Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T22:34:26.672Z Has data issue: false hasContentIssue false

Structure, function and mechanism of the anaphase promoting complex (APC/C)

Published online by Cambridge University Press:  22 November 2010

David Barford*
Affiliation:
Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
*
*Author for correspondence: D. Barford, Section of Structural Biology, Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK. Email: david.barford@icr.ac.uk

Abstract

The complex molecular events responsible for coordinating chromosome replication and segregation with cell division and growth are collectively known as the cell cycle. Progression through the cell cycle is orchestrated by the interplay between controlled protein synthesis and degradation and protein phosphorylation. Protein degradation is primarily regulated through the ubiquitin proteasome system, mediated by two related E3 protein ubiquitin ligases, the Skp1 cullin F-box (SCF) and the anaphase promoting complex (also known as the cyclosome) (APC/C). The APC/C is a multi-subunit cullin-RING E3 ubiquitin ligase that regulates progression through the mitotic phase of the cell cycle and controls entry into S phase by catalysing the ubiquitylation of cyclins and other cell cycle regulatory proteins. Selection of APC/C targets is controlled through recognition of short destruction motifs, predominantly the D-box and KEN-box. APC/C-mediated coordination of cell cycle progression is achieved through the temporal regulation of APC/C activity and substrate specificity, exerted through a combination of co-activator subunits, reversible phosphorylation and inhibitory proteins and complexes. The aim of this article is to discuss the APC/C from a structural and mechanistic perspective. Although an atomic structure of the APC/C is still lacking, a combination of genetic, biochemical, electron microscopy studies of intact APC/C and crystallographic analysis of individual subunits, together with analogies to evolutionarily related E3 ligases of the RING family, has provided deep insights into the molecular mechanisms of catalysis and substrate recognition, and structural organisation of the APC/C.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

9. References

Amador, V., Ge, S., Santamaria, P. G., Guardavaccaro, D. & Pagano, M. (2007). APC/C(Cdc20) controls the ubiquitin-mediated degradation of p21 in prometaphase. Molecular Cell 27, 462473.CrossRefGoogle ScholarPubMed
Aristarkhov, A., Eytan, E., Moghe, A., Admon, A., Hershko, A. & Ruderman, J. V. (1996). E2-C, a cyclin-selective ubiquitin carrier protein required for the destruction of mitotic cyclins. Proceedings of the National Academy of Sciences of the United States of America 93, 42944299.Google Scholar
Au, S. W., Leng, X., Harper, J. W. & Barford, D. (2002). Implications for the ubiquitination reaction of the anaphase-promoting complex from the crystal structure of the Doc1/Apc10 subunit. Journal of Molecular Biology 316, 955968.Google Scholar
Ayad, N. G., Rankin, S., Murakami, M., Jebanathirajah, J., Gygi, S. & Kirschner, M. W. (2003). Tome-1, a trigger of mitotic entry, is degraded during G1 via the APC. Cell 113, 101113.Google Scholar
Benanti, J. A., Matyskiela, M. E., Morgan, D. O. & Toczyski, D. P. (2009). Functionally distinct isoforms of Cik1 are differentially regulated by APC/C-mediated proteolysis. Molecular Cell 33, 581590.Google Scholar
Berdougo, E., Nachury, M. V., Jackson, P. K. & Jallepalli, P. V. (2008). The nucleolar phosphatase Cdc14B is dispensable for chromosome segregation and mitotic exit in human cells. Cell Cycle 7, 11841190.Google Scholar
Bolanos-Garcia, V. M., Kiyomitsu, T., D'ARCY, S., Chirgadze, D. Y., Grossmann, J. G., Matak-Vinkovic, D., Venkitaraman, A. R., Yanagida, M., Robinson, C. V. & Blundell, T. L. (2009). The crystal structure of the N-terminal region of BUB1 provides insight into the mechanism of BUB1 recruitment to kinetochores. Structure 17, 105116.CrossRefGoogle ScholarPubMed
Braunstein, I., Miniowitz, S., Moshe, Y. & Hershko, A. (2007). Inhibitory factors associated with anaphase-promoting complex/cylosome in mitotic checkpoint. Proceedings of the National Academy of Sciences of the United States of America 104, 48704875.CrossRefGoogle ScholarPubMed
Burton, J. L. & Solomon, M. J. (2001). D box and KEN box motifs in budding yeast Hsl1p are required for APC-mediated degradation and direct binding to Cdc20p and Cdh1p. Genes and Development 15, 23812395.Google Scholar
Burton, J. L. & Solomon, M. J. (2007). Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint. Genes and Development 21, 655667.CrossRefGoogle ScholarPubMed
Burton, J. L., Tsakraklides, V. & Solomon, M. J. (2005). Assembly of an APC-Cdh1-substrate complex is stimulated by engagement of a destruction box. Molecular Cell 18, 533542.Google Scholar
Camasses, A., Bogdanova, A., Shevchenko, A. & Zachariae, W. (2003). The CCT chaperonin promotes activation of the anaphase-promoting complex through the generation of functional Cdc20. Molecular Cell 12, 87100.Google Scholar
Capili, A. D. & Lima, C. D. (2007). Taking it step by step: mechanistic insights from structural studies of ubiquitin/ubiquitin-like protein modification pathways. Current Opinion in Structural Biology 17, 726735.Google Scholar
Carroll, C. W., Enquist-Newman, M. & Morgan, D. O. (2005). The APC subunit Doc1 promotes recognition of the substrate destruction box. Current Biology 15, 1118.CrossRefGoogle ScholarPubMed
Carroll, C. W. & Morgan, D. O. (2002). The Doc1 subunit is a processivity factor for the anaphase-promoting complex. Nature Cell Biology 4, 880887.Google Scholar
Castro, A., Vigneron, S., Bernis, C., Labbe, J. C. & Lorca, T. (2003). Xkid is degraded in a D-box, KEN-box, and A-box-independent pathway. Molecular and Cellular Biology 23, 41264138.Google Scholar
Castro, A., Vigneron, S., Bernis, C., Labbe, J. C., Prigent, C. & Lorca, T. (2002). The D-Box-activating domain (DAD) is a new proteolysis signal that stimulates the silent D-Box sequence of Aurora-A. EMBO Reports 3, 12091214.CrossRefGoogle ScholarPubMed
Chau, V., Tobias, J. W., Bachmair, A., Marriott, D., Ecker, D. J., Gonda, D. K. & Varshavsky, A. (1989). A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243, 15761583.Google Scholar
Choi, E., Dial, J. M., Jeong, D. E. & Hall, M. C. (2008). Unique D box and KEN box sequences limit ubiquitination of Acm1 and promote pseudosubstrate inhibition of the anaphase-promoting complex. Journal of Biological Chemistry 283, 2370123710.Google Scholar
Chung, E. & Chen, R. H. (2003). Phosphorylation of Cdc20 is required for its inhibition by the spindle checkpoint. Nature Cell Biology 5, 748753.CrossRefGoogle ScholarPubMed
Ciosk, R., Zachariae, W., Michaelis, C., Shevchenko, A., Mann, M. & Nasmyth, K. (1998). An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93, 10671076.CrossRefGoogle ScholarPubMed
Clute, P. & Pines, J. (1999). Temporal and spatial control of cyclin B1 destruction in metaphase. Nature Cell Biology 1, 8287.Google Scholar
Cohen-Fix, O., Peters, J. M., Kirschner, M. W. & Koshland, D. (1996). Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes and Development 10, 30813093.CrossRefGoogle ScholarPubMed
Dawson, I. A., Roth, S. & Artavanis-Tsakonas, S. (1995). The Drosophila cell cycle gene fizzy is required for normal degradation of cyclins A and B during mitosis and has homology to the CDC20 gene of Saccharomyces cerevisiae. Journal of Cell Biology 129, 725737.Google Scholar
Den Elzen, N. & Pines, J. (2001). Cyclin A is destroyed in prometaphase and can delay chromosome alignment and anaphase. Journal of Cell Biology 153, 121136.Google Scholar
Deshaies, R. J. & Joazeiro, C. A. (2009). RING domain E3 ubiquitin ligases. Annual Review of Biochemistry 78, 399434.Google Scholar
Di Fiore, B. & Pines, J. (2008). Defining the role of Emi1 in the DNA replication-segregation cycle. Chromosoma 117, 333338.Google Scholar
Dial, J. M., Petrotchenko, E. V. & Borchers, C. H. (2007). Inhibition of APCCdh1 activity by Cdh1/Acm1/Bmh1 ternary complex formation. Journal of Biological Chemistry 282, 52375248.CrossRefGoogle ScholarPubMed
Dias, D. C., Dolios, G., Wang, R. & Pan, Z. Q. (2002). CUL7: A DOC domain-containing cullin selectively binds Skp1.Fbx29 to form an SCF-like complex. Proceedings of the National Academy of Sciences of the United States of America 99, 1660116606.CrossRefGoogle ScholarPubMed
Dube, P., Herzog, F., Gieffers, C., Sander, B., Riedel, D., Muller, S. A., Engel, A., Peters, J. M. & Stark, H. (2005). Localization of the coactivator Cdh1 and the cullin subunit Apc2 in a cryo-electron microscopy model of vertebrate APC/C. Molecular Cell 20, 867879.CrossRefGoogle Scholar
Duda, D. M., Borg, L. A., Scott, D. C., Hunt, H. W., Hammel, M. & Schulman, B. A. (2008). Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134, 9951006.CrossRefGoogle ScholarPubMed
Eldridge, A. G., Loktev, A. V., Hansen, D. V., Verschuren, E. W., Reimann, J. D. & Jackson, P. K. (2006). The evi5 oncogene regulates cyclin accumulation by stabilizing the anaphase-promoting complex inhibitor emi1. Cell 124, 367380.CrossRefGoogle ScholarPubMed
Enquist-Newman, M., Sullivan, M. & Morgan, D. O. (2008). Modulation of the mitotic regulatory network by APC-dependent destruction of the Cdh1 inhibitor Acm1. Molecular Cell 30, 437446.Google Scholar
Eytan, E., Braunstein, I., Ganoth, D., Teichner, A., Hittle, J. C., Yen, T. J. & Hershko, A. (2008). Two different mitotic checkpoint inhibitors of the anaphase-promoting complex/cyclosome antagonize the action of the activator Cdc20. Proceedings of the National Academy of Sciences of the United States of America 105, 91819185.Google Scholar
Eytan, E., Moshe, Y., Braunstein, I. & Hershko, A. (2006). Roles of the anaphase-promoting complex/cyclosome and of its activator Cdc20 in functional substrate binding. Proceedings of the National Academy of Sciences of the United States of America 103, 20812086.CrossRefGoogle ScholarPubMed
Fang, G., Yu, H. & Kirschner, M. W. (1998a). Direct binding of CDC20 protein family members activates the anaphase-promoting complex in mitosis and G1. Molecular Cell 2, 163171.Google Scholar
Fang, G., Yu, H. & Kirschner, M. W. (1998b). The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes and Development 12, 18711883.CrossRefGoogle Scholar
Fitzgerald, D. J., Schaffitzel, C., Berger, P., Wellinger, R., Bieniossek, C., Richmond, T. J. & Berger, I. (2007). Multiprotein expression strategy for structural biology of eukaryotic complexes. Structure 15, 275279.CrossRefGoogle ScholarPubMed
Fraschini, R., Beretta, A., Sironi, L., Musacchio, A., Lucchini, G. & Piatti, S. (2001). Bub3 interaction with Mad2, Mad3 and Cdc20 is mediated by WD40 repeats and does not require intact kinetochores. Embo Journal 20, 66486659.Google Scholar
Fry, A. M. & Yamano, H. (2008). Under arrest in mitosis: Cdc20 dies twice. Nature Cell Biology 10, 13851387.Google Scholar
Funabiki, H., Yamano, H., Kumada, K., Nagao, K., Hunt, T. & Yanagida, M. (1996). Cut2 proteolysis required for sister-chromatid seperation in fission yeast. Nature 381, 438441.Google Scholar
Funakoshi, M., Tomko, R. J. Jr., Kobayashi, H. & Hochstrasser, M. (2009). Multiple assembly chaperones govern biogenesis of the proteasome regulatory particle base. Cell 137, 887899.CrossRefGoogle ScholarPubMed
Garnett, M. J., Mansfeld, J., Godwin, C., Matsusaka, T., Wu, J., Russell, P., Pines, J. & Venkitaraman, A. R. (2009). UBE2S elongates ubiquitin chains on APC/C substrates to promote mitotic exit. Nature Cell Biology 11, 13631369.CrossRefGoogle ScholarPubMed
Gazdoiu, S., Yamoah, K., Wu, K., Escalante, C. R., Tappin, I., Bermudez, V., Aggarwal, A. K., Hurwitz, J. & Pan, Z. Q. (2005). Proximity-induced activation of human Cdc34 through heterologous dimerization. Proceedings of the National Academy of Sciences of the United States of America 102, 1505315058.CrossRefGoogle ScholarPubMed
Geley, S., Kramer, E., Gieffers, C., Gannon, J., Peters, J. M. & Hunt, T. (2001). Anaphase-promoting complex/cyclosome-dependent proteolysis of human cyclin A starts at the beginning of mitosis and is not subject to the spindle assembly checkpoint. Journal of Cell Biology 153, 137148.Google Scholar
Glotzer, M., Murray, A. W. & Kirschner, M. W. (1991). Cyclin is degraded by the ubiquitin pathway. Nature 349, 132138.CrossRefGoogle ScholarPubMed
Gmachl, M., Gieffers, C., Podtelejnikov, A. V., Mann, M. & Peters, J. M. (2000). The RING-H2 finger protein APC11 and the E2 enzyme UBC4 are sufficient to ubiquitinate substrates of the anaphase-promoting complex. Proceedings of the National Academy of Sciences of the United States of America 97, 89738978.Google Scholar
Golan, A., Yudkovsky, Y. & Hershko, A. (2002). The cyclin-ubiquitin ligase activity of cyclosome/APC is jointly activated by protein kinases Cdk1-cyclin B and Plk. Journal of Biological Chemistry 277, 1555215557.CrossRefGoogle ScholarPubMed
Gordon, D. M. & Roof, D. M. (2001). Degradation of the kinesin Kip1p at anaphase onset is mediated by the anaphase-promoting complex and Cdc20p. Proceedings of the National Academy of Sciences of the United States of America 98, 1251512520.Google Scholar
Gorr, I. H., Boos, D. & Stemmann, O. (2005). Mutual inhibition of separase and Cdk1 by two-step complex formation. Molecular Cell 19, 135141.CrossRefGoogle ScholarPubMed
Grossberger, R., Gieffers, C., Zachariae, W., Podtelejnikov, A. V., Schleiffer, A., Nasmyth, K., Mann, M. & Peters, J. M. (1999). Characterization of the DOC1/APC10 subunit of the yeast and the human anaphase-promoting complex. Journal of Biological Chemistry 274, 1450014507.Google Scholar
Grosskortenhaus, R. & Sprenger, F. (2002). Rca1 inhibits APC-Cdh1(Fzr) and is required to prevent cyclin degradation in G2. Developmental Cell 2, 2940.CrossRefGoogle ScholarPubMed
Hames, R. S., Wattam, S. L., Yamano, H., Bacchieri, R. & Fry, A. M. (2001). APC/C-mediated destruction of the centrosomal kinase Nek2A occurs in early mitosis and depends upon a cyclin A-type D-box. Embo Journal 20, 71177127.Google Scholar
Han, D., Kim, K., Kim, Y., Kang, Y., Lee, J. Y. & Kim, Y. (2009). Crystal structure of the N-terminal domain of anaphase-promoting complex subunit 7. Journal of Biological Chemistry 284, 1513715146.CrossRefGoogle ScholarPubMed
Hansen, D. V., Loktev, A. V., Ban, K. H. & Jackson, P. K. (2004). Plk1 regulates activation of the anaphase promoting complex by phosphorylating and triggering SCFbetaTrCP-dependent destruction of the APC Inhibitor Emi1. Molecular Biology of the Cell 15, 56235634.CrossRefGoogle ScholarPubMed
Hardwick, K. G., Johnston, R. C., Smith, D. L. & Murray, A. W. (2000). MAD3 encodes a novel component of the spindle checkpoint which interacts with Bub3p, Cdc20p, and Mad2p. Journal of Cell Biology 148, 871882.Google Scholar
Harper, J. W., Burton, J. L. & Solomon, M. J. (2002). The anaphase-promoting complex: it's not just for mitosis any more. Genes and Development 16, 21792206.CrossRefGoogle Scholar
Hayes, M. J., Kimata, Y., Wattam, S. L., Lindon, C., Mao, G., Yamano, H. & Fry, A. M. (2006). Early mitotic degradation of Nek2A depends on Cdc20-independent interaction with the APC/C. Nature Cell Biology 8, 607614.CrossRefGoogle ScholarPubMed
Hendrickson, C., Meyn, M. A. III, Morabito, L. & Holloway, S. L. (2001). The KEN box regulates Clb2 proteolysis in G1 and at the metaphase-to-anaphase transition. Current Biology 11, 17811787.CrossRefGoogle ScholarPubMed
Herrero-Mendez, A., Almeida, A., Fernandez, E., Maestre, C., Moncada, S. & Bolanos, J. P. (2009). The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nature Cell Biology 11, 747752.Google Scholar
Hershko, A. & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry 67, 425479.CrossRefGoogle ScholarPubMed
Herzog, F., Primorac, I., Dube, P., Lenart, P., Sander, B., Mechtler, K., Stark, H. & Peters, J. M. (2009). Structure of the anaphase-promoting complex/cyclosome interacting with a mitotic checkpoint complex. Science 323, 14771481.Google Scholar
Hildebrandt, E. R. & Hoyt, M. A. (2001). Cell cycle-dependent degradation of the Saccharomyces cerevisiae spindle motor Cin8p requires APC(Cdh1) and a bipartite destruction sequence. Molecular Biology of the Cell 12, 34023416.CrossRefGoogle Scholar
Hilioti, Z., Chung, Y. S., Mochizuki, Y., Hardy, C. F. & Cohen-Fix, O. (2001). The anaphase inhibitor Pds1 binds to the APC/C-associated protein Cdc20 in a destruction box-dependent manner. Current Biology 11, 13471352.CrossRefGoogle Scholar
Hirano, T., Kinoshita, N., Morikawa, K. & Yanagida, M. (1990). Snap helix with knob and hole: essential repeats in S. pombe nuclear protein nuc2+. Cell 60, 319328.Google Scholar
Hochstrasser, M. (2006). Lingering mysteries of ubiquitin-chain assembly. Cell 124, 2734.CrossRefGoogle ScholarPubMed
Holland, A. J. & Taylor, S. S. (2006). Cyclin-B1-mediated inhibition of excess separase is required for timely chromosome disjunction. Journal of Cell Science 119, 33253336.Google Scholar
Holt, L. J., Krutchinsky, A. N. & Morgan, D. O. (2008). Positive feedback sharpens the anaphase switch. Nature 454, 353357.Google Scholar
Hsu, J. Y., Reimann, J. D., Sorensen, C. S., Lukas, J. & Jackson, P. K. (2002). E2F-dependent accumulation of hEmi1 regulates S phase entry by inhibiting APC(Cdh1). Nature Cell Biology 4, 358366.CrossRefGoogle ScholarPubMed
Hutchins, J. R., Toyoda, Y., Hegemann, B., Poser, I., Heriche, J. K., Sykora, M. M., Augsburg, M., Hudecz, O., Buschhorn, B. A., Bulkescher, J., Conrad, C., Comartin, D., Schleiffer, A., Sarov, M., Pozniakovsky, A., Slabicki, M. M., Schloissnig, S., Steinmacher, I., Leuschner, M., Ssykor, A., Lawo, S., Pelletier, L., Stark, H., Nasmyth, K., Ellenberg, J., Durbin, R., Buchholz, F., Mechtler, K., Hyman, A. A. & Peters, J. M. (2010). Systematic analysis of human protein complexes identifies chromosome segregation proteins. Science 328, 593599.Google Scholar
Hwang, L. H., Lau, L. F., Smith, D. L., Mistrot, C. A., Hardwick, K. G., Hwang, E. S., Amon, A. & Murray, A. W. (1998). Budding yeast Cdc20: a target of the spindle checkpoint. Science 279, 10411044.CrossRefGoogle ScholarPubMed
Hwang, L. H. & Murray, A. W. (1997). A novel yeast screen for mitotic arrest mutants identifies DOC1, a new gene involved in cyclin proteolysis. Molecular Biology of the Cell 8, 18771887.CrossRefGoogle ScholarPubMed
Inoue, D., Ohe, M., Kanemori, Y., Nobui, T. & Sagata, N. (2007). A direct link of the Mos-MAPK pathway to Erp1/Emi2 in meiotic arrest of Xenopus laevis eggs. Nature 446, 11001104.CrossRefGoogle ScholarPubMed
Irniger, S. & Nasmyth, K. (1997). The anaphase-promoting complex is required in G1 arrested yeast cells to inhibit B-type cyclin accumulation and to prevent uncontrolled entry into S-phase. Journal of Cell Science 110, 15231531.CrossRefGoogle ScholarPubMed
Irniger, S., Piatti, S., Michaelis, C. & Nasmyth, K. (1995). Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell 81, 269278.Google Scholar
Jacobs, H. W., Keidel, E. & Lehner, C. F. (2001). A complex degradation signal in Cyclin A required for G1 arrest, and a C-terminal region for mitosis. Embo Journal 20, 23762386.Google Scholar
Jaspersen, S. L., Charles, J. F. & Morgan, D. O. (1999). Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Current Biology 9, 227236.Google Scholar
Jin, L., Williamson, A., Banerjee, S., Philipp, I. & Rape, M. (2008). Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133, 653665.Google Scholar
Kajava, A. V. (2002). What curves alpha-solenoids? Evidence for an alpha-helical toroid structure of Rpn1 and Rpn2 proteins of the 26 S proteasome. Journal of Biological Chemistry 277, 4979149798.CrossRefGoogle ScholarPubMed
Kaneko, T., Hamazaki, J., Iemura, S., Sasaki, K., Furuyama, K., Natsume, T., Tanaka, K. & Murata, S. (2009). Assembly pathway of the Mammalian proteasome base subcomplex is mediated by multiple specific chaperones. Cell 137, 914925.Google Scholar
Kim, A. H., Puram, S. V., Bilimoria, P. M., Ikeuchi, Y., Keough, S., Wong, M., Rowitch, D. & Bonni, A. (2009). A centrosomal Cdc20-APC pathway controls dendrite morphogenesis in postmitotic neurons. Cell 136, 322336.Google Scholar
Kim, S. H., Lin, D. P., Matsumoto, S., Kitazono, A. & Matsumoto, T. (1998). Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science 279, 10451047.CrossRefGoogle ScholarPubMed
Kimata, Y., Baxter, J. E., Fry, A. M. & Yamano, H. (2008a). A role for the Fizzy/Cdc20 family of proteins in activation of the APC/C distinct from substrate recruitment. Molecular Cell 32, 576583.CrossRefGoogle ScholarPubMed
Kimata, Y., Trickey, M., Izawa, D., Gannon, J., Yamamoto, M. & Yamano, H. (2008b). A mutual inhibition between APC/C and its substrate Mes1 required for meiotic progression in fission yeast. Developmental Cell 14, 446454.Google Scholar
King, E. M., van Der Sar, S. J. & Hardwick, K. G. (2007). Mad3 KEN boxes mediate both Cdc20 and Mad3 turnover, and are critical for the spindle checkpoint. PLoS ONE 2, e342.Google Scholar
King, R. W., Glotzer, M. & Kirschner, M. W. (1996). Mutagenic analysis of the destruction signal of mitotic cyclins and structural characterization of ubiquitinated intermediates. Molecular Biology of the Cell 7, 13431357.Google Scholar
King, R. W., Peters, J. M., Tugendreich, S., Rolfe, M., Hieter, P. & Kirschner, M. W. (1995). A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell 81, 279288.Google Scholar
Kirkpatrick, D. S., Hathaway, N. A., Hanna, J., Elsasser, S., Rush, J., Finley, D., King, R. W. & Gygi, S. P. (2006). Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nature Cell Biology 8, 700710.Google Scholar
Kleiger, G., Saha, A., Lewis, S., Kuhlman, B. & Deshaies, R. J. (2009). Rapid E2-E3 assembly and disassembly enable processive ubiquitylation of cullin-RING ubiquitin ligase substrates. Cell 139, 957968.CrossRefGoogle ScholarPubMed
Komander, D., Reyes-Turcu, F., Licchesi, J. D., Odenwaelder, P., Wilkinson, K. D. & Barford, D. (2009). Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Reports 10, 466473.Google Scholar
Kominami, K., Seth-Smith, H. & Toda, T. (1998). Apc10 and Ste9/Srw1, two regulators of the APC-cyclosome, as well as the CDK inhibitor Rum1 are required for G1 cell-cycle arrest in fission yeast. EMBO Journal 17, 53885399.CrossRefGoogle ScholarPubMed
Kops, G. J., Voet, M. V., Manak, M. S., Van Osch, M. H., Naini, S. M., Brear, A., Mcleod, I. X., Hentschel, D. M., Yates, J. R. III, van Den Heuvel, S. & Shah, J. V. (2010). APC16 is a conserved subunit of the anaphase-promoting complex/cyclosome. Journal of Cell Science 123, 16231633.CrossRefGoogle ScholarPubMed
Kraft, C., Herzog, F., Gieffers, C., Mechtler, K., Hagting, A., Pines, J. & Peters, J. M. (2003). Mitotic regulation of the human anaphase-promoting complex by phosphorylation. Embo Journal 22, 65986609.Google Scholar
Kraft, C., Vodermaier, H. C., Maurer-Stroh, S., Eisenhaber, F. & Peters, J. M. (2005). The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Molecular Cell 18, 543553.Google Scholar
Kramer, E. R., Gieffers, C., Holzl, G., Hengstschlager, M. & Peters, J. M. (1998a). Activation of the human anaphase-promoting complex by proteins of the CDC20/Fizzy family. Current Biology 8, 12071210.Google Scholar
Kramer, E. R., Scheuringer, N., Podtelejnikov, A. V., Mann, M. & Peters, J. M. (2000). Mitotic regulation of the APC activator proteins CDC20 and CDH1. Molecular Biology of the Cell 11, 15551569.Google Scholar
Kramer, K. M., Fesquet, D., Johnson, A. L. & Johnston, L. H. (1998b). Budding yeast RSI1/APC2, a novel gene necessary for initiation of anaphase, encodes an APC subunit. Embo Journal 17, 498506.CrossRefGoogle ScholarPubMed
Kravtsova-Ivantsiv, Y., Cohen, S. & Ciechanover, A. (2009). Modification by single ubiquitin moieties rather than polyubiquitination is sufficient for proteasomal processing of the p105 NF-kappaB precursor. Molecular Cell 33, 496504.Google Scholar
Kulukian, A., Han, J. S. & Cleveland, D. W. (2009). Unattached kinetochores catalyze production of an anaphase inhibitor that requires a Mad2 template to prime Cdc20 for BubR1 binding. Developmental Cell 16, 105117.Google Scholar
Kurasawa, Y. & Todokoro, K. (1999). Identification of human APC10/Doc1 as a subunit of anaphase promoting complex. Oncogene 18, 51315137.Google Scholar
Lahav-Baratz, S., Sudakin, V., Ruderman, J. V. & Hershko, A. (1995). Reversible phosphorylation controls the activity of cyclosome-associated cyclin-ubiquitin ligase. Proceedings of the National Academy of Sciences of the United States of America 92, 93039307.Google Scholar
Lamb, J. R., Michaud, W. A., Sikorski, R. S. & Hieter, P. A. (1994). Cdc16p, Cdc23p and Cdc27p form a complex essential for mitosis. Embo Journal 13, 43214328.Google Scholar
Larsen, N. A., Al-Bassam, J., Wei, R. R. & Harrison, S. C. (2007). Structural analysis of Bub3 interactions in the mitotic spindle checkpoint. Proceedings of the National Academy of Sciences of the United States of America 104, 12011206.CrossRefGoogle ScholarPubMed
Leverson, J. D., Joazeiro, C. A., Page, A. M., Huang, H., Hieter, P. & Hunter, T. (2000). The APC11 RING-H2 finger mediates E2-dependent ubiquitination. Molecular Biology of the Cell 11, 23152325.CrossRefGoogle ScholarPubMed
Li, M., Shin, Y. H., Hou, L., Huang, X., Wei, Z., Klann, E. & Zhang, P. (2008). The adaptor protein of the anaphase promoting complex Cdh1 is essential in maintaining replicative lifespan and in learning and memory. Nature Cell Biology 10, 10831089.Google Scholar
Li, W., Tu, D., Brunger, A. T. & Ye, Y. (2007). A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate. Nature 446, 333337.Google Scholar
Lim, H. H., Goh, P. Y. & Surana, U. (1998). Cdc20 is essential for the cyclosome-mediated proteolysis of both Pds1 and Clb2 during M phase in budding yeast. Current Biology 8, 231234.Google Scholar
Littlepage, L. E. & Ruderman, J. V. (2002). Identification of a new APC/C recognition domain, the A box, which is required for the Cdh1-dependent destruction of the kinase Aurora-A during mitotic exit. Genes and Development 16, 22742285.Google Scholar
Liu, J. & Maller, J. L. (2005). Calcium elevation at fertilization coordinates phosphorylation of XErp1/Emi2 by Plx1 and CaMK II to release metaphase arrest by cytostatic factor. Current Biology 15, 14581468.Google Scholar
Lorca, T., Castro, A., Martinez, A. M., Vigneron, S., Morin, N., Sigrist, S., Lehner, C., Doree, M. & Labbe, J. C. (1998). Fizzy is required for activation of the APC/cyclosome in Xenopus egg extracts. Embo Journal 17, 35653575.CrossRefGoogle ScholarPubMed
Luo, X., Tang, Z., Rizo, J. & Yu, H. (2002). The Mad2 spindle checkpoint protein undergoes similar major conformational changes upon binding to either Mad1 or Cdc20. Molecular Cell 9, 5971.Google Scholar
Luo, X. & Yu, H. (2008). Protein metamorphosis: the two-state behavior of Mad2. Structure 16, 16161625.Google Scholar
Lupas, A., Baumeister, W. & Hofmann, K. (1997). A repetitive sequence in subunits of the 26S proteasome and 20S cyclosome (anaphase-promoting complex). Trends in Biochemical Sciences 22, 195196.Google Scholar
Mailand, N. & Diffley, J. F. (2005). CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 122, 915926.Google Scholar
Malureanu, L. A., Jeganathan, K. B., Hamada, M., Wasilewski, L., Davenport, J. & Van Deursen, J. M. (2009). BubR1 N terminus acts as a soluble inhibitor of cyclin B degradation by APC/C(Cdc20) in interphase. Developmental Cell 16, 118131.CrossRefGoogle ScholarPubMed
Mapelli, M., Massimiliano, L., Santaguida, S. & Musacchio, A. (2007). The Mad2 conformational dimer: structure and implications for the spindle assembly checkpoint. Cell 131, 730743.Google Scholar
Marangos, P. & Carroll, J. (2008). Securin regulates entry into M-phase by modulating the stability of cyclin B. Nature Cell Biology 10, 445451.CrossRefGoogle ScholarPubMed
Martinez, J. S., Jeong, D. E., Choi, E., Billings, B. M. & Hall, M. C. (2006). Acm1 is a negative regulator of the CDH1-dependent anaphase-promoting complex/cyclosome in budding yeast. Molecular and Cellular Biology 26, 91629176.CrossRefGoogle ScholarPubMed
Masui, Y. & Markert, C. L. (1971). Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes. Journal of Experimental Zoology 177, 129145.Google Scholar
Mathe, E., Kraft, C., Giet, R., Deak, P., Peters, J. M. & Glover, D. M. (2004). The E2-C vihar is required for the correct spatiotemporal proteolysis of cyclin B and itself undergoes cyclical degradation. Current Biology 14, 17231733.Google Scholar
Matyskiela, M. E. & Morgan, D. O. (2009). Analysis of activator-binding sites on the APC/C supports a cooperative substrate-binding mechanism. Molecular Cell 34, 6880.Google Scholar
Merbl, Y. & Kirschner, M. W. (2009). Large-scale detection of ubiquitination substrates using cell extracts and protein microarrays. Proceedings of the National Academy of Sciences of the United States of America 106, 25432548.CrossRefGoogle ScholarPubMed
Michaelis, C., Ciosk, R. & Nasmyth, K. (1997). Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 3545.Google Scholar
Miller, J. J., Summers, M. K., Hansen, D. V., Nachury, M. V., Lehman, N. L., Loktev, A. & Jackson, P. K. (2006). Emi1 stably binds and inhibits the anaphase-promoting complex/cyclosome as a pseudosubstrate inhibitor. Genes and Development 20, 24102420.Google Scholar
Mochida, S. & Hunt, T. (2007). Calcineurin is required to release Xenopus egg extracts from meiotic M phase. Nature 449, 336340.Google Scholar
Murata, S., Yashiroda, H. & Tanaka, K. (2009). Molecular mechanisms of proteasome assembly. Nature Reviews Molecular Cell Biology 10, 104115.Google Scholar
Murray, A. W., Solomon, M. J. & Kirschner, M. W. (1989). The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 339, 280286.Google Scholar
Musacchio, A. & Salmon, E. D. (2007). The spindle-assembly checkpoint in space and time. Nature Reviews Molecular Cell Biology 8, 379393.CrossRefGoogle ScholarPubMed
Nasmyth, K. (2002). Segregating sister genomes: the molecular biology of chromosome separation. Science 297, 559565.Google Scholar
Nilsson, J., Yekezare, M., Minshull, J. & Pines, J. (2008). The APC/C maintains the spindle assembly checkpoint by targeting Cdc20 for destruction. Nature Cell Biology 10, 14111420.Google Scholar
Nishiyama, T., Ohsumi, K. & Kishimoto, T. (2007a). Phosphorylation of Erp1 by p90rsk is required for cytostatic factor arrest in Xenopus laevis eggs. Nature 446, 10961099.Google Scholar
Nishiyama, T., Yoshizaki, N., Kishimoto, T. & Ohsumi, K. (2007b). Transient activation of calcineurin is essential to initiate embryonic development in Xenopus laevis. Nature 449, 341345.Google Scholar
Noton, E. & Diffley, J. F. (2000). CDK inactivation is the only essential function of the APC/C and the mitotic exit network proteins for origin resetting during mitosis. Molecular Cell 5, 8595.Google Scholar
Oelschlaegel, T., Schwickart, M., Matos, J., Bogdanova, A., Camasses, A., Havlis, J., Shevchenko, A. & Zachariae, W. (2005). The yeast APC/C subunit Mnd2 prevents premature sister chromatid separation triggered by the meiosis-specific APC/C-Ama1. Cell 120, 773788.CrossRefGoogle ScholarPubMed
Ohi, M. D., Feoktistova, A., Ren, L., Yip, C., Cheng, Y., Chen, J. S., Yoon, H. J., Wall, J. S., Huang, Z., Penczek, P. A., Gould, K. L. & Walz, T. (2007). Structural organization of the anaphase-promoting complex bound to the mitotic activator Slp1. Molecular Cell 28, 871885.CrossRefGoogle Scholar
Osaka, F., Seino, H., Seno, T. & Yamao, F. (1997). A ubiquitin-conjugating enzyme in fission yeast that is essential for the onset of anaphase in mitosis. Molecular and Cellular Biology 17, 33883397.CrossRefGoogle ScholarPubMed
Ostapenko, D., Burton, J. L., Wang, R. & Solomon, M. J. (2008). Pseudosubstrate inhibition of the anaphase-promoting complex by Acm1: regulation by proteolysis and Cdc28 phosphorylation. Molecular and Cellular Biology 28, 46534664.Google Scholar
Pan, J. & Chen, R. H. (2004). Spindle checkpoint regulates Cdc20p stability in Saccharomyces cerevisiae. Genes and Development 18, 14391451.Google Scholar
Passmore, L. A. & Barford, D. (2004). Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochemical Journal 379, 513525.Google Scholar
Passmore, L. A. & Barford, D. (2005). Coactivator functions in a stoichiometric complex with anaphase-promoting complex/cyclosome to mediate substrate recognition. EMBO Reports 6, 873878.CrossRefGoogle Scholar
Passmore, L. A., Booth, C. R., Venien-Bryan, C., Ludtke, S. J., Fioretto, C., Johnson, L. N., Chiu, W. & Barford, D. (2005). Structural analysis of the anaphase-promoting complex reveals multiple active sites and insights into polyubiquitylation. Molecular Cell 20, 855866.Google Scholar
Passmore, L. A., Mccormack, E. A., Au, S. W., Paul, A., Willison, K. R., Harper, J. W. & Barford, D. (2003). Doc1 mediates the activity of the anaphase-promoting complex by contributing to substrate recognition. Embo Journal 22, 786796.Google Scholar
Penkner, A. M., Prinz, S., Ferscha, S. & Klein, F. (2005). Mnd2, an essential antagonist of the anaphase-promoting complex during meiotic prophase. Cell 120, 789801.Google Scholar
Peters, J. M. (2006). The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Reviews Molecular Cell Biology 7, 644656.Google Scholar
Peters, J. M., King, R. W., Hoog, C. & Kirschner, M. W. (1996). Identification of BIME as a subunit of the anaphase-promoting complex. Science 274, 11991201.CrossRefGoogle ScholarPubMed
Petroski, M. D. & Deshaies, R. J. (2005). Function and regulation of cullin-RING ubiquitin ligases. Nature Reviews Molecular Cell Biology 6, 920.Google Scholar
Pfleger, C. M. & Kirschner, M. W. (2000). The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes and Development 14, 655665.Google Scholar
Pfleger, C. M., Lee, E. & Kirschner, M. W. (2001). Substrate recognition by the Cdc20 and Cdh1 components of the anaphase-promoting complex. Genes and Development 15, 23962407.Google Scholar
Pickart, C. M. (2001). Mechanisms underlying ubiquitination. Annual Review of Biochemistry 70, 503533.Google Scholar
Pierce, N. W., Kleiger, G., Shan, S. O. & Deshaies, R. J. (2009). Detection of sequential polyubiquitylation on a millisecond timescale. Nature 462, 615619.Google Scholar
Pines, J. (2006). Mitosis: a matter of getting rid of the right protein at the right time. Trends in Cell Biology 16, 5563.Google Scholar
Rankin, S., Ayad, N. G. & Kirschner, M. W. (2005). Sororin, a substrate of the anaphase-promoting complex, is required for sister chromatid cohesion in vertebrates. Molecular Cell 18, 185200.Google Scholar
Rape, M. & Kirschner, M. W. (2004). Autonomous regulation of the anaphase-promoting complex couples mitosis to S-phase entry. Nature 432, 588595.Google Scholar
Rape, M., Reddy, S. K. & Kirschner, M. W. (2006). The processivity of multiubiquitination by the APC determines the order of substrate degradation. Cell 124, 89103.CrossRefGoogle ScholarPubMed
Rauh, N. R., Schmidt, A., Bormann, J., Nigg, E. A. & Mayer, T. U. (2005). Calcium triggers exit from meiosis II by targeting the APC/C inhibitor XErp1 for degradation. Nature 437, 10481052.Google Scholar
Ravid, T. & Hochstrasser, M. (2007). Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. Nature Cell Biology 9, 422427.Google Scholar
Reddy, S. K., Rape, M., Margansky, W. A. & Kirschner, M. W. (2007). Ubiquitination by the anaphase-promoting complex drives spindle checkpoint inactivation. Nature 446, 921925.Google Scholar
Reimann, J. D., Freed, E., Hsu, J. Y., Kramer, E. R., Peters, J. M. & Jackson, P. K. (2001a). Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 105, 645655.Google Scholar
Reimann, J. D., Gardner, B. E., Margottin-Goguet, F. & Jackson, P. K. (2001b). Emi1 regulates the anaphase-promoting complex by a different mechanism than Mad2 proteins. Genes and Development 15, 32783285.CrossRefGoogle ScholarPubMed
Reis, A., Levasseur, M., Chang, H. Y., Elliott, D. J. & Jones, K. T. (2006). The CRY box: a second APCcdh1-dependent degron in mammalian cdc20. EMBO Reports 7, 10401045.CrossRefGoogle Scholar
Reverter, D. & Lima, C. D. (2005). Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435, 687692.Google Scholar
Rieder, C. L., Cole, R. W., Khodjakov, A. & Sluder, G. (1995). The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. Journal of Cell Biology 130, 941948.Google Scholar
Rieder, C. L., Schultz, A., Cole, R. & Sluder, G. (1994). Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. Journal of Cell Biology 127, 13011310.Google Scholar
Rodrigo-Brenni, M. C. & Morgan, D. O. (2007). Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell 130, 127139.Google Scholar
Roelofs, J., Park, S., Haas, W., Tian, G., Mcallister, F. E., Huo, Y., Lee, B. H., Zhang, F., Shi, Y., Gygi, S. P. & Finley, D. (2009). Chaperone-mediated pathway of proteasome regulatory particle assembly. Nature 459, 861865.Google Scholar
Rotin, D. & Kumar, S. (2009). Physiological functions of the HECT family of ubiquitin ligases. Nature Reviews Molecular Cell Biology 10, 398409.Google Scholar
Rudner, A. D. & Murray, A. W. (2000). Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase-promoting complex. Journal of Cell Biology 149, 13771390.Google Scholar
Saeki, Y., Kudo, T., Sone, T., Kikuchi, Y., Yokosawa, H., Toh-E, A. & Tanaka, K. (2009a). Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome. Embo Journal 28, 359371.Google Scholar
Saeki, Y., Toh, E. A., Kudo, T., Kawamura, H. & Tanaka, K. (2009b). Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 137, 900913.Google Scholar
Sagata, N., Watanabe, N., Vande Woude, G. F. & Ikawa, Y. (1989). The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature 342, 512518.Google Scholar
Saha, A. & Deshaies, R. J. (2008). Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Molecular Cell 32, 2131.Google Scholar
Schwab, M., Lutum, A. S. & Seufert, W. (1997). Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell 90, 683693.Google Scholar
Schwab, M., Neutzner, M., Mocker, D. & Seufert, W. (2001). Yeast Hct1 recognizes the mitotic cyclin Clb2 and other substrates of the ubiquitin ligase APC. Embo Journal 20, 51655175.Google Scholar
Schwickart, M., Havlis, J., Habermann, B., Bogdanova, A., Camasses, A., Oelschlaegel, T., Shevchenko, A. & Zachariae, W. (2004). Swm1/Apc13 is an evolutionarily conserved subunit of the anaphase-promoting complex stabilizing the association of Cdc16 and Cdc27. Molecular and Cellular Biology 24, 35623576.Google Scholar
Sczaniecka, M., Feoktistova, A., May, K. M., Chen, J. S., Blyth, J., Gould, K. L. & Hardwick, K. G. (2008). The spindle checkpoint functions of Mad3 and Mad2 depend on a Mad3 KEN box-mediated interaction with Cdc20-anaphase-promoting complex (APC/C). Journal of Biological Chemistry 283, 2303923047.Google Scholar
Shirayama, M., Toth, A., Galova, M. & Nasmyth, K. (1999). APC(Cdc20) promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. Nature 402, 203207.Google Scholar
Shirayama, M., Zachariae, W., Ciosk, R. & Nasmyth, K. (1998). The Polo-like kinase Cdc5p and the WD-repeat protein Cdc20p/fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiae. Embo Journal 17, 13361349.Google Scholar
Shou, W., Seol, J. H., Shevchenko, A., Baskerville, C., Moazed, D., Chen, Z. W., Jang, J., Shevchenko, A., Charbonneau, H. & Deshaies, R. J. (1999). Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97, 233244.Google Scholar
Shteinberg, M., Protopopov, Y., Listovsky, T., Brandeis, M. & Hershko, A. (1999). Phosphorylation of the cyclosome is required for its stimulation by Fizzy/cdc20. Biochemical and Biophysical Research Communication 260, 193198.Google Scholar
Sigrist, S., Jacobs, H., Stratmann, R. & Lehner, C. F. (1995). Exit from mitosis is regulated by Drosophila fizzy and the sequential destruction of cyclins A, B and B3. Embo Journal 14, 48274838.Google Scholar
Sigrist, S. J. & Lehner, C. F. (1997). Drosophila fizzy-related down-regulates mitotic cyclins and is required for cell proliferation arrest and entry into endocycles. Cell 90, 671681.Google Scholar
Sikorski, R. S., Boguski, M. S., Goebl, M. & Hieter, P. (1990). A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60, 307317.Google Scholar
Sikorski, R. S., Michaud, W. A. & Hieter, P. (1993). p62cdc23 of Saccharomyces cerevisiae: a nuclear tetratricopeptide repeat protein with two mutable domains. Molecular and Cellular Biology 13, 12121221.Google ScholarPubMed
Sikorski, R. S., Michaud, W. A., Wootton, J. C., Boguski, M. S., Connelly, C. & Hieter, P. (1991). TPR proteins as essential components of the yeast cell cycle. Cold Spring Harbor Symposia on Quantitative Biology 56, 663673.Google Scholar
Sironi, L., Mapelli, M., Knapp, S., De Antoni, A., Jeang, K. T. & Musacchio, A. (2002). Crystal structure of the tetrameric Mad1–Mad2 core complex: implications of a ‘safety belt’ binding mechanism for the spindle checkpoint. Embo Journal 21, 24962506.Google Scholar
Solomon, M. J. & Burton, J. L. (2008). Securin' M-phase entry. Nature Cell Biology 10, 381383.Google Scholar
Steen, J. A., Steen, H., Georgi, A., Parker, K., Springer, M., Kirchner, M., Hamprecht, F. & Kirschner, M. W. (2008). Different phosphorylation states of the anaphase promoting complex in response to antimitotic drugs: a quantitative proteomic analysis. Proceedings of the National Academy of Sciences of the United States of America 105, 60696074.Google Scholar
Stegmeier, F., Rape, M., Draviam, V. M., Nalepa, G., Sowa, M. E., Ang, X. L., Mcdonald, E. R. III, Li, M. Z., Hannon, G. J., Sorger, P. K., Kirschner, M. W., Harper, J. W. & Elledge, S. J. (2007). Anaphase initiation is regulated by antagonistic ubiquitination and deubiquitination activities. Nature 446, 876881.Google Scholar
Stemmann, O., Zou, H., Gerber, S. A., Gygi, S. P. & Kirschner, M. W. (2001). Dual inhibition of sister chromatid separation at metaphase. Cell 107, 715726.Google Scholar
Stewart, E., Kobayashi, H., Harrison, D. & Hunt, T. (1994). Destruction of Xenopus cyclins A and B2, but not B1, requires binding to p34cdc2. Embo Journal 13, 584594.CrossRefGoogle Scholar
Sudakin, V., Chan, G. K. & Yen, T. J. (2001). Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. Journal of Cell Biology 154, 925936.Google Scholar
Sudakin, V., Ganoth, D., Dahan, A., Heller, H., Hershko, J., Luca, F. C., Ruderman, J. V. & Hershko, A. (1995). The cyclosome, a large complex containing cyclin-selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Molecular Biology of the Cell 6, 185197.Google Scholar
Sullivan, M. & Morgan, D. O. (2007a). A novel destruction sequence targets the meiotic regulator Spo13 for anaphase-promoting complex-dependent degradation in anaphase I. Journal of Biological Chemistry 282, 1971019715.Google Scholar
Sullivan, M. & Morgan, D. O. (2007b). Finishing mitosis, one step at a time. Nat Rev Molecular and Cellular Biology 8, 894903.Google Scholar
Summers, M. K., Pan, B., Mukhyala, K. & Jackson, P. K. (2008). The unique N terminus of the UbcH10 E2 enzyme controls the threshold for APC activation and enhances checkpoint regulation of the APC. Molecular Cell 31, 544556.Google Scholar
Tang, Z., Bharadwaj, R., Li, B. & Yu, H. (2001a). Mad2-Independent inhibition of APCCdc20 by the mitotic checkpoint protein BubR1. Developmental Cell 1, 227237.Google Scholar
Tang, Z., Li, B., Bharadwaj, R., Zhu, H., Ozkan, E., Hakala, K., Deisenhofer, J. & Yu, H. (2001b). APC2 Cullin protein and APC11 RING protein comprise the minimal ubiquitin ligase module of the anaphase-promoting complex. Molecular Biology of the Cell 12, 38393851.Google Scholar
Tang, Z., Shu, H., Oncel, D., Chen, S. & Yu, H. (2004). Phosphorylation of Cdc20 by Bub1 provides a catalytic mechanism for APC/C inhibition by the spindle checkpoint. Molecular Cell 16, 387397.Google Scholar
Thornton, B. R., Ng, T. M., Matyskiela, M. E., Carroll, C. W., Morgan, D. O. & Toczyski, D. P. (2006). An architectural map of the anaphase-promoting complex. Genes and Development 20, 449460.Google Scholar
Thornton, B. R. & Toczyski, D. P. (2003). Securin and B-cyclin/CDK are the only essential targets of the APC. Nature Cell Biology 5, 10901094.Google Scholar
Thornton, B. R. & Toczyski, D. P. (2006). Precise destruction: an emerging picture of the APC. Genes and Development 20, 30693078.Google Scholar
Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. (2000). Recognition of the polyubiquitin proteolytic signal. Embo Journal 19, 94102.Google Scholar
Tugendreich, S., Tomkiel, J., Earnshaw, W. & Hieter, P. (1995). CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81, 261268.Google Scholar
Tung, J. J., Hansen, D. V., Ban, K. H., Loktev, A. V., Summers, M. K., Adler, J. R. III & Jackson, P. K. (2005). A role for the anaphase-promoting complex inhibitor Emi2/XErp1, a homolog of early mitotic inhibitor 1, in cytostatic factor arrest of Xenopus eggs. Proceedings of the National Academy of Sciences of the United States of America 102, 43184323.Google Scholar
Uhlmann, F., Wernic, D., Poupart, M. A., Koonin, E. V. & Nasmyth, K. (2000). Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103, 375386.Google Scholar
Van Roessel, P., Elliott, D. A., Robinson, I. M., Prokop, A. & Brand, A. H. (2004). Independent regulation of synaptic size and activity by the anaphase-promoting complex. Cell 119, 707718.Google Scholar
Visintin, R., Craig, K., Hwang, E. S., Prinz, S., Tyers, M. & Amon, A. (1998). The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Molecular Cell 2, 709718.Google Scholar
Visintin, R., Hwang, E. S. & Amon, A. (1999). Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398, 818823.Google Scholar
Visintin, R., Prinz, S. & Amon, A. (1997). CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278, 460463.Google Scholar
Vodermaier, H. C., Gieffers, C., Maurer-Stroh, S., Eisenhaber, F. & Peters, J. M. (2003). TPR subunits of the anaphase-promoting complex mediate binding to the activator protein CDH1. Current Biology 13, 14591468.Google Scholar
Vodermaier, H. C. & Peters, J. M. (2004). APC activators caught by their tails? Cell Cycle 3, 265266.Google Scholar
Walker, A., Acquaviva, C., Matsusaka, T., Koop, L. & Pines, J. (2008). UbcH10 has a rate-limiting role in G1 phase but might not act in the spindle checkpoint or as part of an autonomous oscillator. Journal of Cell Science 121, 23192326.Google Scholar
Wang, J., Dye, B. T., Rajashankar, K. R., Kurinov, I. & Schulman, B. A. (2009). Insights into anaphase promoting complex TPR subdomain assembly from a CDC26-APC6 structure. Nature Structural and Molecular Biology 16, 987989.Google Scholar
Wasch, R. & Cross, F. R. (2002). APC-dependent proteolysis of the mitotic cyclin Clb2 is essential for mitotic exit. Nature 418, 556562.Google Scholar
Wendt, K. S., Vodermaier, H. C., Jacob, U., Gieffers, C., Gmachl, M., Peters, J. M., Huber, R. & Sondermann, P. (2001). Crystal structure of the APC10/DOC1 subunit of the human anaphase-promoting complex. Nature Structural Biology 8, 784788.Google Scholar
Williamson, A., Wickliffe, K. E., Mellone, B. G., Song, L., Karpen, G. H. & Rape, M. (2009). Identification of a physiological E2 module for the human anaphase-promoting complex. Proceedings of the National Academy of Sciences of the United States of America 106, 1821318218.Google Scholar
Wolthuis, R., Clay-Farrace, L., Van Zon, W., Yekezare, M., Koop, L., Ogink, J., Medema, R. & Pines, J. (2008). Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A. Molecular Cell 30, 290302.Google Scholar
Wu, P. Y., Hanlon, M., Eddins, M., Tsui, C., Rogers, R. S., Jensen, J. P., Matunis, M. J., Weissman, A. M., Wolberger, C. & Pickart, C. M. (2003). A conserved catalytic residue in the ubiquitin-conjugating enzyme family. Embo Journal 22, 52415250.CrossRefGoogle ScholarPubMed
Wu, T., Merbl, Y., Huo, Y., Gallop, J. L., Tzur, A. & Kirschner, M. W. (2010). UBE2S drives elongation of K11-linked ubiquitin chains by the anaphase-promoting complex. Proceedings of the National Academy of Sciences of the United States of America 107, 13551360.Google Scholar
Xu, P., Duong, D. M., Seyfried, N. T., Cheng, D., Xie, Y., Robert, J., Rush, J., Hochstrasser, M., Finley, D. & Peng, J. (2009). Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 137, 133145.Google Scholar
Yamada, H., Kumada, K. & Yanagida, M. (1997). Distinct subunit functions and cell cycle regulated phosphorylation of 20S APC/cyclosome required for anaphase in fission yeast. Journal of Cell Science 110, 17931804.Google Scholar
Yamano, H., Gannon, J. & Hunt, T. (1996). The role of proteolysis in cell cycle progression in Schizosaccharomyces pombe. Embo Journal 15, 52685279.Google Scholar
Yamano, H., Gannon, J., Mahbubani, H. & Hunt, T. (2004). Cell cycle-regulated recognition of the destruction box of cyclin B by the APC/C in Xenopus egg extracts. Molecular Cell 13, 137147.Google Scholar
Yamano, H., Tsurumi, C., Gannon, J. & Hunt, T. (1998). The role of the destruction box and its neighbouring lysine residues in cyclin B for anaphase ubiquitin-dependent proteolysis in fission yeast: defining the D-box receptor. Embo Journal 17, 56705678.Google Scholar
Yang, M., Li, B., Liu, C. J., Tomchick, D. R., Machius, M., Rizo, J., Yu, H. & Luo, X. (2008). Insights into mad2 regulation in the spindle checkpoint revealed by the crystal structure of the symmetric mad2 dimer. PLoS Biology 6, e50.Google Scholar
Ye, Y. & Rape, M. (2009). Building ubiquitin chains: E2 enzymes at work. Nature Reviews Molecular Cell Biology 10, 755764.Google Scholar
Yoon, H. J., Feoktistova, A., Chen, J. S., Jennings, J. L., Link, A. J. & Gould, K. L. (2006). Role of Hcn1 and its phosphorylation in fission yeast anaphase-promoting complex/cyclosome function. Journal of Biological Chemistry 281, 3228432293.Google Scholar
Yoon, H. J., Feoktistova, A., Wolfe, B. A., Jennings, J. L., Link, A. J. & Gould, K. L. (2002). Proteomics analysis identifies new components of the fission and budding yeast anaphase-promoting complexes. Current Biology 12, 20482054.Google Scholar
Yu, H. (2007). Cdc20: a WD40 activator for a cell cycle degradation machine. Molecular Cell 27, 316.Google Scholar
Yu, H., King, R. W., Peters, J. M. & Kirschner, M. W. (1996). Identification of a novel ubiquitin-conjugating enzyme involved in mitotic cyclin degradation. Current Biology 6, 455466.Google Scholar
Yu, H., Peters, J. M., King, R. W., Page, A. M., Hieter, P. & Kirschner, M. W. (1998). Identification of a cullin homology region in a subunit of the anaphase-promoting complex. Science 279, 12191222.Google Scholar
Yudkovsky, Y., Shteinberg, M., Listovsky, T., Brandeis, M. & Hershko, A. (2000). Phosphorylation of Cdc20/fizzy negatively regulates the mammalian cyclosome/APC in the mitotic checkpoint. Biochemical and Biophysical Research Communication 271, 299304.Google Scholar
Yunus, A. A. & Lima, C. D. (2006). Lysine activation and functional analysis of E2-mediated conjugation in the SUMO pathway. Nature Structural and Molecular Biology 13, 491499.Google Scholar
Zachariae, W. & Nasmyth, K. (1996). TPR proteins required for anaphase progression mediate ubiquitination of mitotic B-type cyclins in yeast. Molecular Biology of the Cell 7, 791801.Google Scholar
Zachariae, W., Schwab, M., Nasmyth, K. & Seufert, W. (1998a). Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282, 17211724.Google Scholar
Zachariae, W., Shevchenko, A., Andrews, P. D., Ciosk, R., Galova, M., Stark, M. J., Mann, M. & Nasmyth, K. (1998b). Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins. Science 279, 12161219.Google Scholar
Zachariae, W., Shin, T. H., Galova, M., Obermaier, B. & Nasmyth, K. (1996). Identification of subunits of the anaphase-promoting complex of Saccharomyces cerevisiae. Science 274, 12011204.Google Scholar
Zhang, Z., Roe, S. M., Diogon, M., Kong, E., El Alaoui, H. & Barford, D. (2010a). Molecular structure of the N-terminal domain of the APC/C subunit Cdc27 reveals a homo-dimeric tetratricopeptide repeat architecture. Journal of Molecular Biology 397, 13161328.Google Scholar
Zhang, Z., Kulkarni, K., Hanrahan, S. J., Thompson, A. J. & Barford, D. (2010b). The APC/C subunit Cdc16/Cut9 is a contiguous tetratricopeptide repeat superhelix with a homo-dimer interface similar to Cdc27. The Embo Journal 29, 37333744.Google Scholar
Zheng, N., Schulman, B. A., Song, L., Miller, J. J., Jeffrey, P. D., Wang, P., Chu, C., Koepp, D. M., Elledge, S. J., Pagano, M., Conaway, R. C., Conaway, J. W., Harper, J. W. & Pavletich, N. P. (2002). Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703709.Google Scholar
Zheng, N., Wang, P., Jeffrey, P. D. & Pavletich, N. P. (2000). Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533539.Google Scholar
Zur, A. & Brandeis, M. (2002). Timing of APC/C substrate degradation is determined by fzy/fzr specificity of destruction boxes. Embo Journal 21, 45004510.Google Scholar