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Abstract

The widespread evolution of herbicide resistance in weed populations has become an increasing
concern for no-tillage (NT) growers in semiarid regions of the U.S. Great Plains. Lack of cost-
effective and alternative new herbicide sites of action further exacerbates the problem of
herbicide-resistant (HR) weeds and threatens the long-term sustainability of prevailing crop-
ping systems in the region. A recent decline in commodity prices and increasing herbicide costs
to manage HR weeds has spurred research efforts to build a strong rationale for developing
ecologically based integrated weed management (IWM) strategies in the U.S. Great Plains.
Integration of cover crops (CCs) in NT dryland production systems potentially offers several
ecosystem services, including weed control, soil health improvement, decline in selective pest
pressure, and overall reduction in pest management inputs. This review article aims to docu-
ment the role of CCs for IWM, with emphasis on exploring emerging weed issues; ecological,
economic, and agronomic benefits of growing CCs; and constraints preventing adoption of CCs
in NT cropping systems in the semiarid Great Plains. We attempt to focus on changes in weed
management practices, their long-term impacts on weed seedbanks, weed shifts, and herbicide-
resistance evolution in the most common weed species in the region. We also highlight current
knowledge gaps and propose new research priorities based on an improved understanding of
CC management strategies that will ultimately aid in achieving sustainable weed management
goals and preserving natural resources in water-limited environments.

Introduction

The U.S. Great Plains extends from the Canadian border in the north to Texas in the south and is
bordered by Mississippi River in the east and the Rocky Mountains in the west (Unger and
Baumhardt 2001). This region covers the central portions of the continental United States
and accounts for more than 60% of total wheat (Triticum aestivum L.) production in the
United States (Paulsen and Shroyer 2008). The majority of the cropland in this region encom-
passes a semiarid agroecosystem characterized by hot summer days with cold and dry winters
(Lenssen et al. 2007). Soil moisture is the most limiting factor for crop production, generally
decreasing from east to west with an average annual rainfall of <762 mm in the eastern portions
of the Great Plains down to <381 mm in Montana, Wyoming, and far west Texas (Nielsen 2018;
Peterson and Westfall 2004; Shafer et al. 2014). In addition to limited rainfall, soils are shallow,
low in soil organic matter content, and prone to wind erosion. Temporal and spatial climatic
variation with extended drought periods further challenge crop production in this region
(Hansen et al. 2012). The Dust Bowl period during the 1930s led to the adoption of soil con-
servation practices, including fallow and minimum-tillage and no-tillage (NT) crop production
across the region (Hansen et al. 2012; Smika and Wicks 1968). The transition to NT production
was mainly designed to prevent wind and water erosion of the topsoil layer, improve soil organic
matter, and conserve soil moisture.

Winter wheat-fallow (W-F) is a major NT dryland crop rotation in the Northern Great
Plains (NGP) (Figure 1). Winter wheat-summer crop [corn (Zea mays L.), soybean
[Glyicine max (L.) Merr.], grain sorghum [Sorghum bicolor (L.) Moench ssp. bicolor], or sun-
flower (Helianthus annuus L.)]-fallow (W-S-F) is the most dominant crop rotation in the
Southern and Central Great Plains (Figure 1) (Hansen et al. 2012; Lenssen et al. 2007;
Nielsen and Vigil 2018; Peterson and Westfall 2004). The fallow phase in the rotation was
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Figure 1. Map of the Great Plains showing three main regions: (1) Northern Great
Plains (marked by purple line), (2) Central Great Plains (marked by red line), and
(3) Southern Great Plains (marked by light blue line). Adapted from Center for
Great Plains Studies, University of Nebraska-Lincoln.

originally included to store and conserve moisture in the soil pro-
file from rainfall or snow events for successful establishment of a
subsequent cash crop (Nielsen and Vigil 2010). The fallow period
limits the occurrence of crop failure in drier years, stabilizes crop
yields across years, and more importantly, prevents soil erosion
and soil nutrient depletion, particularly when NT is adopted
(Lenssen et al. 2007; Nielsen and Vigil, 2018). Depending on loca-
tion and crop rotation scheme, the fallow period extends from
10 mo (W-S-F) to almost 14 to 15 mo (W-F) after wheat harvest.
The adoption of NT practices has increased soil water storage and
cropping system intensification across the Great Plains region.
More recently, many growers have started intensifying crop rota-
tions to eliminate fallow, and some are eliminating wheat in their
rotations for economic reasons. For instance, pulse crops such as
field pea (Pisum sativum L.), lentil (Lens culinaris Medik.), and
chick pea (Cicer arietinum L.) have replaced a portion of this fallow
period in the northern parts (Miller et al. 2003). Similarly, several
new crops have been evaluated in 3- or 4-yr rotation schemes by
including cereal crops (Nielsen and Vigil 2018; Schlegel et al. 2018),
legumes as forage and grain crops (Holman et al. 2018; Lyon et al.
2004), and recently oilseed crops (Obour et al. 2018) for potential
replacement of fallow in the Central Great Plains (Figure 1).
Despite these efforts to increase cropping intensity, crop rotations
in the region still include a fallow phase, and most growers practice

https://doi.org/10.1017/wsc.2020.29 Published online by Cambridge University Press

Kumar et al.: Cover crops in the Great Plains

fallow as a strategy to minimize risk of drought and crop failure.
For example, two fallow periods occur in a typical 3-yr (W-S-F)
crop rotation. The first fallow period extends from wheat harvest
until summer crop planting the next year, and the second fallow
period extends from summer crop harvest until winter wheat
planting in the following year.

Weed control during fallow is typically accomplished through a
combination of various tillage practices and herbicide applications
in a minimum-tillage system or with herbicide only in NT. The
successful adoption of NT fallow-based crop production in the
semiarid Great Plains was possible due to effective weed control
with the use of herbicides (Wicks and Smika 1973; Wicks et al.
1993). Weed control in the fallow phase of the crop rotation is cru-
cial, as weed infestations can reduce available soil moisture and
nutrients, negatively affecting subsequent cash crop yield (Wicks
and Smika 1973). In general, most fallow fields could have three
to five applications of herbicides (predominantly glyphosate-based
tank mixtures) per year for weed control. The continuous and
repetitive use of herbicides with same site(s) of action (SOA)
has led to the evolution of herbicide resistance in weed populations
across the region (Heap 2019). A lack of diversity in weed control
programs has further led to the evolution of multiple herbicide
resistance in several weed populations in the Great Plains in recent
years. Dwindling herbicide options coupled with ever-increasing
reports of multiple herbicide-resistant (MHR) weed populations
necessitates the development of ecologically based weed manage-
ment options for the region. With low grain prices and the high
cost of controlling MHR weeds, some producers are returning
to tillage as a strategic weed management tool. This poses a major
threat to gains and investments made in soil conservation practices
over the last several decades. Integration of cover crops (CCs) to
replace portions of the fallow period in dryland NT crop produc-
tion may provide effective and sustainable management of HR
weed populations while enhancing the productivity and profit-
ability of dominant cropping systems in the region. Growing a
CC in place of fallow as part of the crop rotation can suppress
weeds and reduce frequency of herbicide use. Several NT dryland
producers in the region have also shown interest in growing
CCs for controlling HR weeds and gaining soil health benefits.
This recent trend has renewed interest among land managers,
academic weed scientists, ecologists, agronomists, and soil scien-
tists to improve their understanding of CC management strate-
gies for weed suppression and soil health benefits in the
region. In the literature, several research and review articles have
documented the effects of CCs on weed suppression, soil health
benefits, and subsequent cash crop yields across various regions
in the United States. However, there is a paucity of published
information on this topic in NT dryland production systems of
the Great Plains. Previous review articles on CCs in the semiarid
Great Plains have focused on soil health (Ghimire et al. 2018) or
agronomy and water use of CCs (Unger and Vigil 1998), with lit-
tle discussion on using CCs for weed suppression in the region.
This review article aims to document weed species shifts that have
occurred in response to herbicide use patterns in NT dryland
production systems and to summarize the literature supporting
utilization of CCs for control of these problematic species. This
review will discuss opportunities and scenarios for use of CCs
to suppress weeds, including agronomic considerations and chal-
lenges of adopting CC in this semiarid region. Finally, we will sug-
gest future research directions and extension needs to be able to
effectively use CCs as an integrated weed management (IWM)
tool in the Great Plains.
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Emerging Weed Management Issues in the Great Plains
Weed Control Practices and Weed Shifts

Weed control practices, including tillage, crop rotation, herbicide
use patterns, and other production practices are known to influence
weed community richness and population dynamics (Johnson et al.
2009). Two key changes in Great Plains agriculture have occurred
over the past few decades: (1) adoption of soil conservation prac-
tices (changing from preplant conventional tillage to NT produc-
tion) (Shaner 2000; Swanton et al. 1993; Wilson et al. 2007) and
(2) widespread adoption of glyphosate-resistant (GR) crops.

Effective weed control with use of herbicides in the early to mid-
1970s facilitated the adoption of NT production practices in the
Great Plains (Hansen et al. 2012; Wicks and Smika 1973; Wicks
et al. 1993). Weed control strategies shifted away from tillage
and became more reliant on herbicides. However, small-seeded
broadleaf weeds such as horseweed [Conyza canadensis (L.)
Cronquist], kochia [Bassia scoparia (L.) A.]. Scott], Palmer ama-
ranth (Amaranthus palmeri S. Watson), common lambsquarters
(Chenopodium album L.), and Russian thistle (Salsola tragus L.)
and grass weeds such as downy brome (Bromus tectorum L.), wild
oat (Avena fatua L.), foxtail species (Setaria spp.), and tumble
windmill grass (Chloris verticillata Nutt.) have become problem-
atic weed species over time in NT production systems of the
Great Plains (Buhler and Oplinger 1990; Jha et al. 2016; Nichols
et al. 2015). This is mainly because these small-seeded weeds
can easily germinate on or near the soil surface under NT fallow
conditions. In addition, a majority of these weed species are also
prolific seed producers and can quickly replenish the soil seedbank
during the fallow period in the absence of crop competition.
In contrast, populations of large-seeded broadleaf weeds such as
velvetleaf (Abutilon theophrasti Medik.), common cocklebur
(Xanthium strumarium L.), and H. annuus have declined over time
in this region (Anderson et al. 1998; Buhler et al. 1996). The NT soil
surface was probably not a biologically beneficial site for successful
germination and emergence of large-seeded compared with small-
seeded weed species (Buhler et al. 1996). Large seeds on the soil
surface under NT conditions are also exposed to higher mortality
risks through predation (insects, diseases, birds, animals, etc.) and
weather variability (Baraibar et al. 2009; Nichols et al. 2015).

Nevertheless, the extensive and repeated use of glyphosate for
weed control in fallow, pre-crop seeding, and postharvest (NT
burndown) scenarios has led to the evolution of glyphosate resis-
tance in several weed species in the region (Heap 2019; Jha et al.
2016; Stahlman 2016). This was partly due to glyphosate use at
lower than recommended rates by growers to minimize cost of
weed control in NT fallow. Currently, the reported cases of GR
weed species across the Great Plains include C. canadensis,
B. scoparia, A. palmeri, and S. tragus (Heap 2019). Among all these
reported GR weed species, glyphosate resistance is widespread
among B. scoparia populations across all the Great Plains states
(Kumar et al. 2018a).

GR crops became available in the United States in 1996, allowing
producers to use glyphosate for in-season control of broadleaf and
grass weeds. By 2005, >90% of total U.S. acreage planted to soybean
and cotton (Gossypium hirsutum L.) and nearly 50% of corn had the
GR trait (Kniss 2018; Sankula 2006). The GR crops in the U.S. Great
Plains occupy a significant portion of the total agricultural land
[alfalfa (Medicago sativa L.), canola (Brassica napus L.), corn, cotton,
soybean, and sugar beet (Beta vulgaris L.) being the most common
GR crops]. The rapid adoption of GR crops, along with the dramatic
increase in glyphosate use (almost 8-fold increase between 1996
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and 2005), replaced preplant tillage, POST cultivation, and other
selective herbicides as a means of weed control (Givens et al.
2009; Kniss 2018). This change in glyphosate use pattern contrib-
uted to weed species shifts in major agronomic crops in the
United States (Johnson et al. 2009). For instance, Wilson et al.
(2007) documented that two continuous in-crop treatments of
glyphosate each year at 0.4 or 0.8 kg ae ha™! shifted B. scoparia
and wild proso millet (Panicum miliaceum L.) populations to pre-
dominantly C. album populations in a long-term field study con-
ducted in Scottsbluff, NE.Shaner (2000) concluded that reduced
sensitivity in weed seedlings to glyphosate could occur more fre-
quently than evolution of resistant biotypes, further shifting weed
populations from susceptible to ones that are more tolerant.

Herbicide-Resistant Weeds

In NT fallow fields, growers primarily rely on multiple applications
of herbicides (predominantly glyphosate-based tank mixtures) to
achieve season-long weed control (Fenster and Wicks 1982; Moyer
et al. 1994). Repeated use of herbicides with the same SOAs has
resulted in the evolution of herbicide resistance in several weed
species across the region. This section briefly reviews documented
cases of herbicide resistance in common weed species across the
U.S. Great Plains.

Bassia scoparia

A well-detailed review on chronology of herbicide resistance, distri-
bution, mechanisms of resistance, seed germination and emergence
characteristics, population dynamics, and IWM strategies to manage
HR B. scoparia across North America has recently been published
(Kumar et al. 2018a). The first case of HR B. scoparia was discovered
in 1976, when atrazine-resistant biotypes were reported in cornfields
in Kansas and along railroads in Idaho and Iowa (Heap 2019; Kumar
2018a; Stahlman 2016). Bassia scoparia resistant to acetolactate syn-
thase (ALS)-inhibiting herbicides was first identified from a wheat
field in Kansas in 1987 (Primiani et al. 1990). Currently, a majority
of B. scoparia populations in the region are believed to be resistant to
ALS-inhibiting herbicides (Kumar et al. 2018a). Cross-resistance to
dicamba and/or fluroxypyr was identified in B. scoparia populations
collected from wheat/fallow fields in Montana and North Dakota in
1995 (Cranston et al. 2001; Nandula and Manthey 2002). Currently,
B. scoparia resistant to dicamba and fluroxypyr have been reported
from six states: Montana, Idaho, North Dakota, Nebraska, Colorado,
and Kansas (Heap 2019; Kumar et al. 2018a). Resistance to glyph-
osate was first confirmed in B. scoparia populations from W-S-F
fields in western Kansas in 2007 and is currently reported from
two-thirds of the U.S. Great Plains states and three Canadian prov-
inces (Beckie et al. 2013; Godar et al. 2015a; Hall et al. 2014; Kumar
et al. 2014; Waite et al. 2013; Wiersma et al. 2015). In addition, sev-
eral B. scoparia populations across the region have been documented
to have multiple resistance to two (glyphosate and ALS inhibitors),
three (glyphosate, ALS inhibitors, and dicamba), or four (glyphosate,
ALS inhibitors, dicamba, and atrazine) herbicide SOAs (Heap 2019;
Kumar et al. 2015, 2019a; Stahlman 2016; Varanasi et al. 2015;
Westra et al. 2019).

Amaranthus palmeri

Historically, A. palmeri is a common weed species in the midsou-
thern and southeastern United States, A. palmeri has recently
become more problematic in the Southern and Central Great
Plains (Figure 1) and is moving farther north (Ward et al
2013). Ward et al. (2013) provided a detailed review on various
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aspects of A. palmeri, including herbicide-resistance evolution in
the United States. Amaranthus palmeri populations in Texas were
confirmed resistant to atrazine in 1993, and in Kansas in 1995
(Heap 2019). Populations of A. palmeri resistant to ALS inhibitors
and glyphosate are reported across the Southern and Central
Great Plains (Figure 1) (Chahal et al. 2017; Garetson et al. 2019;
Horak and Peterson 1995; Kumar et al. 2019b, 2020; Nakka et al.
2017). Amaranthus palmeri resistant to 4-hydroxphenylpyruvate
dioxygenase-inhibiting herbicides was first confirmed in Kansas
in 2009, and subsequently in Nebraska and Texas (Garetson et al.
2019; Jhala et al. 2014; Singh et al. 2018). Additionally, A. palmeri
populations with multiple resistance to two, three, four, or five her-
bicide SOAs have become an increasing concern in the Southern and
Central Great Plains (Figure 1) (Garetson et al. 2019; Heap 2019;
Jhala et al. 2014; Kumar et al. 2019b, 2020; Singh et al. 2018).
More recently, an A. palmeri population with multiple resistance
to 2,4-D, glyphosate, chlorsulfuron, mesotrione, and atrazine and
reduced sensitivity to fomesafen has been reported in Kansas
(Kumar et al. 2019b).

Salsola tragus

This C, summer annual is another troublesome broadleaf weed
commonly found in semiarid regions of the Great Plains
(Leeson et al. 2005). Salsola tragus is highly problematic in summer
fallow periods and in spring/winter wheat across the Northern and
Central Great Plains (Figure 1) (Schillinger 2007; Young 1986).
Effective management of this weed species has been complicated
by the evolution of herbicide resistance in several field populations
(Heap 2019). Resistance to ALS inhibitors in S. tragus populations
was first confirmed in Washington and Montana in 1987 (Guttieri
etal. 1992; Heap 2019) and was subsequently reported in California,
Idaho, Kansas, North Dakota, and Oregon (Heap 2019; Peterson
1999). Currently, >75% of the wheat fields in the NGP (Figure 1)
are infested with ALS-resistant S. tragus populations (Jha et al.
2016; Saari et al. 1992; Stallings et al. 1994). Resistance to glyphosate
in S. tragus populations has recently been confirmed from fallow
fields of Montana, Washington, and Oregon and is further suspected
in populations in the Northern and Central Great Plains (Barroso
et al. 2018; Heap 2019; Kumar et al. 2017¢).

Conyza Canadensis

A native species of North America, this winter annual dicot weed
species commonly infests agronomic crops, orchards, pastures,
roadsides, and industrial/waste areas (Gleason and Cronquist
1963; Miller and Miller 1999). Conyza canadensis favors NT pro-
duction systems of the U.S. Great Plains, as the seedlings primarily
emerge on the soil surface (Nandula et al. 2006). Glyphosate is the
most common nonselective herbicide used for its control in NT
production systems across the region. Resistance to glyphosate
in C. canadensis has been reported in Montana, Nebraska,
Kansas, and Oklahoma (Crose et al. 2019; Heap 2019; Kumar
et al. 2017b). In addition to glyphosate resistance, C. canadensis
populations with resistance to other herbicide SOAs, including
photosystem I (PSI) inhibitors, ALS inhibitors, and PSII inhibitors,
have been reported (Gadamski et al. 2000; Heap 2019; Mueller et al.
2003; Smisek et al. 1998).

Weed Management under Changing Climate

Climate change poses a serious concern to the dryland production
systems of the U.S. Great Plains. Changing weather trends and
extreme conditions in this region can have direct (changes in crop
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growth, development, and yield) and indirect (strong selective
pressures exerted by abiotic stresses and biotic stresses such as
pests) effects on agriculture (Hartfield et al. 2014). The predicted
changes in regional weather conditions (increasing CO, levels,
warmer temperatures, and varying frequency and distribution of
annual precipitation) would have a profound effect on invasion,
distribution, establishment, composition, demography, fitness,
competitiveness, and management of weed species (Bradley
et al. 2010; Gritti et al. 2006; Varanasi et al. 2016; Waryszak
et al. 2018; Ziska and Dukes 2011). The Great Plains region is pro-
jected to experience air temperatures increased by 2 to 4 C, dou-
bling of atmospheric CO, levels, warm winters, and pronounced
droughts in some zones within the next half century (Hartfield
et al. 2014; Rosenburg 1982). These climatic changes might influ-
ence the growth cycles of predominant weed species in the region,
further suggesting the need of innovative and improved weed man-
agement practices in future. For instance, rising levels of atmos-
pheric CO, will likely increase photosynthesis and growth of
several weed species, further enhancing the ability of weeds to com-
pete with crop plants (Ziska 2001, 2003). The process of converting
CO, to sugar in C; plants is less efficient compared with C4 plant
species, suggesting that C; weed species will respond rapidly to
increasing atmospheric CO, concentrations (Ogren and Chollet
1982; Ziska 2003). This increased efficiency of C; weed species
under increasing CO, concentrations may result in aggressive
growth, more competitive ability than other weeds or crops,
and/or high seed production, indicating potential future weed
shifts. Furthermore, changing weather patterns across the region,
such as increasing CO, levels, warm winters, and changing dura-
tion and frequency of annual rainfall events, are likely to increase
both the risks posed by, and the sources of, invasive weed species
(Bradley et al. 2012). For instance, the northward spread of invasive
weeds such as A. palmeri, which is highly problematic in the
Southern and Central Great Plains, could potentially be a concern
in the NGP (Figure 1) in near future (Ward et al. 2013).

Climate change can also influence the effectiveness of
herbicides and make weed management more challenging.
Environmental factors such as CO,, light, temperature, and relative
humidity can influence the performance of different herbicide
SOAs (Varanasi et al. 2016). For instance, glyphosate efficacy
was reduced on weeds grown at high CO, levels (Koleva and
Schneider 2009). Similarly, reduced efficacy of mesotrione on
A. palmeri, glyphosate on B. scoparia and C. album, and dicamba
on B. scoparia has been reported at high temperatures (40/30 C)
(DeGreeff et al. 2018; Godar et al. 2015b; Ou et al. 2018). These
reports demonstrate that more frequent applications and higher
rates of herbicides may be needed to obtain adequate weed control
in the future, resulting in increased economic and environmental
costs associated with herbicide use. Recent literature also suggests
that global warming can induce genetic and phenotypic changes
within weed populations and will pose a greater risk of evolution
of metabolism-based, non-target site herbicide resistance in weed
species (Matzrafi et al. 2016; Ziska et al. 2019).

Cover Crops in No-Tillage Regions of the Semiarid Great
Plains

Effective weed management is one of the most important agro-
nomic practices for producing a profitable crop (Baucom and
Holt 2009). As fewer and fewer new herbicide modes of action
come to market and HR weeds continue to increase in NT dryland
production systems of the Great Plains, alternative weed control
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strategies are needed. The implementation of infrequent tillage,
including reduced tillage rather than NT and competitive crops
grown in rotations, have contributed to the management of current
weed problems; however, these practices alone may not be enough
to achieve effective management of HR weeds in dryland produc-
tion systems. Integration of CCs in dryland crop rotations is gain-
ing popularity not only for weed control but also for other
conservation practices. CCs contribute to building soil health
and provide supplemental forage for grazing, nitrogen fixation,
weed suppression, and habitat for beneficial insects and weed seed
predators (Al-Khatib et al. 1997; Holman et al. 2018; Hoorman
2009; Kasper et al. 2007; Teasdale and Daughtry 1993).

Dryland producers are adopting CCs to suppress weeds and to
reduce costs of managing HR weed populations. In the U.S. Great
Plains, CCs can be planted in fallow phases of the cropping cycle
between cash crops. Theoretically, CCs in place of those fallow
phases can help manage weeds in two different ways: (1) through
the competitive effect (competition for light, water, nutrients, and
space) of CCs for reducing weed growth that would otherwise
establish in fallow fields (Osipitan et al. 2018) and (2) through
the suppressive effect of CC residues on weeds after termination
of CCs (Pullaro et al. 2006). The suppressive effect of CCs can
occur in two ways: (1) through physical suppression, with CC res-
idue (mulching) blocking sunlight and altering the soil microcli-
mate (Lemessa and Wakjira 2015); and (2) through chemical
suppression, with CCs releasing allelochemical compounds into
the environment (Al-Khatib et al. 1997; Barnes and Putnam
1986; Burgos et al. 1999; Creamer et al. 1996; Dhima et al. 2006;
Ercoli et al. 2007; Teasdale and Daughtry 1993; White et al.
1989). However, the findings of many allelopathic studies have
been confined to research laboratories, greenhouses, and growth
chambers (Creamer et al. 1996; Sosnoskie et al. 2012) and need
to be further investigated under field conditions.

In addition to weed suppression, CCs can play a key role in inte-
grated pest management in this semiarid region. CCs are known to
influence soil microbial communities, which in turn can affect the
viability and persistence of weed seedbanks (Liebman et al. 2001).
Kumar et al. (2008) reported that soil fungi contributed to
the reduction of corn chamomile (Anthemis arvensis L.) and
shepherd’s purse [Capsella bursa-pastoris (L.) Medik.] seedling
emergence from soil where a buckwheat CC was grown and incor-
porated. Similarly, specific soil fungi are known to cause mortality
of germinating A. theophrasti seeds (Davis and Renner 2006).
However, the long-term impacts of CCs on the soil microbiome
are not fully understood and should be investigated under field
conditions. There is insufficient research-based information on
using CCs for weed suppression in the NT Great Plains, where soil
moisture is limited compared with other U.S. regions. The follow-
ing section reviews some opportunities for inclusion of CCs for
weed management in semiarid cropping systems of the U.S.
Great Plains.

Ecofriendly Approach and Key Elements of Integrated Pest
Management

Growing CCs during fallow periods of NT dryland crop rotations
across the Great Plains would serve as an ecofriendly approach for
weed management. Effective weed management in NT fallow fields
tends to rely on multiple herbicide applications (glyphosate alone
or in mixtures) to provide season-long weed control each year.
From 1974 to 2014, >1.6 billion kg (about 19% of estimated global
use) of glyphosate was applied in U.S. agriculture (Benbrook 2016).
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Due to the rapid evolution of GR weed populations, some growers
have been replacing glyphosate with paraquat (a restricted-use
herbicide due to its high level of acute human toxicity) in their
burndown programs for fallow fields (VK and PWS, personal
observation). The weed suppression achieved by CCs during fallow
periods is likely to reduce the frequent and substantial use of these
nonselective herbicides. The resulting decline in use of herbicides
such as paraquat, dicamba, and atrazine could help reduce the
chemical load on the environment (soil, water, air), further creat-
ing a more natural ecosystem.

CCs can also aid in increased weed seed predation and substan-
tial reduction in weed seedbanks by harboring or providing suit-
able habitat for seed-eating insects, invertebrates, small rodents,
and birds (Brust and House, 1988; Cardina et al. 1996; Maulsby
2006; Menalled et al. 2006, 2007; Westerman et al. 2005; White
et al. 2007). Seed predation has been well documented for several
weed species such as common ragweed (Ambrosia artemisiifolia L.),
A. palmeri, C. album, sicklepod [Senna obtusifolia (L.) Irwin &
Barneby]), jimsonweed (Datura stramonium L.), A. theophrasti, fall
panicum (Panicum dichotomiflorum Michx.), and giant foxtail
(Setaria faberi Herrm.) (Menalled et al. 2006, 2007; Westerman
et al. 2005; White et al. 2007). Ground beetles (Anisodactylus spp.),
field crickets (Gryllus pennsylvanicus Burmeister), ants (Formicidae
spp.), earthworms (Lumbricina spp.), slugs (Gastropoda spp.), field
mice (Peromyscus maniculatus Wagner), and other small rodents
hide below a residue layer on the soil surface for protection
(Menalled et al. 2006; Westerman et al. 2005; White et al. 2007).
Therefore, we hypothesize that replacing NT fallow fields with
CCs could increase seed predation of problematic weed species in
the semiarid regions of the Great Plains and achieve more effective
weed control systems.

Cover Crops for Managing Herbicide-Resistant Weeds in the
Great Plains

Raising CCs for weed suppression is not a new concept; however,
this method of weed control is only recently being tested in NT
dryland production systems of the Great Plains. Exploring CCs
for weed management in the region will open several new oppor-
tunities for weed research. Future CC studies in this dryland envi-
ronment could investigate how CC management strategies (species
selection, seeding rate, time of planting, termination date, livestock
grazing, etc.) will affect life-history traits (seed dormancy, germi-
nation, emergence, growth, reproduction, seed viability, seed per-
sistence, etc.) of problem weed species. Previous studies have
demonstrated that B. scoparia populations in fallow fields from
Central Great Plains (Figure 1) had earlier and quicker emergence
patterns compared with populations from the NGP (Dille et al.
2017; Kumar et al. 2017a). Rapid seed germination has also been
observed in B. scoparia resistant to ALS inhibitors, whereas
reduced and delayed seed germination has been reported in
dicamba-resistant B. scoparia (Dyer et al 1993; Kumar and Jha
2016; Kumar et al. 2018b). Differential seed germination character-
istics have also been found for GR B. scoparia in the region (Kumar
and Jha 2017; Osipitan and Dille 2017). Similarly, differential
growth and reproductive characteristics of B. scoparia populations
with various herbicide-resistance traits have previously been
reported (Kumar and Jha 2015, 2016; LeClere et al. 2018;
Martin et al. 2017; Osipitan and Dille 2017). It would be important
to understand the fitness attributes of evolved herbicide-resistance
traits in problematic weed species (B. scoparia, A. palmeri,
C. canadensis, S. tragus, and B. tectorum) under diverse CC
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management strategies in NT dryland cropping systems. This
information will help in exploring the ecological fate of HR alleles
in weed populations. For instance, if fall-planted CCs such as
winter triticale (XTriticosecale Wittm. ex A. Camus [Secale X
Triticum]), cereal rye (Secale cereale L.), and hairy vetch (Vicia
villosa Roth) provide competitive effects that might reduce
seed germination, emergence, growth, and reproduction of HR
B. scoparia and C. canadensis populations, then these CCs could
delay or mitigate further spread of HR alleles in these populations.
Similarly, spring-planted CCs such as oat (Avena sativa L.), triti-
cale, and pea (Pisum sativum L.) alone or in mixtures can produce
enough biomass and sufficient canopy cover to provide competi-
tive effects on growth and reproduction of HR B. scoparia popu-
lations (Obour et al. 2019a). However, only those CCs that
produced more than 1,000 kg ha! were effective at weed suppres-
sion (Petrosino et al. 2015), and greater CC biomass results in less
available soil water for the subsequent cash crop (Holman and
Obour 2019). The leftover residue upon the termination of these
fall- or spring-planted CCs can also provide suppressive effects
(physical mulching) on the emergence of A. palmeri populations
during early summer in the fallow period of a W-S-F rotation.
The suppression of HR B. scoparia, C. canadensis, and A. palmeri
populations achieved by these fall- or spring-planted CCs can also
reduce the number of POST herbicide applications needed during
the fallow phase, which will ultimately reduce selection pressure for
further evolution of herbicide-resistance traits in these species.

The long-term impacts of replacing fallow fields with CCs on
soil seedbank dynamics of problem weed species (especially HR
populations), as well as shifts in weed communities, will be other
important research questions to explore. It would be crucial to
investigate and identify key competitive traits of growing CCs in
the region, including planting dates, mixtures versus single species,
seeding rates, and growth attributes (above- and belowground),
that can reduce the growth of predominant weed species, thus
reducing weed seed production to ultimately deplete the soil seed-
banks. Future research could also emphasize understanding the
suppressive traits of growing CCs, including residue persistence
(especially in this moisture-limited environment) that can help
conserve the soil moisture, alter the soil microenvironment (tem-
perature, moisture, microbes), and ultimately, impact weed seed-
bank life. In a similar context, field and laboratory studies could be
designed to identify allelopathic traits of various CCs (single or
multiple species) grown in a semiarid environment, including
the nature of allelochemicals, timing of release and impact on weed
seed germination, weed seed life, and microbes in the soil (Kelton
et al. 2012; Weston 1996). Depending upon the goal of growing
CCs (competitiveness vs. suppressiveness), multilocation studies
should investigate different methods of termination (herbicides,
mowing, haying, flailing, grazing, etc.) for different CC species,
optimum timing, and their short- and long-term impacts on weed
demographics and population dynamics under NT dryland pro-
duction systems.

Economic and Sustainability Aspects of Using Cover Crops for
Weed Management

On average, weed control costs >$11 billion a year for U.S. agri-
culture, and herbicides are one of the major expenses (Hartfield
et al. 2014). Weed suppression provided by CCs will potentially
reduce herbicide use, which in turn will help reduce herbicide
costs. Subsequently, any reductions in herbicide use during fallow
periods will reduce the risk of herbicide-resistance evolution in
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weed populations across the region. In addition, weed seedlings
remain smaller and more susceptible to herbicides for longer peri-
ods of time under a CC canopy, which could indirectly enhance the
effectiveness of chemical control of those small-sized seedlings at
the time of CC termination (Wallace et al. 2019). The replacement
of NT fallow periods with CCs that produce high-quality forage
can provide additional revenue to growers if properly managed
for livestock grazing/haying. A recent study in western Kansas
and eastern Colorado found that a spring-planted CC mixture
of oat/triticale/pea produced high-quality forage for early summer
grazing (Brummer et al. 2018). In a separate study, the same CC
mixture (oat/triticale/pea) provided 90% to 99% suppression of
B. scoparia biomass compared with nontreated fallow plots across
two different sites in western Kansas (Obour et al. 2019a).
However, it is important to note that the CC was not grazed or
harvested in that same study, so the overall impact of CC grazing
on B. scoparia population is unknown (Obour et al. 2019a).
Previous research found that CCs in NT fallow fields could help
reduce soil compaction, soil erosion, and nutrient leaching
(Blanco-Canqui et al. 2013). Legume CCs can also increase nitro-
gen fixation, improve soil aggregates, protect crop seedlings, and
conserve soil moisture by reducing evaporation rates during
drought periods through a thick layer of residue after termination
(Basche et al. 2016; Holman et al. 2018; Magdof and Van Es 2009;
Unger and Vigil 1998). All of these factors can potentially contrib-
ute to enhancing the economic viability and sustainability of semi-
arid Great Plains cropping systems.

Agronomic Considerations for Integrating Cover Crops in
No-Tillage Regions of the Semiarid Great Plains

The intended goal of including CCs in NT cropping systems will
influence species selection, planting time, seeding rate, and time of
termination. The extent of CC weed-suppressive ability will be
greater with more biomass. In NT dryland systems, CC biomass pro-
duction varies greatly because of variable precipitation amount, crop
rotation, CC species, planting time, seeding rate, and soil type. In a
recent meta-analysis, Osipitan et al. (2019) showed that CC manage-
ment decisions, including selection of CC species, planting season,
planting date, seeding rate, termination date, delay in main crop
planting after termination of CCs, and tillage system, all can influence
the effective use of CCs for weed suppression. Here, we briefly review
major agronomic practices and challenges in growing CCs for weed
suppression in NT semiarid regions of the U.S. Great Plains.

Cover Crop Species Selection

Choosing individual CC species or mixtures with vigorous growth
and biomass production is critical for effective weed suppression.
Previous research documents that several diverse grass and broad-
leaf species could be planted as single or multiple species CCs in the
semiarid Great Plains (Table 1). Cereals are generally considered
more weed suppressive than broadleaf plant species (Norsworthy
etal. 2011; Ruffo and Bollero 2003; Ruis et al. 2018). Cereal rye is a
popular species chosen by those interested in incorporating a
winter-hardy CC, as it can develop a fibrous root system, tolerates
low-fertility soils, scavenges for available nitrogen, prevents soil ero-
sion that commonly occurs when no residue or plant material is left
on the soil surface, and can suppress weeds (Clark 2007). However,
cereal rye also can quickly become “weedy,” known as feral rye, and
is a weed of dryland agriculture in the western and central United
States that causes more than $26 million in annual wheat harvest
losses (Pester et al 2000; Western Coordinating Committee-077
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Table 1. List of grass and broadleaf cover crop species commonly adapted in

the Great Plains.

Grass species

Scientific names?

Barley
Cereal rye
Oats

Proso millet
Sudangrass
Triticale

Winter wheat
Broadleaf species
Austrian winter pea
Berseem clover
Buckwheat
Common vetch
Flax

Hairy vetch

Lentil

Phacelia

Spring pea
Radish

Canola

Safflower
Sunflower

Sunn hemp

Hordeum vulgare L.

Secale cereale L.

Avena sativa L.

Panicum miliaceum L.

Sorghum bicolor L.

XTriticosecale Wittm. ex A. Camus
[Secale x Triticum]

Triticum aestivum L.

Pisum sativum L.

Trifolium alexandrinum Moench
Fagopyrum esculentum L.
Vicia sativa L.

Linum usitatissimum L.

Vicia villosa Roth

Lens culinaris Medik.
Phacelia tanacetifolia Benth.
Pisum sativum L.

Raphanus sativus L.

Brassica napus L.
Carthamus tinctorius L.
Helianthus annuus L.
Crotalaria juncea L.

2Reviewed/researched by Calderon et al. 2016; Holman et al. 2018; Nielsen et al. 2015;
Sanderson et al. 2018.

2019; Whitson et al. 2000). Barley (Hordeum vulgare L.), wheat, oat,
and triticale are also competitive cereals and could possibly fit into
some systems better than cereal rye. Although legumes are not con-
sidered as competitive as cereals and have a low C:N ratio (which
contributes to a faster residue decomposition rate), their use may
still offer benefits in the Great Plains (Creamer et al. 1997).

In field studies conducted in western Kansas, the most produc-
tive grass CCs in dryland environments were sorghum or sudan-
grass (Sorghum bicolor L.) > cereal rye > triticale > wheat > oat
> barley (Holman et al. 2018). The broadleaf legume CCs were
not competitive and produced little biomass when grown alone
or in CC mixes. In southwest Kansas, fall-planted triticale and a
triticale-hairy vetch mixture reduced B. scoparia density by 78%
and 94%, respectively, and biomass up to 98% when compared
with chemical fallow (Petrosino et al. 2015). In that study, legume
CCs such as Austrian winter pea, hairy vetch, spring lentil, and
spring pea grown as single-species CCs produced little biomass
(600 to 1,000 kg ha™!) and could not provide adequate suppression
of B. scoparia growth. This was probably because the emergence
timing of these spring-planted CCs coincided with B. scoparia
emergence and the CCs could not compete well. This further sug-
gests that weed emergence timing relative to CC establishment is a
critical factor in selecting CC species, as previously discussed.
Similarly, grass and brassica monocultures or mixtures were more
effective at weed suppression than legumes (Baraibar et al. 2018).
Therefore, to be effective, low biomass—producing legumes and
other broadleaf CCs may need to be planted in mixtures with
productive grass species to improve weed suppression. When weed
suppression is the ultimate goal, then selecting a single CC
species that produces more biomass can provide a cheaper weed-
suppression alternative compared with multispecies mixes that
may have a higher seed cost (Holman et al. 2018).

Planting multispecies CCs does not necessarily produce greater
biomass or residue compared with a single species or simple CC
mixes. Nielsen et al. (2015) reported CC biomass or residue after
CC termination with a 10-species mixture was not different
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compared with biomass produced by single-species CCs across
two locations in eastern Colorado and western Nebraska. In
North Dakota, weed-suppression benefits with monoculture CCs
were not different from mixtures comprising millet [Pennisetum
glaucum (L) R. Br.]/triticale/clover (Trifolium spp.)/radish
(Raphanus sativus L.) (Sanderson et al. 2018). Similarly, Florence
et al. (2019) reported that multispecies CCs mixes did not increase
aboveground biomass production or weed suppression when com-
pared with productive single-species CCs across 11 sites in
southeastern Nebraska. However, in a 2-yr study conducted in
southcentral Montana, Khan and McVay (2019) concluded that mul-
tispecies CCs can provide more stable biomass yield than single-
species CCs. In a meta-analysis, Osipitan et al. (2019) reported that
the decision to use a combination of multispecies mixtures, single
species, and grasses or broadleaves was driven by ability of the
selected CCs to produce greater biomass and persistent residue to
suppress weeds. In recent CC studies in western Kansas, it was found
that actively growing CC plants were more effective at suppressing
weeds compared with CC residue amounts (Obour et al. 2019a).
Hence, extending CC growth over greater portions of the fallow
period could provide more weed-suppression benefits, but caution
should be taken to avoid depleting plant-available water, which could
be detrimental to the subsequent cash crop.

Cover Crop Seeding Rates

This is an important agronomic decision that affects plant stand,
growth, water use, competitiveness, and productivity of CCs.
Seeding rates of CCs are highly variable, and depend on species
and whether planted as single or multiple species (Calderon
et al. 2016; Holman et al. 2018). Single-species CCs should be
planted at seeding rates similar to those used for forage production.
For example, the seeding rate for oat and triticale CCs grown in the
Great Plains ranged from 45 to 100 kg ha™! (Calderon et al. 2016;
Holman et al. 2018). Sudangrass is planted at 13.5 to 16.8 kg ha™!,
which is the recommended rate range for forage production.
Typical seeding rates for multispecies CCs ranged from 40 to
60 kg ha™! (Calderon et al. 2016; Farney et al. 2018); significantly
less compared with seeding rates for pea (115 to 134 kg ha™") or
triticale alone (72 to 100 kg ha™!) (Holman et al. 2018). Because
of their smaller seed size, brassicas are generally planted at seeding
rates of 5.6 to 7.5 kg ha™ as a single-species CC or reduced to 1.1 to
2.2 kg ha™! when included in CC mixes (Calderon et al. 2016;
Farney et al. 2018).

There is limited research on CC seeding rate effect on weed sup-
pressiveness in the semiarid Great Plains. However, studies in the
mid-Atlantic region (Maryland, Pennsylvania, New York) showed
increasing cereal rye seeding rate reduced the amount of weed bio-
mass produced (Ryan et al. 2011). Weed biomass in that study
ranged from 328 g m~2 when rye was seeded at 90 kg seed ha™!
compared with 225 g m™ when seeding rate was increased to
210 kg seed ha™!. Haramoto (2019) reported a greater plant
density of cereal rye and winter wheat CCs when seeded at 112
kg ha™! (184 plants m~2) compared with a lower seeding rate of
34 kg ha™! (70 to 81 plants m~2); however, CC biomass and weed
suppression did not differ between the two seeding rates. Previous
research in the Central Great Plains indicated that oat grown for
forage could be planted at 25% less than the recommended seeding
rate of 72 kg ha™! with no decrease in total biomass produced
(Obour et al. 2019b). This is due to a high tillering ability of cereal
grains that compensates for reduced seeding rates. Therefore,
a moderate reduction in CC seeding rate may not negatively
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influence total biomass production. Because of high seed costs
associated with increasing seeding rates, CC growers should be
moderate in deciding what seeding rates to use. The goal is to pro-
vide enough plant density and biomass to provide early-season
weed suppression.

Cover Crop Seeding Time

In the semiarid Great Plains, CC growth and productivity varies
from year to year because of the variability in precipitation
amounts and seeding time. Average CC biomass in southwest
Kansas ranged from 780 kg ha™! when precipitation during
the CC growing season was 46% of the 30-yr average to 2,690
kg ha™! when precipitation was above average (Holman et al.
2018). The CC growing season can affect growth and subsequent
impact on weed suppression. Spring- or fall-seeded CCs tend to
perform better than a late summer-planted CC in this semiarid
environment because of the available moisture at time of seeding.
This period also coincides with the emergence of the most prob-
lematic weed species of this region: C. canadensis primarily
emerges in the fall or early spring; B. scoparia emerges in early
spring; whereas A. palmeri emerges in late spring to early summer.
Therefore, depending upon soil moisture, fall- or spring-seeded
CCs can best compete against and suppress problematic weed
species in NT fields that otherwise would remain fallow and allow
weed populations to flourish. For instance, fall-seeded cereal rye or
winter triticale after wheat harvest can provide enough CC biomass
to compete against C. canadensis and B. scoparia, which germinate
in early spring. In contrast, spring-seeded CCs (such as oat/
triticale/pea) in the fallow phase can help manage A. palmeri and
B. scoparia in early summer through competition and late summer
through physical suppression from CC residue following termina-
tion. Sanderson et al. (2018) found that spring-seeded CCs pro-
duced greater biomass and provided greater weed suppression
compared with when CCs were seeded later in the growing season
in North Dakota. This would be expected, because late-summer
seedlings of CCs in semiarid regions of the Great Plains face
considerable risks due to variable rainfall and a shortened growing
season, which can result in reduction of CC biomass and weed-
suppression benefits. Irrespective of the CC growing season, opti-
mum planting dates are crucial for adequate plant establishment,
increased biomass, and improved weed suppression.

Cover Crop Establishment Challenges

The ability of CCs to suppress weeds is contingent upon achieving
good establishment. This can be challenging in semiarid environ-
ments where soil moisture at the time of seeding can be limited.
Seeding into subsoil moisture will increase seedling emergence,
plant vigor, and early establishment. However, CCs are generally
seeded in mixtures, and the large number of plant species
promoted as CCs exacerbate establishment issues because of
differences in seed size within CC mixtures, preventing deep seed
placement when smaller-seeded species are included in mixtures.
To overcome this challenge, CC seeding should coincide with peri-
ods of adequate soil moisture to ensure conditions are favorable for
germination and seedling emergence, particularly for small-seeded
CC species that need to be seeded at shallow depths. Furthermore,
limiting the number of species in CC mixtures to plants with sim-
ilar seed sizes could ensure the entire CC mixture can be seeded at
depths that provide good seed-to-soil contact to increase the chan-
ces of emergence and plant establishment.
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In general, the CC seeding methods include direct planting into
previous crop residue, aerial seeding, interseeding, or broadcasting
into a standing crop (Curran et al. 2018; Holman et al. 2018;
Wilson et al. 2014). Among these methods, direct seeding with a
drill provided better establishment with uniform stands compared
with aerial seeding (Holman et al. 2018; Wilson et al. 2014).
Establishment was reduced with broadcast or aerial seeding
because of nonuniform seed distribution, low seed-to-soil contact,
lack of moisture, and seed predation (Wilson et al. 2014).
Establishment of small-seeded CC species could be improved with
some tillage to prepare a seedbed; however, such tillage could
increase potential for wind erosion and encourage a flush of weeds.
Research is needed to determine whether occasional tillage every
3 to 5 yr could be used to establish CCs as part of the crop rotation
cycle. This approach can improve CC establishment and control
troublesome weeds with minimal impacts on soil properties
(Blanco-Canqui and Wortmann 2020). One-time strategic tillage
in long-term NT fields in western Kansas controlled glyphosate-
tolerant red three-awn grass (Aristida purpurea Nutt.) and
C. verticillata with no effect on soil water availability, winter wheat
yields, and soil properties (Obour et al. 2019c). However, more
research is needed to determine the combined effects of strategic
tillage and CCs in managing HR weeds and subsequent impacts
on soil health and crop yields in this region.

Another major challenge that affects CC establishment is
residual herbicide from the previous crop. In dryland W-S-F rota-
tions, producers are currently relying on PRE herbicides to manage
HR weeds. Many of these herbicide chemistries are persistent, with
residual phytotoxic concentrations in the soil that may affect estab-
lishment when CCs are planted in the fallow phase of the rotation.
For example, S-metolachlor applied at 1.68 kg ha™! severely injured
and reduced annual ryegrass (Lolium multiflorum Lam.) CC stands
regardless of the planting time following herbicide application
(Tharp and Kells 2000). Similarly, biomass of Italian ryegrass
[Lolium perenne L. ssp. multiflorum (Lam.) Husnot] and winter
oat were significantly reduced (~67%) by pyroxasulfone herbicide
carryover from the previous corn crop (Cornelius and Bradley
2017). In general, herbicides with greater persistence will have a
long-term residual activity that will affect CC inclusion in the rota-
tion. Herbicide labels typically provide information on restrictions
regarding safety of rotational crops, but these are based on cash
crops with no or limited information for CC usage. More research
information is needed regarding herbicide carryover injury on CCs
to prevent risk of establishment failure. In addition, data on the
safety of the herbicide with respect to CCs, particularly CCs used
as livestock feed, are essential.

Soil Moisture Trade-offs and Impacts on Cash Crop Yields

The fallow phase of the production system is critical for conserva-
tion of soil water that stabilizes wheat yields and prevents crop fail-
ure in drier years in NT regions of the semiarid Great Plains
(Haas et al. 1974; Nielsen and Vigil 2010). In this water-limited
environment, crop yields are directly related to available soil mois-
ture at time of cash crop seeding (Schlegel et al. 2018). Despite the
weed-suppression benefits of CCs, previous research demonstrated
that replacing fallow with CCs often resulted in decreased soil
water content at time of cash crop seeding (Holman et al. 2018;
Nielsen and Vigil 2018; Schlegel and Havlin 1997; Unger and
Vigil 1998; Zentner et al. 1996). Schlegel and Havlin (1997)
reported that a hairy vetch CC reduced soil water content by
178 mm compared with fallow, and the subsequent wheat crop
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yield was reduced by 42% to 83% across years. In that same study,
every millimeter of soil water depleted by hairy vetch resulted in
reduction of wheat yields by 15 kg ha™!. Holman et al. (2018)
reported wheat yield reduction of 13 kg ha™' for every millimeter
of soil water depleted by CCs, whether grown as a mixture or as a
single species. The impact of CCs on soil water availability will
depend on amounts of precipitation and infiltration after termina-
tion to replenish water use by CCs. Therefore, growing window
and time of CC termination are critical for CC water use and soil
water replenishment relative to seeding the next cash crop. Wheat
yields following lentil as a CC terminated at full bloom in
northeastern Montana was 2,040 kg ha™' compared with 2,820
kg ha™! in fallow in a W-F system (Pikul et al. 1997). This corre-
sponds to a more than 25% decrease in wheat yield when lentil
replaced fallow in the cropping system. In eastern Colorado,
Nielsen and Vigil (2005) reported that the soil water content in fal-
low was 320 mm compared with 265 mm when CCs were termi-
nated in early June, 245 mm when terminated in mid-June, or 216
mm when terminated in mid-July. Barker et al. (2018) reported lit-
tle to no effect of CCs on soil water availability in a 3-yr study
across Nebraska.

In general, water use by CCs will vary and may depend on spe-
cies, biomass production, and precipitation after termination in the
growing season. In a 2-yr study conducted at a dryland site in
Akron, CO, Nielsen et al. (2016) reported CC water use ranging
from 127 mm for pea to 221 mm for canola and 136 mm in the
first year (seasonal precipitation of 85 mm) to 202 mm in the sec-
ond year (seasonal precipitation of 178 mm). The aforementioned
studies demonstrate that growing CCs in the semiarid Great Plains
uses soil water resources and could affect subsequent cash crop
yields regardless of CC species selected, growing window (fall or
spring planted), or selection of multispecies CCs. It is therefore
imperative that CCs grown in semiarid regions provide some rev-
enue stream to offset seed costs and cash crop yield depressions
when CCs are seeded ahead of the main crop (Holman et al. 2018).

Cover Crops Grazing/Haying

An additional revenue stream for farmers is to use CCs for grazing
or haying. This approach could provide an opportunity for dryland
producers to suppress weeds, improve soil health, and produce
harvestable forage for livestock. Recent research in western
Kansas demonstrated that most of the species planted as CCs have
excellent forage attributes in terms of dry matter production and
forage nutritive value (Brummer et al. 2018; Obour et al. 2019b).
Regrowth from hayed or grazed CCs can provide more residue cover
compared with fallow. In southwestern Kansas, winter triticale or a
winter triticale-legume CC harvested for forage was more profitable
than chemical fallow (Holman et al. 2018). Notwithstanding the sig-
nificant depression in wheat yields following a spring CC, overall
system profitability was greater when an oat—pea forage was added
to dryland cropping systems compared with fallow (Lyon et al.
2004). Therefore, using CCs for forage will provide opportunity
for dual-purpose CCs in dryland systems to also provide residue
cover to manage HR weeds, reduce erosion, and improve soil health.
However, research data on best management practices for grazing
CCs in NT dryland systems are limited. More importantly, farmers
are asking questions about:

1. CC mixtures to achieve best outcomes;
2. seeding windows for grazing CCs (spring, summer, or fall);
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3. amount of CCs biomass that should be grazed relative to res-
idue cover;

4. grazing impact on soil compaction;

5. grazing impacts on weed suppression (weeds like B. scoparia
may be palatable); and

6. soil health implications when CC biomass is removed as for-
age through grazing.

Currently, there is a paucity of research to address these concerns.
Ongoing research demonstrates that grazing CCs could increase soil
compaction near the soil surface under wet conditions. Wheat grain
yields following CCs that were grazed or hayed did not differ from
yields when CCs were left standing (Obour et al. 2019b). The grazing
potential of CCs in semiarid dryland systems of the Great Plains
needs further investigation.

Summary and Future Directions

The conundrum of incorporating CCs in crop rotations in the
semiarid U.S. Great Plains is how to take advantage of weed sup-
pression and gain soil health benefits while reducing the negative
impacts on available soil water and subsequent crop yields. The
potential detrimental effects of CCs on subsequent crop yields have
slowed their adoption, because farmers’ decisions are based on the
overall economic situations of their farms. For successful adoption
of CCs in NT dryland systems, CCs must be managed to increase
the amount of biomass at termination for weed suppression and
provide an economic value. Replacing NT fallow periods with
CCs will potentially reduce the number of herbicide applications.
This will hold true when there is adequate moisture for CC estab-
lishment to produce adequate biomass.

This review highlights that integration of CCs in NT regions of
the semiarid Great Plains can potentially contribute to the devel-
opment of cost-effective and ecologically based IWM strategies,
especially for managing HR weed populations. Multistate studies
are needed to investigate the systematic manipulation of specific
components of CCs for successful integration into current crop-
ping systems in the region. Research gaps exist in understanding
the impacts of various CC management strategies (CC species
selection, time of seeding and termination, seeding rates, method
of termination, etc.) on population dynamics (seed mortality and
longevity; seed dormancy; germination ecology; emergence pat-
tern; and other life-history traits, e.g., fitness) of HR weed pop-
ulations and subsequent crop yields in the region. Researchers
should also investigate other ecosystem services provided by
CCs in NT semiarid Great Plains, including allelopathy, attrac-
tants for beneficial insects/pollinators, and habitat for weed seed
predators, with the ultimate goal of achieving more resilient weed
management systems that are more likely to delay evolution of
HR weed populations. Long-term field research should also val-
idate the important components of environmental sustainability
and economic viability of integrating CCs for weed management
in the region.
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