DATING OF CREMATED BONES

J N Lanting

Groningen Institute of Archaeology, University of Groningen, Poststraat 6, 9712 ER Groningen, the Netherlands

A T Aerts-Bijma • J van der Plicht¹

Centre for Isotope Research, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands

ABSTRACT. When dating unburnt bone, bone collagen, the organic fraction of the bone, is used. Collagen does not survive the heat of the cremation pyre, so dating of cremated bone has been considered impossible. Structural carbonate in the mineral fraction of the bone, however, survives the cremation process. We developed a method of dating cremated bone by accelerator mass spectrometry (AMS), using this carbonate fraction. Here we present results for a variety of prehistoric sites and ages, showing a remarkable success rate for this method.

INTRODUCTION

Since the 1950s, radiocarbon has played an ever-increasing role in archaeology, especially prehistoric archaeology. Collecting charcoal and bone samples for dating during excavations is standard practice and, although less common, systematic dating for research purposes is also becoming more common. The traditional dating techniques require relatively large amounts of sample material. The new accelerator mass spectrometry (AMS)-dating techniques allow the use of very small samples: a single charred grain of wheat, a piece of bone the size of a molar, but, unexpectedly, also the dating of small samples of calcined bone.

Recent studies have emphasized the importance of samples with negligible own-age because the calibration of ¹⁴C ages only makes sense when own-ages are absent. Only then can calibrated ¹⁴C ages be compared with dendrochronological and/or historic dates. Bone (preferably of terrestrial herbivores) and seeds should therefore be preferred by archaeologists rather than charcoal samples with all their attendant problems which continue to dominate sample selection. Prehistoric human bone is usually a reliable dating material, although occasionally reservoir effects cause ¹⁴C dates of human bone be too old, namely when the diet contained large amounts of fish (Lanting and van der Plicht 1998).

The fact that cremated bone was undatable was regarded by many archaeologists as a serious draw-back. Cremation burials are regularly associated with pottery and/or with objects of stone, metal, glass, etc. of diagnostic types. At the same time, cremations are often devoid of charcoal, having been hand-picked from the remains of the cremation pyre. But even when charcoal is present, this should not be considered to be the best material for ¹⁴C dating, because of the above-mentioned problems. If they could be dated, the calcined bones would be much more reliable dating material.

Structural Carbonate in Bone Mineral

Bone consists of long chains of proteins (collagen) in which particles of poorly crystallized inorganic material are imbedded. Normally, collagen is used when dating unburnt bone. The inorganic material is primarily a calcium phosphate with an apatite-like structure. A feature of this "bio-apatite" is that it incorporates a certain amount (0.5–1% by weight) of carbonate as a substitute for phosphate in the crystal lattice. This so-called structural carbonate has its origin in blood bicarbonate generated by energy production in the cells. It is therefore directly related to the food intake of the person or animal in question. Bone collagen has its origin solely in proteins in the diet and is

¹Corresponding author. Email: plicht@phys.rug.nl.

© 2001 by the Arizona Board of Regents on behalf of the University of Arizona RADIOCARBON, Vol 43, Nr 2A, 2001, p 249–254

Proceedings of the 17th International ¹⁴C Conference, edited by I Carmi and E Boaretto

therefore liable to reservoir effects when these proteins are derived largely from fish and/or shellfish. Structural carbonate has its origin primarily in the carbohydrates and fats in the diet, and in excess protein. Reservoir effects are therefore limited, unless the diet consisted largely of fats and proteins from marine or freshwater food chains.

Structural carbonate is of great interest to palaeodietists who have developed and tested methods of collecting structural carbonate from the bio-apatite and separating it from "absorbed" carbonate in archaeological bones (Lee-Thorp et al. 1989; Lee-Thorp and van der Merwe 1991; Ambrose and Norr 1993). During life, bio-apatite and collagen are replaced in bone at a slow but constant rate. The "own-age" of structural carbonate is therefore limited and similar to that of bone collagen, 10–20 years at the most.

Structural carbonate has been used for ¹⁴C dating on a very limited scale probably because carbonate in unburnt tooth enamel (which from a chemical point of view is closely related to bio-apatite) produced aberrant dates due to post-depositional changes (Hedges et al. 1995). At the 3rd International Symposium on ¹⁴C and Archaeology in Lyon (6–10 April, 1998), a group of French scientists presented the results of dating samples of structural carbonate in prehistoric skeletons from the Sahel. These carbonate dates were checked against dates on collagen, charcoal or charred bone and proved to be reliable. Post-depositional changes were not a factor because of the extremely dry climate in the Sahel (Saliège et al. 1998; Person et al. 1998).

Carbonate Dating of Cremated Bone

After hearing this lecture, the first author realized that it might be possible to date calcined bone from cremation burials using structural carbonate. All previous attempts to date cremated bone had failed because it had been treated as charred bone. Charred bone is heated at relatively low temperatures (200–300 °C), contains carbonized fats and proteins and is grey or black inside while calcined bone has been heated at far higher temperatures (above 600 °C), contains no carbonized material at all and is white throughout. Some collagen may survive in charred bone, but none survives cremation. However, of great significance is the fact that during cremation, i.e. at temperatures above 600 °C, the bioapatite recrystallizes and larger and better-structured crystals are formed (Shipman et al. 1984). This is one of the reasons why cremated bone survives even in acid soil. During the burning some of the structural carbonate disappears (Stiner et al. 1995) but the first author postulated that it was unlikely that all the structural carbonate would disappear on a prehistoric pyre. The Groningen ¹⁴C laboratory was asked to date the structural carbonate from a number of prehistoric cremations of known age.

METHODS

A 1.5% sodium hypochlorite solution was used to remove organic material (48 hr, 20 °C), and 1 M acetic acid to remove the more soluble carbonate ions (such as calcite and adsorbed carbonates), as well as the less crystalline and more soluble fractions of apatite (24 hr, 20 °C). The apatite yield is about 85%. This pretreated apatite is powdered, and CO_2 is produced by reaction with oversaturated phosphoric acid. The reaction time is 8 hours. The CO_2 formed is cryogenically trapped in a vacuum extraction system, and purified. Finally, the CO_2 is converted into graphite and measured by the Groningen AMS system (Gottdang et al. 1995).

RESULTS

The results of the extensive testing program for prehistoric cremations with known age are shown in Table 1 (known age based on charcoal dates from the same context) and Table 2 (known historic age). These tests showed that cremated bone does indeed retain sufficient structural carbon-

Table 1 ¹⁴C ages (BP) of carbonate fractions in calcined bones, compared with ¹⁴C ages of charcoal in the same contexts. In a number of cases the charcoal dates are considerably older than the carbonate dates, due to the "old wood" effect. The large difference between cremated bones and charcoal in Oirschot V-21 is due to the lack of pretreatment with alkali of the charcoal samples.

	Carbonate/calcined bone		Charcoal/same context	
Site	(Lab code and date BP)		(Lab code and date BP)	
Damsum	GrA-13609	1310 ± 60	GrA-14878	1320 ± 40
Hijker Es	GrA-11259	1760 ± 50	GrN-6293	1720 ± 30
Havelterberg	GrA-13374	2120 ± 40	GrN-24992	2240 ± 30
Laudermarke	GrA-13375	2220 ± 40	GrN-24681	2290 ± 30
Eext 1967	GrA-11676/7	2220 ± 30	GrN-10749	2345 ± 35
Carthago APM 12.500	GrA-13589	2330 ± 50	GrN-24805	2380 ± 70
Oudemolen, tum.4	GrA-14597	2390 ± 50	GrN-7398	2305 ± 30
Wijshagen-De Rieten E	GrA-14281	2440 ± 30	IRPA-843/4	2308 ± 42
Oudemolen	GrA-11263	2460 ± 50	GrN-17473	2345 ± 35
Wapse 58	GrA-11669/71	2535 ± 30	GrN-6868	2580 ± 40
Wapse 130	GrA-11672/4	2545 ± 30	GrN-6397	2390 ± 35
Eext 1952	GrA-11675/13329	2725 ± 30	GrN-6750	2785 ± 35
Buinen HV 14	GrA-14528	2760 ± 40	GrN-6686	2940 ± 55
Reanascreena	GrA-13394	2820 ± 40	GrN-17509	2780 ± 35
Smeerling	GrA-14991	2825 ± 45	GrN-14540	2970 ± 70
Thourotte	GrA-14509	2920 ± 45	GrN-25317	2960 ± 30
Collinghorst	GrA-13604	2950 ± 50	GrN-24683	2930 ± 35
Anlo-Molenes	GrA-11256	2970 ± 40	GrN-13549	2945 ± 35
Eexterstubben	GrA-13618	3260 ± 50	GrN-11905	3385 ± 25
Strawhall 2	GrA-14070/827	3265 ± 30	OxA-2657	3420 ± 80
Ballyman	GrA-14291/2	3335 ± 25	GrN-10635	3370 ± 50
Drimnagh	GrA-14607	3390 ± 50	OxA-2670	3630 ± 80
Ballintubbrid	GrA-13393	3440 ± 40	GrN-11441	3480 ± 35
Kilcroagh 3	GrA-14817	3440 ± 40	OxA-2673 (soot)	3420 ± 70
Kilcroagh 2	GrA-14816	3460 ± 40	GrN-15378	3510 ± 35
Strawhall 3	GrA-14828	3460 ± 40	OxA-2658	3440 ± 70
Tremoge	GrA-14064	3485 ± 35	GrN-11446	3570 ± 45
Ballyveelish	GrA-14286	3520 ± 30	GrN-11657	3580 ± 50
Grange 10	GrA-13392	3560 ± 40	GrN-9709	3480 ± 35
Bealick	GrA-14614	3590 ± 50	GrN-16790	3465 ± 35
Eext-Ketenberg	GrA-14564	3690 ± 40	GrN-1676	3775 ± 55
Harristown II	GrA-14756	3760 ± 40	GrN-11032	3860 ± 60
Nijmegen	GrA-14840	3850 ± 40	GrN-24978	3750 ± 50
Dalen	GrA-13617	3910 ± 50	GrN-18673	3930 ± 55
Leer-WH 604	GrA-13706	4170 ± 50	GrN-24682	4150 ± 50
Angelslo 3	GrA-13598	4220 ± 50	GrN-2370	4145 ± 100
Oirschot V-21	GrA-13390	8320 ± 40	GrN-14506	7790 ± 130
Doetinchem	GrA-13387/8	$10,905 \pm 35$	GrA-13686	$10,870 \pm 50$
Kettig	GrA-14762	$11,210 \pm 60$	Hd-18123 (bone)	$11,314 \pm 50$

ate for dating by AMS, although in some cases the amount is quite small, not more than 0.1% by weight. The stable isotope ratio $\delta^{13}C$ indicated that considerable amounts of carbonate must have burnt out, resulting in a remarkable shift in $\delta^{13}C$ due to isotopic fractionation during this process, from $-15 \pm 2\%$ in unburnt bone to $-24 \pm 3\%$ in burnt bone.

This does not influence the possibility of dating cremated bone, however. The tests also showed that sufficient structural carbonate for AMS-dating is present in samples of no more than 1.5 g of cremated bone. Small fragments, including porous ones, can be used instead of larger fragments of solid calcined bone (Table 3).

In the meantime, more than 200 cremation dates have been produced in Groningen, largely on Dutch, Belgian, northwest German, and Irish material. The results of an Irish dating program

Table 2 Comparison of ¹⁴C ages (BP) of the carbonate fractions in larger pieces resp. in small bits and pieces of the same cremation

Site	Historic age	Expected ¹⁴ C date BP	Measured ¹⁴ C date BP	Lab code
Hoogeloon VIII Hoogeloon II Wijster XXIV Wijster XIX Besthmen Carthago 1952.2.12 Carthago 12.499 Carthago 12.500 Carthago 1952.2.2 Carthago 1952.2.7	600–650 AD 550–600 AD 400–500 AD 350–450 AD 200–350 AD 400–146 BC 525–400 BC 525–400 BC 600–250 BC 750–600 BC	1500-1400 1530-1500 1675-1575 1700-1560 1850-1700 2350-2100 2440-2340 2440-2340 2500-2180 2520-2440	1490 ± 40 1530 ± 30 1600 ± 40 1700 ± 40 1780 ± 40 2220 ± 50 2330 ± 50 2430 ± 50 2430 ± 50 2460 ± 50	GrA-13367 GrA-13368 GrA-13369 GrA-13370 GrA-13372 GrA-13593 GrA-13588 GrA-13589 GrA-13590 GrA-13591

Table 3 ¹⁴C ages (BP) of the carbonate fraction in calcined bones with known historic ages, compared with the expected ¹⁴C-age ranges

Site	Large pieces (Lab code and date BP)		Small pieces (Lab code and date BP)	
Eext 1952	GrA-11675/13329	2725 ± 30	GrA-10876	2670 ± 40 2530 ± 40 2510 ± 40 2210 ± 40 2890 ± 60
Wapse 58	GrA-11669	2540 ± 40	GrA-11671	
Wapse 130	GrA-11672	2580 ± 40	GrA-11674	
Eext 1967	GrA-11676	2230 ± 40	GrA-11677	
Gasteren 1939:100	GrA-10877	2910 ± 50	GrA-10880	

financed by the Heritage Council of Ireland and comprising 46 Bronze Age cremations will be published shortly. A short note with some Irish results, and results of the test program on Dutch cremations appeared recently (Lanting and Brindley 1998). This test program included cremations previously dated on charcoal.

Finally, dates obtained on calcined bone/cremations from the Netherlands, and adjacent Belgium and northwest Germany, are listed in Table 4. This represents a start of a new application in archaeology: the ¹⁴C dating of cremated bones.

CONCLUSION

Cremated bones are exposed to temperatures above 600 °C, where the bone mineral recrystallizes and becomes better structured. During the heating process, most of the structural carbonate disappears, but enough material (carbon content ca. 0.1% by weight) remains to make AMS dating possible.

We have developed a method for dating cremated bones by AMS, using this carbonate fraction. The results of our extensive testing program are remarkably positive. We have shown that: 1) cremated bone produces reliable ¹⁴C dates, 2) cremated bone is very resistant to external influences, due to recrystallization, and 3) no noticeable differences between ¹⁴C ages obtained for pieces of solid bones and on small fragments or crumbs of bone are observed. Not more than about 2 g of cremated bone is required for this method.

Table 4 $\,^{14}\mathrm{C}$ dates for calcined bone/cremations from the Netherlands, Belgium and northwest Germany

Site	Lab code	Date (BP)
Late Palaeolithic Federmesser site near	Doetinchem	
Calcined bone from hearth	GrA-13387	$10,880 \pm 50$
Calcined bone from dump zone	GrA-13388	$10,930 \pm 50$
Charcoal in settlement layer	GrA-13686	$10,870 \pm 50$
Cremation burials of the late Havelte ph	ase of the Funnel Beaker	Culture
Angelslo grave 1	GrA-13705	4200 ± 50
Angelslo grave 3	GrA-13598	4220 ± 50
Angelslo grave 5	GrA-13599	4130 ± 50
Leer WH 578	GrA-14093	4205 ± 40
Leer WH 581	GrA-14088	4270 ± 40
Leer WH 585	GrA-14089	4190 ± 35
Leer WH 600	GrA-14168	4170 ± 40
Leer WH 604	GrA-13706	4170 ± 50
Cremation burials with bell beakers of V	eluvian type in the Lower	Rhine area
Meerlo	GrA-14066	3840 ± 35
Hoog-Buurlo	GrA-14067	3830 ± 35
Veen, Kr. Moers	GrA-14080	3810 ± 40
Nijmegen	GrA-14840	3850 ± 40
Cremation in Middle Bronze Age urns oj	f Drakenstein type	
Neer	GrA-14529	3340 ± 40
Poppel	GrA-14285	3320 ± 30
Cremation burial with bronze sword of V	Wohlde type	
Garderen-Bergsham no. 25	GrA-13707	3320 ± 50
Keyhole shaped ditches in Late Bronze A	ge urn fields	
Erica-Hankenberg	GrA-14527	2840 ± 40
Buinen-HV 14	GrA-14528	2760 ± 40
Smeerling	GrA-14991	2825 ± 45
Harpsted-type urns of the Early Iron Ag	e	
WapseW70	GrA-11669/71	2535 ± 30
Wapse W152	GrA-11672/74	2545 ± 30
Rich graves of the middle Iron Age, with	situlae (C.E) and ribbed l	bucket (H)
Wijshagen-De Rieten C	GrA-14279	2420 ± 30
Wijshagen-De Rieten E	GrA-14281	2440 ± 30
Wijshagen-De Rieten H	GrA-14284	2430 ± 30
Cremation burial in Anglo-Saxon potter	v	
Wijster grave XXIV	GrA-13369	1600 ± 40
Cremation burials with Frankish Knickw	and pottery	
Hoogeloon-Broekeneind grave II	GrA-13368	1530 ± 30

REFERENCES

- Ambrose SE, Norr L. 1993. Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate. In: Lambert JB, Grupe G, editors. *Prehistoric human bone. Archaeology at the molecular level*. Berlin: Springer Verlag. p 1–37.
- Gottdang A, Mous DJW, van der Plicht J. 1995. The HVEE ¹⁴C system at Groningen. *Radiocarbon* 37(2): 649–56
- Hedges REM, Thorp JA, Tuross NC. 1995. Is toothenamel carbonate a suitable material for radiocarbon dating? *Radiocarbon* 37(2):285–90.
- Lanting JN, Brindley AL. 1998. Dating cremated bone: the dawn of a new era. *Journal of Irish Archaeology* 9: 1–7.
- Lanting JN, van der Plicht J. 1998. Reservoir effects and apparent ¹⁴C ages. *Journal of Irish Archaeology* 9: 151–65.
- Lee-Thorp JA, Sealy JC, van der Merwe NJ. 1989. Stable carbon isotope ratio differences between bone collagen and bone apatite, and their relationship to diet. *Journal of Archeological Science* 16:585–99.
- Lee-Thorp JA, van der Merwe NJ. 1991. Aspects of the

- chemistry of modern and fossil biological apatites. *Journal of Archeological Science* 18:43–354.
- Person A, Saliège J-F, Gérard, Paris F. 1998. Utilisation d'un indice caractéristique de la diagenèsede la fraction minéral d'ossements archéologiques en milieu désertique pour discuter de la fiabilité de ces matériaux comme support de datation par le radiocarbone, application à deux nécropoles néolithique de l'Aïr (Niger). Pré-actes du 3ème Congrès International ¹⁴C et Archéologie, Lyon 1998. p 77–8.
- Saliège J-F, Person A, Paris F. 1998. Datation du carbonate-hydroxylapatite d'ossements Holocènes du Sahel (Mali, Mauritanie, Niger). Pré-actes du 3ème Congrès International ¹⁴C et Archéologie, Lyon 1998. p 172–3.
- Shipman P, Foster GF, Schoeninger M. 1984. Burnt bones and teeth: an experimental study of colour, morphology, crystal structure and shrinkage. *Journal of Archaeological Science* 11:307–25.
- Stiner MC, Kuhn SL, Weiner S, Bar-Yosef O. 1995. Differential burning, recrystallization and fragmentation of archaeological bone. *Journal of Archaeological Science* 22:223–327.