach is the least restrictive approach in terms of parameter regularization,
we compare the prior variance across the three approaches. For the MCMC and pJML approaches, all
priors have variance 1 (except for θ in the MCMC approach). The variances of the priors in Equations (8)
and (9) are C2

1
R+3 for the person parameters and C2

2
R+3 for the item parameters. Given our choices for C1

and C2 above, this results in a prior variance of 4.5, 5.4, and 6 for the item parameters and of 1.125,1.35,
and 1.5 for the person parameters for R = 1, R = 2, and R = 3, respectively. These priors are, thus,
less informative in terms of prior variance than those of the MCMC and pJML approaches (although
differences are small for the person parameters). This will also be illustrated in the simulation study.

2.3. Consistency
Traditional unregularized JML is known to be theoretically inconsistent (Andersen, 1973; Haberman,
1977) as asymptotic theory is violated because of the number of parameters increasing with N. In this
study, it is expected that, due to the known correspondence of our L2 penalization to the effects of
normal parameter priors, the finite-sample properties of the JML procedure will improve. However, we
are unaware of theoretical proofs of consistency of pJML in the literature, so whether penalized JML is
strictly consistent in the asymptotic sense has yet to be established.

For the cJML approach described above, it is known that the procedure is theoretically consistent
under a double-asymptotic regime for structured generalized latent factor models (Chen et al., 2020)
and multidimensional unstructured two-parameter IRT models (see Chen et al., 2019; Chen & Li, 2024).
Similarly, approaches related to cJML are shown to be consistent for unipartite latent space models with
low-rank inner-product distances (Ma et al., 2020; Zhang et al., 2022). However, these results do not
necessarily apply to the present model due to the unstructured nature of the latent space, the nonlinear
and high-rank character of the natural parameter arising from Euclidean distances, and the bipartite
nature of our item–respondent interactions. As the JML consistency issues are known to decrease with
an increasing number of items (Haberman, 1977), and our simulation study below shows that our JML
approaches perform comparable to the existing Bayesian approaches, we believe that any inconsistency
(if any) is relatively unproblematic given the aim of the present study.

2.4. Rotation
As discussed above, the distances in Equation (2) are subject to a rotational indeterminacy and can be
arbitrarily rotated to produce the same distances. For instance, for R = 2,

W′ = WRT and Z′ = ZRT

with

R = [cosr −sinr
sinr cosr ]

will result in the same Euclidean distances d(zp,wi) = d(z′p,w′i) for all p and all i for any arbitrary
angle of rotation r ∈ [−2π,2π]. As discussed above, this problem is solved in an MCMC framework by
Procrustes matching in which the samples from the posterior are all transformed to a target solution.
As our approaches do not involve posterior samples, we will use specific constraints on W to fix W and
Z to an arbitrary rotation without affecting the data likelihood.

Specifically, the problem of rotational indeterminacy of W and Z is similar to the problem of
rotational indeterminacy of the factor loadings and the factor scores in factor analysis (e.g., Jennrich,
1978). Therefore, we will rely on what is referred to as “echelon rotation” in the factor analysis literature
(Dolan et al., 2009; McDonald, 2013). That is, we will fix the R(R−1)

2 elements of the upper triangle of
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′ ′

2
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0

Figure 1. Graphical illustration of the echelon rotation for R = 3. The dotted arrows indicate the direction of the rotation, the solid dot

denotes a specific coordinate (x,y), and the striped lines give an indication of the new (i.e., rotated) position of the axis connected to

the dotted arrow. The angle of rotation is indicated by α1, α2, and α3.

submatrix W1∶R−1,1∶R−1 to 0. For instance, for R = 3,

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 w13
w21 0 w23
w31 w32 w33
⋮ ⋮ ⋮

wn1 wn2 wn3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

An advantage of using this constraint compared with Procrustes matching is that the solution is
more explicitly defined and comparable across different methods that fit the LSIRM. As for Procrustes
matching, the solution depends on the largest likelihood encountered during MCMC sampling, the
solution may depend on the sampling scheme, estimation algorithm, or even on random fluctuations
within the same method applied to the same dataset. This is unproblematic for a single application
as any rotation solution is arbitrary. However, if applications or algorithms need to be compared, using
Procrustes matching may confound the comparison. Using echelon rotation, any solution obtained with
any estimation algorithm (MCMC or maximum likelihood, but also potential other procedures such as
least squares, variational inference, and minorization) can be rotated to the structure above to facilitate
comparison.

For R = 3, the following three rotations are carried out to transform W to an echelon structure:

W′ = WRT
1 ,W′′ = W′RT

2 , and W′′′ = W′′RT
3 , (11)

where R1, R2, and R3 are given by

R1 =
⎡⎢⎢⎢⎢⎢⎣

cos(α1) 0 sin(α1)
0 1 0

− sin(α1) 0 cos(α1)

⎤⎥⎥⎥⎥⎥⎦
, R2 =

⎡⎢⎢⎢⎢⎢⎣

1 0 0
0 cos(α2) sin(α2)
0 −sin(α2) cos(α2)

⎤⎥⎥⎥⎥⎥⎦
, and R3 =

⎡⎢⎢⎢⎢⎢⎣

cos(α3) sin(α3) 0
− sin(α3) cos(α3) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
. (12)

The angles of rotation α1, α2, and α3 can be obtained by standard trigonometry and are given by

α1 = arctan(w11

w13
),α2 = arctan(w′12

w′13
), and α3 = −arctan(w′′22

w′′21
), (13)

where w′ik and w′′ik are the elements from the rotated W′ and W′′ matrices. See Figure 1 for a graphical
illustration of the rotation scheme.

That is, in the figure, it can be seen that, first, wi1 and wi3 are rotated around wi2 using angle α1 so
that w′11 = 0. Next, w′i2 and w′i3 are rotated around w′i1 using angle α2 so that w′′12 = 0. Finally, w′′i1 and
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w′′i2 are rotated around w′′i3 using angle α3 so that w′′′22 = 0. Final matrix W′′′ will have the structure
in Equation (10). If R0 = R3 (R2R1) is denoted to be the overall rotation matrix, then the same rotation
can be applied to Z, resulting in Z′′′ = ZRT

0 . As noted before, the Euclidean distances of the original
parameters from W and Z are equivalent to the Euclidean distances of the rotated parameters from W′′′

and Z′′′, that is, d(zp,wi) = d(z′′′p ,w′′′′i ) for all p and all i. Generalization to any R is straightforward
and can be practically performed using the algorithm by, for instance, Wansbeek and Meijer (2000).

2.5. Model selection
Owing to its diagnostic character, in many situations, an LSIRM with R = 2 will suffice because of its
suitability to visualize the results in 2D plots. However, if a more statistical informed decision needs
to be made about R, there are no methods available yet. In a maximum likelihood framework, direct
comparison of the models using common fit indices, such as Akaike information criterion and Bayesian
information criterion, is challenging because of the ambiguity about the definition of the parameter
penalty for models with different dimensions of W and Z. As we rely on JML estimation, a suitable fit
index may be provided by the Joint-likelihood-based information criteria (JIC) by Chen and Li (2022).
However, in simulations, it turned out that the JIC only works for our model if the ratio n/N is larger
than considered here (see below and Appendix B of the Supplementary Material).

Therefore, we propose a model selection procedure based on K-fold cross-validation. Similar
procedures have been proposed for model selection among multidimensional two-parameter logistic
models (Bergner et al., 2022) and network models, including latent space models (Li et al., 2020).
Specifically, X(k) denotes the N ×n matrix of data in fold k = 1, . . . ,K, and Q denotes the number of
observed elements in X. Then, the data in fold k, X(k), are obtained by randomly selecting floor(Q

K )
elements Xpi from the full data matrix X without replacement, and assigning these to elements X(k)pi

in X(k). The elements of X(k) that have no value from X assigned are replaced by missing values. As such,
X is partitioned in K subsamples. If Q is not a multiple of K, the elements from X that are yet unselected
are assigned to the first Qmod K folds.

Next, the LSIRM is fit K times to the data matrix X, each time leaving out the data from fold k by
assuming these data to be Missing Completely at Random (Rubin, 1976). Finally, for each of the K
results obtained, we determine the predictive accuracy of the LSIRM in predicting the data from fold K.
Specifically, we consider three performance metrics.

2.5.1. Unnormalized classification error
The first metric is what we refer to as the unnormalized classification error (UCE):

UCE =∑(p,i)∈S(k)∑
K
k=1I(X(k)pi ≠ Ẋ(k)pi ), (14)

where S(k) is the set containing all (p,i) combinations for which X(k)pi is observed in X(k) and Ẋ(k)pi is
the model predicted score (0 or 1) for X(k)pi , that is,

Ẋ(k)pi = round(P(X(k)pi = 1∣θ(−k)
p ,β(−k)

i ,z(−k)
p ,w(−k)

i )), (15)

where the parameters contain superscript (−k) to denote that the data in X(k) were not used in its
estimation. Note that UCE is inversely related to the classification accuracy, which is generally defined
as the overall proportion of scores correctly classified as 0 or 1. We focus on classifications error so
that smaller values indicate better-performing models, which is better in line with the residual sum of
squares that we introduce later (which is naturally smaller for better-performing models). In addition,
while the classification accuracy is commonly normalized, we focus on the unnormalized metric to
increase the range of the metric and to be better in line with log-likelihood-based metrics, which are
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typically unnormalized (at least in psychometrics). The disadvantage of using unnormalized metrics is
that its exact value is harder to interpret compared with, for example, prediction accuracies. However,
prediction accuracies can be very similar across models due to their narrow range and upper bound
(which is not necessarily 1; see Bergner et al., 2022), and can therefore also be challenging to interpret.

2.5.2. Unnormalized ROC error
The next fit metric proposed is based on the area under the receiver operator curve (ROC). An ROC
gives the relation among the true positive rates and the false positive rates of a model across different
thresholds in a classification. For a perfect classification, the area under this curve is equal to 1, indicating
that the true positive rate is 1 and the false positive rate is 0. In the present study, we use the area under
the ROC curve to see how well the data in a given fold are predicted using the LSIRM as estimated
on the remaining folds. As discussed above, we focus on unnormalized metrics for which lower values
indicate better model performance; therefore, we focus on the unnormalized ROC error (URE):

URE =∑K
k=1N(k)n(k) [1−AUC(X(k),P(k))], (16)

where AUC(.) is the function that determines the area under the ROC curve and P(k) is an N × n
matrix containing the model predictions for fold k in elements S(k) of that matrix. Similarly to X(k),
the elements of P(k) that are not in S(k) are set to missing.

2.5.3. Residual sum of squares
Finally, we use a metric based on the residual sum of squares (RSS) in the prediction of X(k) by P(k).
That is,

RSS =∑(p,i)∈S(r)∑
K
k=1(X(k)pi −P(k)pi )

2
, (17)

where P(k)pi is element (p,i) from matrix P(k). For the RSS, it also holds that lower values indicate a
better-performing model.

2.6. Likelihood optimization
We implemented the methods above in the R package LSMjml, which is available from CRAN and from
www.dylanmolenaar.nl. We use a gradient ascent algorithm to maximize the likelihood in Equation (5)
for pJML and in Equation (7) for cJML with W subject to the echelon structure discussed above. For
pJML, parameters θ,β,Z, and W are updated sequentially by holding the other parameters constant. The
likelihood is penalized as shown in Equation (5), with λ = 1 as discussed above. For cJML, parameter
pairs [β,W] and [θ,Z] are updated alternatingly. The constraints in Equation (6) are introduced by
gradient projection (Chen et al., 2019; Nocedal & Wright, 2006, p. 485) in which the parameter values are
transformed to comply to Equation (6) after each parameter vector update (if necessary). As both JML
procedures are full information, missing data can be accommodated by assuming MAR and summing
the log-likelihood over all available data points.

Starting values are based on a preliminary exploratory item factor analysis with R+ 1 factors in
which the first factor has equal factor loadings for all items and the factor loadings of the remaining
R factors follow an echelon structure. Cai (2010) proposes a similar strategy for multidimensional item
factor analysis. However, like Bergner et al. (2022), we found that, in general, random initialization
performs equally well. See Algorithms 1 and 2 below for a description of, respectively, the pJML and
cJML procedures using pseudocode.
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2.7. Ordered categorical data
With the methods above in place, a generalization to ordered categorical data is straightforward. That
is, the LSIRM is formulated as a sequential item IRT model (Tutz, 1990) as follows:

P(Xpi ≥ h∣θp,βic,zp,wi) =
h
∏
c=0

ω(θp+βic−d(zp,wi)), (18)

where Xpi ∈ {0, . . . ,Ci−1} are the ordered categorical item responses and βic is the effect of item category
c = 0, . . . ,Ci −1, which are ordered as follows: ∞= βi0 > βi1 > ⋅ ⋅ ⋅ > βic > ⋅ ⋅ ⋅ > βi(Ci−1). Note that γ = 1 as
discussed above.

This ordinal LSIRM can readily be fit using the methodology discussed above by recoding the N×n
data matrix X with order categorical elements Xpi ∈ {0, . . . ,Ci−1} into an N ×∑n

i=1 (Ci−1) matrix of
cumulative binary dummy coded variables X′ with elements X′pij ∈ {0,1}, for j= 1, . . . ,Ci−1. Specifically,

X′pij = 1 if Xpi ≥ j and X′pij = 0 otherwise. (19)

For instance, if Ci = 3, this results in X′pi = [0,0] for Xpi = 0, X′pi = [1,0] for Xpi = 1, and X′pi = [1,1]
for Xpi = 2. Now, by treating the variables X′pij as dummy items in the binary LSIRM in Equation (18),
and by fixing wijr = wir for dummy items that correspond to the same original item, fitting the cJML or
pJML models to these dummy items will be equivalent to fitting Equation (18) to the original data X.
The estimates of βij on X’ will correspond to those of βic in Equation (18) obtained on X′. Note that by
using the approach above, the number of categories for the item responses is allowed to differ across
items.

3. Simulation studies

3.1. Design
In this simulation study, we focus on parameter recovery of JML approaches proposed in this article. We
focus on an LSIRM with R = 2, as this is arguably the model that is used in practice most. In addition,
we focus on binary data to be able to compare the results to the existing MCMC approach, which is
only available for binary data. Moreover, the binary model underlies the ordinal model, as discussed
above; therefore, the results will apply to the ordinal case as well. We simulate the data using the
parameterization in Equations (1) and (2) (including the γ parameter). Note that the JML models do not
include γ as a free parameter as explained above; however, we do simulate data using γ to manipulate
the effect of the latent space on the data and to demonstrate that γ is indeed absorbed in the zpr and wir
JML estimates.

We consider two sample sizes: N = 1,000 to reflect a more practical setting and N = 10,000 to study
the large sample behavior of the model estimates. We fully cross these sample size conditions with n =
24 (practical setting) and n = 96 (large sample). Below, we discuss the true values for the parameters,
which are inspired by or equal to the MCMC estimates of the deductive reasoning data analyzed in the
illustration section below. Specifically, true values for βi are between 1.5 and 5 and are identical to the
deductive reasoning data estimates. In addition, wi1 are decreasing from 2 to −2 in equally sized steps
and wi2 are between −2 and 2 and randomly assigned to the different items. For the conditions with
n = 96, the item parameters from the conditions with n = 24 are repeated four times. For the person
parameters, θp is specified to follow a normal distribution with mean 0 and variance 0.8, and zp1 and
zp2 are specified to follow a normal distribution with mean 0 and variance, respectively, 0.9 and 0.7.
The correlation between zp1 and zp2 was specified to be equal to −0.14. Finally, γ is equal to 1.7. As the
above values are based on the MCMC results from the deductive reasoning data, we also wanted to add
a data condition where γ = 1 to establish how parameter recovery is affected by this parameter. All other
parameters in this condition are the same as above. We use 50 replications for each condition

To the data from the different conditions, we fit the LSIRM with R = 2 using both pJML and cJML as
discussed above. We also fit the LSIRM using MCMC estimation in the R package lsirm12pl (Go et al.,
2023). We did so to have a benchmark approach available to compare JML results to. That is, we want to
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Figure 2. Plot of the true values of z1p (x-axis) and the mean estimated values (y-axis) for penalized joint maximum likelihood (pJML),

constrained joint maximum likelihood (cJML), and Markov Chain Monte Carlo for 24 and 96 items in the conditions γ = 1 and γ = 1.7.

In addition, N = 1,000 in all plots and the gray vertical lines indicate the range of the estimates within one standard deviation from the

mean. Note that the pJML and cJML estimates are divided by the true value of γ (see the text).

demonstrate that parameter estimates are highly comparable across the different fitting methods after
appropriate rotation. The aim of this study is not to show superiority of one method over the other.
We used all default settings of lsirm12pl. That is, we relied on 15,000 posterior samples of which 2,500
are burn-in and which is thinned by 5. In addition, the default priors of the package are a standard
normal prior for βi,zrp, and wri, a normal prior with mean 0 and variance σ2

θ for θp, a normal prior with
mean 0.5 and variance 1.0 for γ′, and an inverse-gamma prior with scale and shape 0.001 for σ2

θ .

3.2. Results
As the results do not differ importantly across the different dimensions of zp and wi, in the below,
we focus on zp1 and wi1. In addition, due to space limitations, in the main text, we mostly provide
graphical and verbal displays of the results, but we will make references to tables that can be found in
the Supplementary Material.

3.2.1. Parameter recovery
Figure 2 contains the average estimates and standard deviations across replications for zp1 in the cases of
n= 24 and n= 96 in the γ= 1 and γ= 1.7 conditions for N = 1,000. In addition, similarly, Figure 3 contains
the average estimates and standard deviations across replications for wi1 in the cases of N = 1,000 and
N = 10,000 in the γ = 1 and γ = 1.7 conditions for 24 items. In the figures, the true values are the plots
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Figure 3. Plot of the true values of w1i (x-axis) and the mean estimated values (y-axis) for penalized joint maximum likelihood (pJML),

constrained joint maximum likelihood (cJML), and Markov Chain Monte Carlo for N = 1,000 and N = 10,000 in the conditions γ = 1 and

γ = 1.7. In addition, n = 24 in all plots and the gray vertical lines indicate the range of the estimates within one standard deviation from

the mean. Note that the pJML and cJML estimates are divided by the true value of γ (see the text).

on the x-axis and the mean estimates on the y-axis. For the pJML and cJML estimates in the condition
γ = 1.7, the estimates are divided by 1.7, as the γ parameter is absorbed in these estimates (as it is not a
free parameter in the JML approaches, see above). As can be seen, pJML and MCMC estimates tend to be
unbiased up to a shrinkage effect that decreases for increasing N and n. For cJML, there is no shrinkage
effect noticeable, which is understandable given the constraints used in this approach (Equations (8)
and (9)), which operate as uniform priors. Shrinkage of the MCMC estimates diminishes at a higher
rate for increasing n or N and γ compared to pJML especially for zp1.

In Supplementary Table A1, the mean absolute bias (MAB), the variance (VAR), and the mean
squared error (MSE) of the estimates for person parameters z1p and θp averaged over persons are
reported. To separate the shrinkage effects from these statistics, for each parameter, the estimates are
scaled to have a standard deviation equal to that of the true parameters. The recovery of the standard
deviation of the estimates is studied separately later.

The most important result is that for all three methods, the MAB, VAR, and MSE decrease for zp1 and
θp for an increasing number of items, n. In addition, pJML performs comparable to MCMC especially
for larger N and n. For cJML, the VAR and MSE are slightly higher compared with cJML and MCMC,
particularly in conditions with smaller N and n.

Supplementary Table A2 contains the MSE, VAR, and MAB for item parameters wi1 and bi1 averaged
over items. For all three methods, these statistics decrease for both wi1 and bi for an increasing sample
size, N. One exception is for the estimates of bi for pJML in the γ = 1 condition where the VAR
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increases slightly. Similar as for the person parameters, for wi, pJML performs comparable to MCMC
especially for larger N and n. For cJML, the VAR and MSE are slightly higher compared with cJML and
MCMC particularly in conditions with smaller N and n. For bi, results are generally somewhat better
for MCMC in the case of smaller N, n, and γ.

Next, we focus on accuracy of the standard deviation of the estimates. As the variance of these
standard deviations is very small, we only report the mean bias in Supplementary Table A3. Previously,
we focused on the MAB to prevent biasing effects from canceling out across items or persons. However,
here, the mean bias is more interesting as it gives an indication of the direction of the effect. That is,
a mean bias smaller than 0 indicates shrinkage of the parameter estimates, whereas a mean bias larger
than 0 indicates increased parameter variability. In addition, as we are not aggregating over persons or
items, effects cannot cancel out.

As the standard deviations of the parameters are not explicit model parameters for pJML and cJML,
and these parameters are fixed for MCMC (except for σ2

θ ), the mean bias of the standard deviations
has been determined by focussing on the theoretically expected standard deviation. For MCMC, the
expected standard deviation is the standard deviations of the true values used to simulate the data (see
above). For pJML and cJML, the expected value of SD(w1i) and SD(z1p) are, respectively, γ×SD(w1i)
and γ× SD(z1p) as γ is expected to be absorbed in w1i and z1p as discussed above. For SD (bi) and
SD(θp), the expected values are the standard deviations of the true values used to simulate the data.
The results show that, as was already concluded from Figures 2 and 3, shrinkage effects are present
for pJML and MCMC with slightly negative biases that decrease for increasing N and n. This decrease
generally follows a higher rate for MCMC compared with pJML. For cJML, the estimates are mostly
associated with increased variability with positive biases that decrease for increasing N and n.

3.2.2. Estimation time
Figure 4 contains a bar plot of the mean estimation time of the different approaches for γ = 1 in minutes.
For γ = 1.7, pJML and cJML are even faster, while MCMC is about as fast (see Supplementary Table A4).
It can be concluded that pJML is the fastest, and MCMC is the slowest. These averages are just given as
an indication; the comparison between cJML/pJML and MCMC may not be fully fair as the settings for
the MCMC routine (e.g., number of samples) may be tuned in specific conditions so that the average
times shown in the figure are an overestimate. However, looking at the number of samples you can take
from the posterior parameters in the average time pJML took to converge (also in the figure), it is clear
that the JML-based approaches require a substantial smaller amount of time. As discussed, this brings
possibilities for establishing model fit, which are discussed below.

3.2.3. Cross-validation
We conducted additional simulations to test the appropriateness of our proposed K-folds cross-
validation procedure. The full description of this study and the results can be found in Appendix B
of the Supplementary Material. The main results indicate that cross-validation with the UCE, URE,
and RSS metrics as proposed above can distinguish well between the models for γ = 1, irrespective of
the number of items, the number of persons, or the number of folds considered. For the smaller data
scenario (N = 1,000, n = 24), the UCE has difficulties, correctly identifying the R = 1 model for five folds
(true positive rate of 0.66). However, using 10 folds, the true positive rate increases to 0.78, which is
more acceptable. For γ = 1.7, all true positives were at least 0.98, with one exception of a true positive
of 0.86 for the UCE when R = 1 and K = 5.

It should be noted that our cross-validation procedure tends to overselect, and not underselect. That
is, although, in general, the correct model is picked most of the times, if an incorrect model is being
selected, it is always a model with a larger R than the true model. This is a known property of cross-
validation in general (see Li et al., 2020), but it should be kept in mind when using cross-validation for
dimensionality selection.
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Figure 4. Bar plot of the mean estimation time in minutes for penalized joint maximum likelihood (pJML), constrained joint maximum

likelihood, and Markov Chain Monte Carlo for the different conditions and γ = 1. The error bars indicate one standard deviation. The

numbers indicate the rounded number of samples you can take from the posterior parameters in the average time pJML took to

converge (after thinning in brackets).

3.3. Conclusion
In general, our cJML and pJML estimation approaches perform as intended. The parameter recovery
is comparable to that of MCMC with some minor differences in specific conditions due to differences
in the priors and restrictions imposed. The cJML estimates are generally more variable because of the
constraints in this approach being the least restrictive among the three approaches. However, it should
be noted that in practice, C1 and C2 may be chosen by cross-validation, which may decrease parameter
variability. The pJML approach is generally faster than cJML, with MCMC being slower than the JML
approaches. Finally, the cross-validation procedure works well in selecting the number of dimensions
of the latent space.

4. Illustration 1: dichotomous data

4.1. Data
In this section, we analyze the scores of N = 418 children to 24 items from a Piagetian syllogistic
deductive reasoning test (see Spiel et al., 2001). These data have previously been analyzed using an
MCMC LSIRM by Jeon et al. (2021). In the present application, we use these data to illustrate the
similarities between the results of JML and MCMC after appropriate rotation. In addition, Jeon et al.
tested the fit of an R= 0 LSIRM against an R= 2 LSIRM using the spike and slab prior approach discussed
above. Here, we verify these results using the present cross-validation approach with K = 10 and extend
these results by also considering R = 1 and R = 3. In addition, we explore the results of the R = 3 model.
Models are fit using the same methods and settings as discussed for Simulation Study 1.

4.2. Results
We first consider the LSIRM with R = 2 as studied by Jeon et al. (2021) in an MCMC framework. After
the rotation of the MCMC results to an echelon structure, correlations among the parameter estimates
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Table 1. Model fit indices as based on a

10-fold cross-validation.

R UCE URE RSS

0 3,209 2,424 2,049

1 2,536 1,571 1,729

2 2,403 1,416 1,688

3 2,426 1,364 1,696

Note: For each metric, the smallest value is in
boldface. RSS, residual sum of squares; UCE,
unnormalized classification error; URE, unnor-
malized ROC error.

Figure 5. Plot of the estimates of vector wi from an R = 2 model for all items. I1–I4 are the item groups identified by Jeon et al. (2021).

across the different approaches are close to 1.0 (i.e., at least 0.989 for the MCMC—JML parameter
estimate correlations) or practically 1.0 (i.e., at least 0.999 for the pJML and cJML parameter estimate
correlations). We, therefore, only consider the pJML results below.

Table 1 contains the results of the cross-validation for models with R = 0,R = 1, R = 2, and R = 3. As
can be seen, the UCE and RSS select the R = 2 model to be the best fitting, whereas the URE favors the
R = 3 model. As Jeon et al. (2021) considered an R = 2 model, we here also explore if an R = 3 model will
give some additional insights. First, in Figure 5, the wi and zp estimates are plotted for an R = 2 LSIRM.
The figure is highly comparable to Figure 8a of Jeon et al., up to a difference in orientation due to the
differences in rotation between pJML and MCMC. Following Jeon et al., we label the four item clusters
that are observed as “I1” to “I4” in the figure. These are interpreted as, respectively, concrete complex
inference items, abstract and counterfactual logical fallacy items, bi-conditional items, and complex
algebra items.
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Figure 6. Plot of the estimates of vector wi from an R = 3 model for all items. The view has been adjusted to demonstrate

correspondence with the results for the K = 2 model, which lacks dimension 1 (see the text).

Next, we fit an R = 3 LSIRM. Figure 6 contains a three-dimensional plot of the estimates of wi from
this model. We first focus on an orientation of the view of the plot in which variability on dimension
1 (wi1) is mostly masked to show the correspondence with the R = 2 plot in Figure 5. It is important to
note that by using the echelon restrictions in the way illustrated in Equation (10), the first dimension
from an R = 2 model corresponds to the second dimension in an R = 3 model. Therefore, we masked
dimension 1 in Figure 6 to show the correspondence to Figure 5. As these figures indeed correspond,
we now demonstrate the differences on the first dimension in Figure 7. As can be seen, an additional
item cluster seems to arise splitting cluster I2 into l2a and l2b where I2a are items 10, 11, 14, and 15, and
I2b are items 18, 19, 22, and 23. In Figure 8, we next add the estimates of zp to the three-dimensional
plot. This figure illustrates that persons differ in their proximity to the different item clusters, with the
I3 items (blue) being more isolated, for instance, compared with the I1 items (red).

4.3. Conclusion
The main purpose of this real data analysis was to illustrate our JML-based approach on real data. A
cross-validation indicated that an R = 2 model seems, indeed, appropriate for the deductive reasoning
task analyses by Jeon et al. (2021) using an MCMC approach. As results indicated that there may
be variability on an additional dimension, we explored a three-dimensional model and found some
differences among the items in the three-dimensional space.

5. Illustration 2: ordered categorical data

5.1. Data
In this section, we illustrate the application of the present methodology to the analysis of ordinal data.
To this end, we analyze data from the Adjective Check List (ACL; Gough & Heilbrun, 1980). The
original ACL consists of 300 adjectives for which respondents need to indicate on a 5-point scale to
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Figure 7. Plot of the estimates of vector wi from an R = 3 model for all items. The view has been chosen to demonstrate the differences

across dimension 1.

what degree the adjective describes the personality of the respondent. The item scores of 433 students
on an adapted version of the ACL is available as part of the Mokken package in R (Van der Ark, 2007).
Here, we focus on the Communality and the Dominance scale, which both consist of 10 items. We
fit the ordinal LSIRM in Equation (18) to each scale separately using the cumulative binary dummy
coding approach described above. We focus on R = 2 for ease of interpretation and visualization. The
contraindicative items (indicated by an asterisk in the item name in the presentation of the results)
are reversely coded. For the item “reliable” from the Communality scale, respondents did not use the
lowest response category. Therefore, this item only has three threshold parameters, and all other items
have four threshold parameters.

5.2. Results
Item parameter estimates for βic and wi of the ordinal LSIRM can be found in Supplementary Table C1.
In Figure 9, the latent space, including zp, is displayed for the two scales. For the item positions wi,
the figure contains 99% confidence ellipses based on bootstrapped standard errors using 1,000 samples.
Even though the scales are intended to be unidimensional, as can be seen from the figure, for both
scales, the items seem to meaningfully cluster. For instance, for the Communality scale, omitting the
“unscrupulous*” and “honest” items that have relatively large standard errors, three clusters arise: the
“unintelligent*” item on the on side, which is apart from all the other items; the “reliable”–“dependable”
cluster; and a cluster with among others “cruel*” and “unfriendly*.” Items within a cluster are close to
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Figure 8. Same as Figure 7, but with the estimates of zp added.
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Figure 9. Graphical representation of the ordinal latent space item response model in application 2 for the Communality scale (left) and

the Dominance scale (right) of the ACL. The red dots represent the item locations wi , and the gray dots represent the person locations

zp. The ellipses around the item locations give the range of the 99% confidence intervals. The location of the first item (“reliable” in

Communality scale and “apathic” in the Dominance scale) is indicated by a star instead of a dot as w11 is fixed to 0 for this item, and a

99% confidence line is displayed for this item.
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each other while being further away from the other clusters. For the Dominance scale, something similar
is observed, omitting the “timid*” item, which has a relatively large standard error, “dreamy*” stands out
as it is apart from most of the items, while “dominant,” “strong,” and “enterprising” form a cluster, and
the other items form a separate cluster. “Apathic*” is separate but in the middle of the three clusters.

For the person positions, respondents are scattered across the clusters, with some persons have
an estimate closer to, for example, the “reserved*–withdrawn*” item cluster than to other items.
Respondents near the origin of the coordinate system (0,0) score high or low on all items (which could
be inferred from their θp estimate).

5.3. Conclusion
We demonstrated the viability of the ordinal LSIRM on a real dataset. In practice, results like the above
can be used to make profiles. For instance, using the adjectives check list above, in job applicant selection,
one may want to aim for respondents close to the “enterprising” and “strong” items, but also to the shy*
and timid* items, while not necessarily close to the “dreamy*” item. Using the present approach such
distances between persons and items can readily be interpreted. Other statistical methods like factor
analysis are valuable but serve different purposes compared with the latent space approach adopted
here. That is, factor analysis parameters cannot be interpreted in terms of item–person distances as in
factor analysis triangular inequality is violated. For a more elaborate discussion on the differences, see
Jeon et al. (2021).

6. Discussion

In this study, we proposed regularized JML estimation to fit the LSIRM to data. A key advantage is that
the estimation is fast, which hopefully facilitates the use of these models by the applied researcher. Owing
to its fast nature, model selection can be conducted using K-folds cross-validation, which is valuable as
such model selection tools are still relatively limited in the LSIRM literature.

These advantages come at the cost of reduced information about the posterior parameter distribu-
tion. That is, the MCMC approach results in estimates of the full posteriors parameter distributions,
while, as discussed, the estimates in our approach can be conceived as MAP estimates (e.g., Swami-
nathan & Gifford, 1985). Our approach does not give such detailed information about the shape of
the posterior parameter distributions. In the illustration section, we bootstrapped the standard errors,
but this increases the computational burden. The observed and expected information matrices may
be useful in obtaining uncertainty measures; however, for our approach, the theoretical properties
of these matrices are strictly unknow. At best, they give a local approximation if the posterior is
normal near its mode. As MCMC can account for any form of the parameter distribution in principle,
MCMC is superior in its measures of parameter uncertainty. Therefore, as noted earlier, we do not
view our approach as a replacement for existing LSIRM modeling tools, but rather as an extension. For
example, when uncertainty measures are of primary importance, MCMC estimation remains preferable.
Conversely, if the main goal is to visualize latent space positions or determine the dimensions of the
latent space, our JML-based approaches are recommended.

As discussed in this article, traditional JML estimation as proposed by Birnbaum (1968) is known
to be asymptotically inconsistent (e.g., Haberman, 1977). For a multidimensional unstructured two-
parameter logistic model, Chen et al. (2019) proofed JML to be consistent in the double asymptotic sense
under appropriate constraints. As mentioned, we did not study such theoretical consistency for our
approach. However, the simulation results suggest that parameter bias decreases for increasing number
of items and sample size. Moreover, theoretical consistency was not our main objective in this study.
That is, we studied JML as a less time-consuming complement to the existing MCMC procedures but
with comparable results. In that respect, our approach performs as desired. It should be noted, however,
that our implementation of the constrained JML approach uses the results from Chen et al. (2019),
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which are known to be asymptotically consistent in the average sense (the overall MSE approaches 0).
For entry-wise consistency (i.e., MSE approaches 0 for each parameter), additional post processing steps
are needed (see Chen and Li, 2024). Here, we did not consider such post processing, but we note that
our approach is equally amenable to such a treatment.
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