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Accounting for uncertainty from zero inflation and overdispersion
in paleoecological studies of predation using a hierarchical
Bayesian framework

Jansen A. Smith*† , John C. Handley†, and Gregory P. Dietl

Abstract.—The effects of overdispersion and zero inflation (e.g., poor model fits) can result in misinterpret-
ation in studies using count data. These effects have not been evaluated in paleoecological studies of pre-
dation and are further complicated by preservational bias and time averaging. We develop a hierarchical
Bayesian framework to account for uncertainty from overdispersion and zero inflation in estimates of spe-
cimen and predation trace counts. We demonstrate its application using published data on drilling preda-
tors and their prey in time-averaged death assemblages from the Great Barrier Reef, Australia.

Our results indicate that estimates of predation frequencies are underestimated when zero inflation is
not considered, and this effect is likely compounded by removal of individuals and predation traces via
preservational bias. Time averaging likely reduces zero inflation via accumulation of rare taxa and events;
however, it increases the uncertainty in comparisons between assemblages by introducing variability in
sampling effort. That is, there is an analytical cost with time-averaged count data, manifesting as broader
confidence regions. Ecological inferences in paleoecology can be strengthened by accounting for the uncer-
tainty inherent to paleoecological count data and the sampling processes by which they are generated.
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Introduction

In the last three decades, accounting for over-
dispersion and zero inflation in ecological stud-
ies that use count data has become increasingly
common (e.g., Welsh et al. 1996; Martin et al.
2005; Warton 2005; Sileshi 2008; Wenger
and Freeman 2008; Millar 2009; Sólymos et al.
2012; Dénes et al. 2015; Blasco-Moreno et al.
2019). With count data, overdispersion occurs
when the variance of the data is significantly
larger than the mean, indicating the model
being applied does not appropriately capture
the variance in the data (Bliss and Fisher
1953). Zero inflation, the presence of excess

zeros in a dataset compared with the number
of zeros expected under commonly applied
count distributions (e.g., binomial, Poisson;
Lambert 1992; Heilbron 1994), is one process
that can produce overdispersion. These excess
zeros, which can be ecologically real (i.e.,
true) or produced by non-ecological processes
(i.e., false; see Table 1 for paleoecological exam-
ples), can change the model that provides the
best fit to data and can lead to erroneous con-
clusions drawn from poorly fit models (Mac-
Kenzie et al. 2002; Martin et al. 2005; Blasco-
Moreno et al. 2019).
True zeros have ecological explanations, such

as a species not occurring at a particular site for

© The Author(s), 2021. Published by Cambridge University Press on behalf of The Paleontological Society. This is an Open
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in anymedium, provided the original
work is properly cited. 0094-8373/22

Paleobiology, 48(1), 2022, pp. 65–82
DOI: 10.1017/pab.2021.27

https://doi.org/10.1017/pab.2021.27 Published online by Cambridge University Press

https://orcid.org/0000-0003-3771-2039
mailto:jansen.smith@fau.de
mailto:jansen.smith@fau.de
mailto:john.handley@rochester.edu
mailto:gpd3@cornell.edu
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/pab.2021.27&domain=pdf
https://doi.org/10.1017/pab.2021.27


an ecological reason (e.g., competitive exclusion)
or because, by chance, the species does not satur-
ate its entire suitable range (Martin et al. 2005)—
the latter is similar to a true, “random zero,”
described by Blasco-Moreno et al. (2019). False
zeros occur when the investigator errs. Errors
might include design elements of the study
(e.g., attempting to sample a species that is not
present in a particular habitat) or failure to
observe a species when it is present, which
may be common for rare or cryptic species
(Welsh et al. 1996; Martin et al. 2005; Wenger
and Freeman 2008; Blasco-Moreno et al. 2019).
Accounting for these zeros and differentiating

between zeros from different sources can change
the results of a study.
Blasco-Moreno et al. (2019) demonstrated this

possibility in their examination of the effects of
overdispersion and zero inflation on ecological
inference. Rather than count data for individuals
of different species in a habitat, Blasco-Moreno
et al. (2019) used counts of herbivory traces on
the flowering heads of four plant species in the
genus Senecio, including two native and two
exotic species, to evaluate the enemy release
hypothesis—that introduced or exotic species
will experience less predation compared with
native species because they “left behind” their

TABLE 1. Potential types of zeros in paleoecological count datawith respect to those identified in ecological studies.When
taking a sample to evaluate the ecology of a community, ecological processes (i.e., true zeros) and sampling artifacts
(i.e., false zeros) can distort the resulting sample relative to the true distribution of specimens or predation events. In
paleoecological samples, distortions from additional factors (e.g., preservational bias, time averaging) must also be
addressed. *Following Blasco-Moreno et al. (2019). †The possibility of a zero count for a predation trace is predicated on the
presence of the prey taxa in the assemblage (ni > 1). When testing a hypothesis on multiple prey taxa, we must also assume
the sample from the assemblage is representative of the set of prey taxa that could possibly have been sampled (i.e., were
present in the community over the duration of time averaging; see Table 2).

Count data
source

Zero classifications
used for ecological

data*

Zero classifications used
here for paleoecological

data Description for zeros in paleoecological data

Specimens True Ecological Prey type did not occupy the habitat(s) represented
in the assemblage, for the duration over which
the assemblage was time-averaged, due to
ecological processes or as a result of the effect
being studied (e.g., environmental tolerance).

Prey type did occupy the habitat(s) represented in
the assemblage but was not present at a
particular location by chance (e.g., patchiness),
for the duration over which the assemblage was
time-averaged.

False Sampling Insufficient sampling effort resulted in failure to
collect a prey type that was present in the
assemblage (e.g., rarity).

— Preservational Prey type removed from the assemblage by
postmortem taphonomic processes (e.g.,
fragmentation, dissolution, winnowing).

Predation
traces†

True Ecological Prey type was not preyed upon because it and the
predator occupied different habitats.

Prey type occurred in the same habitat as the
predator but was not preyed upon (e.g., more
highly preferred prey was available, the prey
type was avoided).

Prey typewas sufficiently rare in the habitat and so
was not encountered by the predator.

— Preservational Predation trace(s) removed from the assemblage by
postmortem taphonomic processes (e.g.,
reworking before burial, compaction during
lithification).

False Error Predation trace(s) attributed towrong predator and
excluded from analysis.

Random Sampling Zero is due to the small sample size of a prey type
relative to the predation frequency on that prey
type (i.e., low on preference hierarchy and
uncommon in the community).
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enemies (Keane and Crawley 2002). Depending
on the model used, the Senecio herbivory data
could be taken to support or reject the enemy
release hypothesis. Using Poisson and
zero-inflated Poisson models, Blasco-Moreno
et al. (2019) found support for the enemy release
hypothesis; however, when utilizing negative
binomial and zero-inflated negative binomial
models, the hypothesis was rejected. As the
zero-inflated negative binomial model was the
best-fitting model—it accounted for overdisper-
sion better than the zero-inflated Poissonmodel,
likely because negative binomial models relax
the requirement of an equal variance and
mean—the authors concluded that the enemy
release hypothesis should be rejected. Choosing
the correct model to account for overdispersion
and zero inflation is critical for reaching correct
conclusions from ecological count data.
Just as in ecological studies, count data used in

paleoecological studies are susceptible to over-
dispersion and zero inflation. Though some
investigators have begun to consider overdisper-
sion (e.g., Martinelli et al. 2015), the potentially
misleading effects of zero inflation have not
been explicitlyaddressed.Herewepresent ahier-
archical Bayesian framework consistentwith eco-
logical studies as a first step toward addressing
overdispersion and zero inflation in paleoeco-
logical studies, with consideration for the unique
features of paleoecological count data (e.g., time
averaging).We apply this framework to adataset
that combines two previously published
paleoecological datasets from the Great Barrier
Reef—one on molluscan predator–prey interac-
tions (Martinelli et al. 2015) and another on the
degree of time averaging in an assemblage
(Kosnik et al. 2009; see “A Paleoecological Case
Study”)—to demonstrate the potential effects of

overdispersion and zero inflation on the results
drawn from paleoecological count data.
In addition to applying zero-inflated models

in a new context, under a new set of assump-
tions and conditions, we extend the modeling
approach to include zero inflation and overdis-
persion from two sources: occurrence and
abundance of species and occurrence and
abundance of predation traces. Though devel-
oped in a paleoecological context, this
approach is applicable to the study of any
predator–prey system in which counts of prey
individuals and frequency of predation are
each sampled. For example, if it was relevant
to the hypothesis they were addressing, the
approach presented here could be applied to
the data from Blasco-Moreno et al. (2019) to
model counts of flowering heads and counts
of herbivory traces, allowing for the possibility
of Senecio plants without flowering heads.

Count Data in Paleoecological Predation Stud-
ies.—Studies of predation frequency in paleo-
ecology are subject to a different set of
assumptions and conditions than ecological
studies (Table 2). By examining accumulations
of dead remains, paleoecologists view the end
result of the processes they are studying,
which have typically played out over decades,
centuries, millennia, or longer. With this
expanded temporal perspective come two add-
itional sources of variation that must be
accounted for by paleoecologists: preserva-
tional bias and time averaging (e.g., Fig. 1).
Independently, and in association with each
other, the effects of preservational bias and
time averaging have been the topic of many
studies (e.g., Kidwell and Bosence 1991; Flessa
et al. 1993; Kowalewski et al. 1994, 1998; Roy
et al. 1994; Kidwell 2001, 2007, 2013; Goodwin

TABLE 2. Common assumptions for time-averaged count data in paleoecological studies of molluscan predator–prey
interactions.

Description
Across the duration of time-averaging
in a sample…

…all species in the living community can be found in the death assemblage.

…individuals from each time increment (e.g., year, season) are equally likely to
accumulate in the death assemblage.

…ecological dynamics were stable (e.g., relative abundance of predators,
community membership).

…environmental conditions were stable (e.g., temperature, salinity, water depth).
Individuals from the community are… …equally likely to be preserved in the death assemblage, regardless of species,

size, presence of a predation trace, etc.
…equally likely to be sampled in the death assemblage.
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et al. 2004; Behrensmeyer et al. 2005; Olszewski
and Kidwell 2007; Klompmaker 2009; Kosnik
et al. 2009; Tomašovỳch and Kidwell 2010; Ols-
zewski 2012; Bürkli andWilson 2017; Dyer et al.
2018; Smith et al. 2019; Sarkar et al. 2020). The
consequences of these factors have not been
considered, however, with respect to overdis-
persion and zero inflation as related to paleo-
ecological predator–prey interactions (for a
review of existing methods used in paleoeco-
logical studies of predation, see Klompmaker
et al. [2019]). We focus here on predator–prey
interactions in preserved assemblages of
recently dead individuals accumulated over
the past decade, century, or millennium in the
uppermost part of the sedimentary record
(i.e., death assemblages; Kidwell 2009).
Preservational bias describes the unequal

likelihoods that different individuals, or

species, will be preserved in a death assem-
blage based on a variety of factors, which can
include body size, habitat, morphology, scav-
enging, sedimentation rate, or skeletal compos-
ition, to name a few. For example, molluscan
individuals with small, thin shells may be
more likely to be destroyed than individuals
with larger, thicker shells. This bias has the
potential to prevent individuals, or species,
from being preserved in a death assemblage,
which can contribute to zero inflation and,
thereby, overdispersion. In many cases, a spe-
cies may not be entirely removed from the
record but will instead be represented by
fewer individuals. Depending on the sampling
strategy employed, these reduced abundances
can also generate zeros in samples, particularly
when the species was initially rare or has
become rare in the assemblage due to

FIGURE 1. A, Example of a drilling tracemade by a naticid predator in its clam prey (personal specimen, J.A.S.). B, An illus-
trative molluscan community, with three samples taken at two points in time, and the hypothetical time-averaged paleo-
ecological assemblage. The predator is present in sample 3 during time 1 and in samples 1 and 3 during time 2; it is found in
the paleoecological assemblage in samples 1 and 3. Time averaging obscures the absence of the predator in sample 1 during
time 1. If paleoecological predation frequencies are calculated by pooling data from all samples—including sample 2,
where the predator was never present—they would be underestimated because of zero inflation. Counts of individuals
are also affected. For example, prey 4 is rare in the living communities but is well preserved in the paleoecological assem-
blage. With poor preservation, the true abundance of other taxa (e.g., prey 1) is underrepresented in paleoecological sam-
ples relative to the living samples. Mollusk drawings from thenounproject.com, with contributors in parentheses: prey 1
(public domain), prey 2 (icon 54), prey 3 (Ker’is), prey 4 (Yu luck), and predator (Juraj Sedlák).
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preservational bias. Despite this potential bias,
death assemblages have been shown to main-
tain high fidelity to the living assemblages
from which they formed, at least with respect
to taxonomic composition and rank abundance
(e.g., Davis 1923; Johnson 1965; Warme 1969;
Kidwell 2001, 2007). With this fidelity in
mind, preservational bias can be evaluated as
an alternative explanation for observed biotic
patterns before drawing conclusions about the
pattern or process of interest (e.g., Klompmaker
2009; Sime and Kelley 2016; Smith and Dietl
2016; Johnson et al. 2017; Smith et al. 2019).
Time averaging describes the accumulation

of individuals in an assemblage that lived at
different times (e.g., Fig. 1B). Unlike most eco-
logical studies, in which any given individual
is known to have lived alongside or interacted
with the other individuals in its habitat, indivi-
duals in a paleoecological studymay have lived
decades, centuries, or millennia apart. Time-
averaged assemblages tend to have greater
richness than the living communities from
which they formed because the extended tem-
poral sampling is more likely to capture rare
taxa than a survey (i.e., “snapshot”) of a living
community (Kidwell 2002, 2013; Olszewski
and Kidwell 2007; Bürkli and Wilson 2017)
and shifts in populations and habitats over
time lead towhat is essentially extended spatial
sampling (Adler et al. 2005; Tomašovỳch and
Kidwell 2009). As such, time averaging in a
paleoecological dataset may mask a subset of
zeros for species occurrences in a community
that would be observed in an ecological data-
set, if it were possible to concurrently evaluate
a dataset from both perspectives. By virtue of
the extended sampling, a time-averaged assem-
blage can be thought of as the average commu-
nity from the period overwhich the assemblage
accumulated. Yet, as the averaging smooths out
temporal variation in the data, muting short-
term trends and patterns (Kowalewski et al.
1998), it introduces additional uncertainty and
variability with respect to sampling effort. In
addition to the inherent uncertainty in esti-
mates of time averaging, variability among
samples and among species in the degree of
time averaging (e.g., Kosnik et al. 2009; Kowa-
lewski et al. 2018) unavoidably increases uncer-
tainty in the data, particularly if samples are

from more than one locality or time period.
Thus, analytically, there is, or at least should
be, a cost associated with time-averaged data.
To address this uncertainty, paleoecologists
typically assume accumulation of specimens
in an assemblage occurred at a constant rate
and the degree of time averaging is the same
across samples, though neither is likely to
hold (Holland 2016; Tomašovỳch et al. 2016;
Hopkins et al. 2018).
The effects of preservational bias and time

averaging also apply to counts of predation
traces, such as drill holes (for a review of
these effects see Klompmaker et al. [2019]). In
marine habitats, drill holes are often the result
of predation by snails (e.g., Fig. 1A), commonly
of the families Muricidae and Naticidae, on
other snails and clams. The presence of a drill
hole in a shell is taken as evidence that the
drilled individual died as a result of predation.
In studies of drilling predation, the frequencies
upon which prey types—used generically here
to refer to genera, species, morphospecies, size
groups, or any other grouping of individuals—
are drilled (i.e., consumed) are used to evaluate
hypotheses relating to both ecology (e.g., prey
selection; Kitchell et al. 1981; Dietl and Alexan-
der 1995; Leighton 2003; Chattopadhyay and
Dutta 2013; Smith et al. 2018a) and evolution
(e.g., coevolution and escalation; Vermeij
1987; Kelley 1989, 1991; Dietl and Alexander
2000; Kelley and Hansen 2003; Mallick et al.
2014; Harper 2016; Klompmaker et al. 2017).
The effects of time averaging on drill hole

counts are similar to those for specimen counts;
however, drill holes introduce an additional
element on which preservational bias can act.
Shells with drill holes may be more susceptible
to breakage compared with their undrilled
counterparts (e.g., Roy et al. 1994; Sarkar et al.
2020), though other studies have found a negli-
gible effect of drill holes on preservational
potential (e.g., Kelley 2008; Dyer et al. 2018).
The effects of drill holes on shell strength and
preservation remain a topic of debate and are
likely to vary by prey type, based on other
underlying characteristics of the shell (e.g.,
size, thickness) and depositional environment
(e.g., sedimentation rate, wave-energy expos-
ure). If there is an effect, which is very likely
for some prey types, it has the potential to
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contribute to zero inflation in predation count
data by removing drill holes from the dataset
(Table 1). Given the extent of variability in
this effect in terms of prey type and deposi-
tional setting, we focus on overdispersion intro-
duced by time averaging and the general
process of modeling zero inflation in paleoeco-
logical drilling predation studies.

Modeling of Species Abundances and
Predation Events

Ecological studies accounting for zero infla-
tion and overdispersion typically consider
their effects on a single source of count data
(e.g., individuals or predation traces). For
example, although Blasco-Moreno et al. (2019)
used per-plant counts of flowering heads avail-
able to herbivores as an explanatory parameter,
counts of flowering heads were not modeled in
the same fashion as counts of predation (i.e.,
herbivory) traces, reflecting the hypothesis
they were testing (i.e., zero counts for number
of flowering heads would have precluded
testing the enemy release hypothesis). The hier-
archical Bayesian model we present here
includes the potential to model the counts of
individuals of different prey types in samples
from an assemblage and counts of predation
traces on each prey type, while accounting for
overdispersion and zero inflation.

Modeling Species Abundances.—Count data in
studies of paleoecological predator–prey inter-
actions often take the form (xi, yi), where yi is
the number of specimens and xi is the number
of predation events in sample i of N total sam-
ples. In general, sample sizes (yi) are random,
and the canonical sampling process is a Poisson
process. Yet, in real datasets, counts (yi) rarely
obey a simple Poisson model (Hougaard et al.
1997). Instead, counts are often overdispersed,
potentially due to an excess number of zeros.
Similarly, counts of predation events (xi) can
be zero-inflated. To draw ecological inferences
from such samples, a fundamental question
must be addressed: Are these deviations from
the Poisson model a result of sampling issues
or actual ecological conditions?
We first address this question with respect to

sample counts and subsequently apply the
developed hierarchical Bayesian framework to

a case study. This approach does not obviate
traditional maximum likelihood methods
(Cameron and Trivedi 2013), which in some
applications can provide adequate models.
The Bayesian framework allows for more
flexible and faithful models, because it better
captures sources of variations and the hierarch-
ical (i.e., multilevel) nature of the phenomenon
(Gelman and Hill 2006; Kéry 2010; Korner-
Nievergelt et al. 2015; van de Schoot et al.
2021). This approach is particularly useful
when data deviate from the ideal Poisson sam-
pling model and violate the assumption that
samples represent the same underlying abun-
dance and sampling effort. We consider first
the scenario wherein the spatial distribution of
specimens is patchy or aggregated owing to a
depositional process (e.g., size sorting, winnow-
ing) or an underlying ecological phenomenon.
Sample counts would then likely exhibit over-
dispersion, because the variance of the counts
would exceed the mean of the count values.
From a Bayesian perspective, this additional
variance can be incorporated in a hierarchical
model in which the parameter of the Poisson
distribution is itself subject to randomness,

yi � Poisson(l)

l � Gamma(a, b)
(1)

When applying a gamma prior to estimate
the Poisson mean, λ, the hierarchical model is
equivalent to a negative binomial distribution.
There are many reasonable choices for the dis-
tribution of λ (e.g., Student’s t), which have
thick tails (Hougaard et al. 1997). However,
the gamma distribution is a very flexible distri-
bution capable of taking on many shapes and
serves as a versatile model for variation in λ.
In addition, the Bayesian approach does not
require closed-form formulas for the posterior
distribution (e.g., negative binomial). Priors
allow for greater probabilities of large out-
comes, potentially arising from preservational
bias and time averaging. This approach cap-
tures the reality that the underlying abun-
dances of each taxon have their own unique
distributions and that variation is explained
by the probability distribution of λ.
In addition to the underlying variation in the

distributions of individual taxon abundances,
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differences in sampling effort, including the
degree of time averaging, can also generate
variation. The actual sampling effort repre-
sented in a sample is difficult to assess (Ols-
zewski 2012; Holland 2016; Tomašovỳch et al.
2016). Among the many processes involved
are (1) the “influx” process, which accounts
for the biological generation of the specimens
themselves (i.e., the underlying abundance)
and can vary over time (e.g., Olszewski 2012);
(2) the processes by which specimens are
removed through decay, erosion, scavenging,
and other processes (e.g., Olszewski 2012;
Tomašovỳch et al. 2016); and (3) specimen accu-
mulation over time (i.e., time averaging), which
can be variable. For example, estimates of time
in assemblages from spatially proximal sedi-
ment cores can differ by thousands of years
(Kosnik et al. 2009). These effects are rarely, if
ever, quantified in paleoecological studies of
predator–prey interactions. Alternatively, vari-
ation imparted by these processes can be cap-
tured in the model by utilizing more flexible
distributions. For instance, if a spatial covariate,
like sampling area, were available, variation in
the mean could be modeled as,

yi � Poisson(li)

li � Gamma(ai, b)

ai = b ∗ areai

(2)

Going a step further, the time represented in a
sample (b) can be modeled to account for uncer-
tainty associated with differences in the degree
of time averaging among samples,

yi � Poisson(li)

li � Gamma(ai, b)

ai = b ∗ areai
b � Lognormal(logm, logs)

(3)

After accounting for this potential underlying
variability across samples, the next issue to
address is the excess of zeros in the dataset rela-
tive to the Poisson sampling process and to
determine their origin (Table 1). These zeros
can be addressed with a zero-inflated model,
allowing zeros from ecological and sampling
processes (e.g., Martin et al. 2005; Wenger and

Freeman 2008; Blasco-Moreno et al. 2019). Such
a model is fundamentally a mixture model that
allows for a zero to be structural (i.e., ecological),
with a certain probability (ωs), or a sampling
zero, with one minus that probability,

g(yi; l, vs) = vsI(yi = 0)+ (1− vs)f (yi; l) (4)

where I is an indicator function with a value of
one if the condition in the parentheses is true
and zero otherwise. The distribution, f, in the
second term could be the idealized Poisson dis-
tribution or another sampling distribution,
including any of the hierarchical types previ-
ously described (e.g., eq. 3). With this hierarch-
ical Bayesian approach, sources of uncertainty
inherent to paleoecological (and ecological)
count data can be better incorporated into eco-
logical inferences.

Modeling Predation Events.—As previously
described, predation data comprise two counts,
(xi, yi), i = 1,…,N, where yi is the number of spe-
cimens and xi is the number of predation events
in sample i. The number of specimens, yi, can be
estimated by Bayesian methods as described in
the preceding section. In an idealized setting,
counts of predation events (xi) can be estimated
as a binomial distribution, where xi are “suc-
cesses” in yi potential encounters between
predator and prey, with a probability of suc-
cess, p. Parameter p is the predation frequency
(e.g., drilling frequency: the number of drilled
individuals divided by the sum of drilled and
undrilled individuals). This idealized case
arises when predatory events are independent
of each other and can be written as,

xi � Binomial( p, yi)

yi � f (li)
(5)

where the sampling distribution, f, is the ideal-
istic Poisson distribution or, to better account
for variation and uncertainty, another count
distribution, such as the hierarchical distribu-
tions previously described in equation 3.
In this case, we assume predation probability
is constant in space and time, but that, too, is
unrealistic. For example, the predation prob-
ability may be a function of predator
abundance (e.g., Hansen and Kelley 1995;
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Chiba and Sato 2014; Stafford et al. 2015) or
biased by differential preservation probabilities
(e.g., Walker 1989; Klompmaker 2009; Smith
et al. 2019). At the risk of over-parameterizing,
we can conceptually elaborate this model to
include sample-to-sample variation, as we did
with sample counts (e.g., eq. 1), by introducing
a distribution on predation probabilities,

xi � Binomial( pi, yi)

yi � f (li)

pi � h(ui)

(6)

where h is an appropriate distribution such as
beta, which is a standard model for random
values between 0 and 1. Moreover, if each sam-
ple had a covariate, zi, which potentially influ-
ences predation counts (e.g., abundance of
predators, preservational bias, water depth), it
could be incorporated via logistic regression
(Wenger and Freeman 2008),

xi � Binomial( pi, yi)

yi � f (li)

logit(pi) = b0 + b1zi

(7)

Though data on preservational bias are not
assessed in our case study, such data could be
incorporated here as a covariate via logistic
regression.
It is possible that counts of predation events

(xi) are zero-inflated resulting from, for
instance, the absence of predators from a habi-
tat due to patchiness during the period over
which the sample accumulated, avoidance of
certain prey types by the predator, or preserva-
tional bias (Table 1). Thus, even when counts of
specimens (yi) are positive, it is possible that no
predation would have occurred (i.e., xi = 0). It is
also possible that a zero is a random sampling
artifact, resulting from a small sample size (yi)
relative to predation frequency, p (Table 1).
As with modeling sample counts, a mixture
model captures the probability of excess zeros,

h(x, y; p, vp) = vpI(x = 0)

+ (1− vp)Binomial(x; p, y) (8)

Allowing counts of predation events (i.e., drill
holes) to be zero-inflated enables more precise

estimates of the true predation frequency.
When estimating predation frequency, the intent
is to measure the frequency of attacks when the
prey type is “on the menu” and predators are
possibly present (i.e., there is a nonzero prob-
ability the predatory interaction did or could
have occurred). Including all zeros in counts of
predation traces from all samples can lead to
underestimates of predation frequency. Thus, a
zero-inflated model reduces potential down-
ward bias in predation frequency estimation
by using a mixture model to differentiate
between zeros generated by the phenomenon
of interest (i.e., predation) and those originating
from other factors (e.g., sampling).
One final component to consider probabilis-

tically is the scenario in which observed speci-
men and predation event counts are both zero
(i.e., xi = 0, yi = 0). This scenario can arise in sev-
eral ways, including when (1) a prey type count
is a false zero (e.g., specimens existed but were
not sampled due to preservational bias) and
predators were present (i.e., xi = 0 is a sampling
artifact); (2) a prey type count is a false zero and
predators were not present to drill specimens
(i.e., xi = 0 is structural, with an ecological
explanation); or (3) a prey type count is a true
zero (i.e., ecological) in the sense that speci-
mens were not available for sampling and the
predation event count is necessarily zero. For
the sake of simplicity, we treat these three pos-
sibilities together, with case 1, below. Two
alternatives can be applied to estimate preda-
tion frequency when specimens are present
(yi > 0), without predation (case 2) or with pre-
dation (case 3):

1. (xi = 0, yi = 0): ωsI(yi = 0) + (1− ωs)f (0; λ)
2. (xi = 0, yi . 0):

vpI(x = 0) +

(1− vp)Binomial(0; p, yi); yi � f (y; l)

3. (xi . 0, yi . 0):
Binomial(xi; p, yi); yi � f (y; l)

In these three cases, the distribution f could be
the Poisson distribution or any other sampling
distribution (eq. 4). As demonstrated above, the
model comprising these three cases can become
a hierarchical model by allowing parameters λ
and p to have indices that vary by sample
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according to their own distributions (eqs. 1 and
6). Allowing sample-to-sample variation, as
facilitated by the hierarchical Bayesian frame-
work, can better account for the uncertainty
inherent to ecological and paleoecological data-
sets and can improve the inferences drawn from
them.

Model Evaluation.—These hierarchical mod-
els can all be fit within the Bayesian paradigm
using a probabilistic programming language
(e.g., Stan; Stan Development Team 2019). As
noted elsewhere, hierarchical Bayesian models,
especially as implemented through probabilis-
tic programming languages such as BUGS or
Stan, provideflexibility to free themodelerwith-
out regard to estimation details (Kéry 2010;
Korner-Nievergelt et al. 2015). In the approach
facilitatedbysamplingmethods forposteriordis-
tribution estimates, we have the ability to pro-
duce true probability statements about the
values of parameters, given the data and the
model.
One limitation of the sampling approach is

the uncertain nature of model ranking.
Although many researchers rely on the Akaike
information criterion (AIC) to rank scientific-
ally plausible and well-fitting models, the cur-
rent situation in sampling-based Bayesian
estimation is that it is often difficult to select
the best model from a set of candidates owing
to approximations and estimation error,
especially for complicated hierarchical models
(see Gelman and Hill 2006). Model-ranking
methods like AIC break down for hierarchical
models, because counting the number of para-
meters is not straightforward. Consequently,
similar methods (e.g., the deviance information
criterion) have been developed for the Bayesian
framework to be used in place of AIC; however,
because of their inherent approximations, they
have difficulty evaluating competing models
(Gelman and Hill 2006). It is thus generally
advised to perform predictive model checking
(Gelman and Hill 2006; Korner-Nievergelt
et al. 2015) to assess model fit and to rely heav-
ily on scientific insight and interpretability for
model ranking (Vehtari et al. 2017). Posterior
predictive checking simulates the fidelity of
themodel and its fit to the data by drawing ran-
dom model parameters from their posterior
distributions and then simulating data from

that random model. If the model fits well, the
actual data and simulated data should generate
similar histograms and summary statistics. This
method is sometimes used as a companion to
other model diagnostics (e.g., information the-
oretic criterion), which may not be informative
when sample sizes are too small for the symp-
totic formulas to hold (Korner-Nievergelt
2015). We follow this approach to model check-
ing (see Supplementary Material).

A Paleoecological Case Study

To illustrate the potential effects of overdis-
persion and zero inflation in paleoecological
studies, we analyzed data from Martinelli
et al. (2015) using the framework developed
in the preceding section. We did not reevaluate
the hypotheses presented in Martinelli et al.
(2015). Instead, we used their data to highlight
sources of variation that may confound many,
if not all, paleoecological studies using count
data and to illustrate a statistical framework
to address these sources of variation. All ana-
lyses used the Bayesian programming lan-
guage Stan (Stan Development Team 2019)
called from within the R statistical program-
ming environment using the package rstan
(Stan Development Team 2018). All code and
data are available in the Supplementary
Material.
The data fromMartinelli et al. (2015) are from

replicate samples of the molluscan living and
death assemblages in three lagoons at One
Tree Reef, in the southern Great Barrier Reef.
Fifteen sampling sites were included, with
seven from the first lagoon and four from
each of the others. Four replicates were col-
lected at each site from a 0.25m × 0.25m area
on the seafloor, to a sediment depth of 10 cm.
Sampling was repeated four times throughout
the year, resulting in 16 samples from each
site. We only assessed the death assemblage
samples here—one sample from each site was
processed in most cases, because death assem-
blages often contain more individuals than
the living assemblage. When death assem-
blages contained relatively few individuals,
additional samples were included, resulting in
different sampling efforts for some sites (see
Supplementary Table 1). All processed samples
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were sievedon a 4-mmmesh, and all individuals
were identified to the species level. Occurrences
of predatory drill holes were also recorded, and
predation frequencies were calculated.
As is the case for most paleoecological studies,

including our ownwork,Martinelli et al.’s (2015)
original study did not assess the degree towhich
the death assemblages were time-averaged,
which was a source of variation of interest in
our analysis. To remedy this lack of temporal
context for our illustrative case study,we applied
time-averaging data from Kosnik et al. (2009),
which were collected from molluscan death
assemblages at Rib Reef on the Great Barrier
Reef. The data from Kosnik et al. (2009) are
from two 125-cm-deep cores of the seafloor sedi-
ments. In the top 25 cm of the cores, shells were
typically younger (i.e., from the last several
years or decades) than those from the deeper
part of the core, and from 25 to 125 cm, shell
ages were well mixed throughout. Time aver-
aging was on the scale of thousands of years,
but varied considerably between cores (e.g.,
ages for Abranda casta ranged from 2 to 1019
years in core 1 compared with 4 to 4670 years
in core 2; see Supplementary Fig. 1).
We acknowledge these two datasets are from

disparate locations on the Great Barrier Reef
and may not truly hold any bearing on each
other. Ideally, time-averaging data should be
collected from the same samples being ana-
lyzed to evaluate (paleo)ecological hypotheses;
however, there is a paucity of such studies.
Thus, because our objective was to develop an
analytical framework with the capacity to
incorporate data on time averaging and illus-
trate the potential biasing effects of overdisper-
sion and zero inflation, we proceeded with this
combined dataset for illustrative purposes.

Overdispersion Analysis.—In the data from
Martinelli et al. (2015), specimen counts varied
greatly for many species (e.g., 19–925, Pinguitel-
lina robusta; see Supplementary Table 1). This
variance resulted in overdispersion, as noted
by the authors: “the ratio of model residual
deviances to residual degrees of freedom tended
to be greater than one, indicating overdispersion”
(p. 820). The counts for P. robusta are represen-
tative of those common in death assemblage
samples and were used here to illustrate the
presence of overdispersion and incorporation

of greater uncertainty into a paleoecological
model.
Sample-to-sample differences in counts likely

arose from ecological processes (e.g., patchiness,
aggregation) due to underlying environmental
conditions (e.g., water depth, temperature) or
variation in sampling effort. We fit four models
to these count data and evaluated goodness of
fit using a posterior predictive check (Table 3).
Without information on environmental condi-
tions (i.e., a covariate), any differences are
effectively random. To account for this ran-
domness, we allowed the mean count to vary
more than permitted in a simple Poisson distri-
bution by including a gamma prior (i.e., eq. 1):

yi � Poisson(l)

l � Gamma(a, b)

Alternatively, differences in sampling effort
owing to sampling area and time averaging
can be incorporated. First adding sampling
area, we fit a model in which the area is pre-
sumed to be the main driver of specimen
counts, while also allowing for extra variation
from a gamma distribution:

yi � Poisson(li)

li � Gamma(ai, b)

ai = b ∗ areai

(9)

Because the mean of the Gamma(αi, β) distribu-
tion is αi/β, estimates of αi and β will track
expected counts through λi.
To this point, the analysis could apply equally

to ecological or paleoecological data. As the
Martinelli et al. (2015) data are paleoecological,
it is also reasonable to assume some degree of
time averaging is contributing to the variation
in the counts, which, in the absence of data
from Martinelli et al.’s samples, we drew from
Kosnik et al. (2009). As discussed above, the
accumulation of a death assemblage is compli-
cated and includes random influx of indivi-
duals, a suite of temporally variable processes
that remove individuals, and right-censorship
of the data (Tomašových et al. 2016). Without
auxiliary data on accumulation, we could not
infer from first principles how specimens actu-
ally accumulated in the sample. Consequently,
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we applied the assumption that time averaging
is positively correlated to specimen counts
(Tomašovỳch and Kidwell 2010). By extension,
we necessarily also assumed that rates of speci-
men accumulation exceeded rates of specimen
removal and that both rates were relatively
constant over the period of time averaging
(Table 2). Reflecting the uncertainty associated
with these assumptions, we used a general,
flexible model to capture variation in sampling
effort.
To incorporate the uncertainty introduced by

time averaging into the model, we fit a log-
normal distribution to the time-averaging
data for A. casta—formerly known as Tellina
casta; a confamilial of P. robusta—from two
cores sampled by Kosnik et al. (2009; see
Supplement 1). We used the parameters of
this fitted lognormal, m̂ = 6.64, ŝ = 1.99, as a
prior to simulate average accumulation
time-interval lengths in the model,

yi � Poisson(l)

l � Gamma(ai, b)

ai = b ∗ areai ∗ time

time � Lognormal(6.64, 1.99)

(10)

As with the previous model, the mean of the
Gamma(αi, β) distribution is αi/β, such that
estimates of αi and β track the expected counts
through λi. In essence, the model implies sam-
pling area and accumulation time drive the
count process, with extra variation captured

by allowing each sample its own gamma distri-
bution. Because there are no environmental
covariates in the model, this last model
assumes original abundances were constant
across sampling areas.
We used posterior predictive model checking

to evaluate the models (Table 3). The variation
in sample sizes was not adequately explained
by the Poisson or Poisson gamma models. The
model using sampling area as a covariate fared
better, because area increased with sample size,
but still not enough to capture the larger sample
sizes. The model with a lognormal prior did not
offer much improvement over the area covariate
model owing to the significant amount of count
data that overwhelmed the prior.
In the absence of covariates that more com-

pletely capture sampling effort, of which time
averaging is a critical component, it is difficult
to fully model the sampling process and expose
the underlying abundance. The plausible log-
normal fit to the age data from Kosnik et al.
(2009) suggests time averaging could be an
important driver of sample-size variation.
That is, time-averaging data collected from
the same specimens analyzed for predator–
prey interactions may better explain the vari-
ance and improve the model fit. Likewise, add-
ing data on alternative explanatory variables
(e.g., environmental factors, preservational
bias) as covariates (e.g., eq. 7) would reduce
the reliance on assumptions (e.g., Table 2) and
likely improve model fits. Data issues notwith-
standing, the framework developed here

TABLE 3. Parameter estimates for the posterior predictive check assessing goodness of fit for models of counts for
Pinguitellina robusta. Estimates for each parameter of the various models are given as the posterior mean, with associated
standard deviation (SD) and 95% credibility regions (2.5%–97.5%).

Model Parameter Posterior mean SD 2.5% 97.5%

Poisson Lambda 274.73 4.24 266.49 283.28
Poisson-gamma Lambda 274.81 4.32 266.48 283.56

Alpha 6.64 2.44 1.39 9.92
Beta 0.03 0.01 0.01 0.06

Poisson-gamma-area Lambda 273.54 4.37 264.68 282.19
B1 3.23 1.00 1.57 5.50

Beta 0.01 0.01 0.01 0.02
Poisson-gamma-area-time (lognormal) Lambda 272.69 3.79 265.16 280.57

B1 4.13 10.03 0.32 35.80
Time 3.18 2.81 0.10 11.98
Beta 0.02 0.01 0.01 0.02

Poisson-lognormal Lambda 274.85 4.24 266.32 282.93
Log_mu 3.99 2.34 0.16 7.88

Log_sigma 3.11 6.01 0.32 13.60
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allows for the incorporation of accumulation
processes into estimates of specimen counts,
representing a step forward in paleoecological
analytical methods.

Zero-inflated Predation Frequencies.—In paleo-
ecological studies, drilling predation frequen-
cies are typically calculated by pooling the
number of drilled and undrilled individuals
across samples and dividing the total number
of drilled individuals by the total number of
individuals. Intuitively, when the pooled num-
ber of individuals is high the estimate of preda-
tion frequency can be interpreted more
confidently and when the pooled number of
individuals is low (e.g., n < 30) there is greater
uncertainty in the estimate. The uncertainty is
increased when the number of individuals in
each unique sample is low. It is this latter case
we evaluated here, using the snail Notocochlis
gualtieriana from the Martinelli et al. (2015)
study as an example (see Fig. 2 for analysis of
species with at least 15 total individuals; see
also Supplementary Fig. 2).
In 5 of the 15 sampled sites, no N. gualtieriana

specimens were reported. Specimen counts ran-
ged from 1 to 12 in the 10 sample sites where
N. gualtieriana was found. In total, only one N.
gualtieriana specimen was drilled, indicating
that the predatory interaction was ecologically
plausible (see Supplementary Table 2). Pooled
together, N. gualtieriana was represented by 43
individuals and, following the traditional calcu-
lation, was drilled with a frequency of 0.02. This
traditional approach does not address the abun-
dance of zeros in the drilling data; in 9 of 10 sam-
ples, no N. gualtieriana specimens were drilled.
Thus, we fit a zero-inflated mixture model to
the data. As the dataset is small and apt to sup-
port a variety ofmodels, wefit a single, ecologic-
ally plausible model and evaluated it with
posterior predictive checking: (i.e., eq. 8)

h(x, y; p, vp) = vpI(x = 0)

+ (1− vp)Binomial(x; p, y)

In this case, the model fit was good, as the pos-
terior predictive check indicated the actual and
simulated data had similar histograms and sum-
mary statistics (Table 4). With the zero-inflated
model, the predation frequency ( p) was

estimated to be 0.24, indicating considerable
underestimation with the traditional
approach. The difference is largely the result
of allowing for the second zero-generation
process in the model. Indeed, a majority of
the zeros in the dataset for N. gualtierianna
were determined to be true, structural zeros
(i.e., the absence of predation had a probable
ecological explanation).
Considering all species in the death assem-

blage with at least 15 individuals (Fig. 2), we
found that predation frequencies for several
other species (e.g.,Atys hyalina, Tellina gargadia)
were also underestimated due to zero inflation.
In general, species can be put into three groups:
high abundances and few ecological zeros (left
side of figure); moderate pooled abundances
but low abundances in each sample and
many ecological zeros (right side of figure);
and species with low pooled abundances pre-
cluding meaningful inference (not shown in
Fig. 2; see Supplementary Fig. 2). The differ-
ences between estimates of predation frequen-
cies calculated with the traditional approach
and with a zero-inflated model are most pro-
nounced in the middle group. Ecologically,
this is plausible when considering the distribu-
tion and abundance structure of species in com-
munities. Often, a subset of species in the
community will be highly abundant and these
species will be heavily preyed upon, numeric-
ally, as a function of their abundance. Even
so, those abundant species may rank low in a
predator’s preference hierarchy, and less
common taxamay exhibit greater predation fre-
quencies per capita in places and times when
the predator and prey overlap (Kitchell et al.
1981; Hansen and Kelley 1995; Martinelli et al.
2015; Smith et al. 2018b). Predation of this
second variety is better represented with a
zero-inflated model than with the traditional
approach applied in paleoecology.

Discussion

On the surface, paleoecological and eco-
logical count data appear to be nearly identical.
Many, if not all, metrics applied to ecological
count data can also be applied to paleoeco-
logical count data, and both types of data are
susceptible to zero inflation and
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overdispersion. Yet, because of preservational
bias and time averaging, paleoecological
count data are inherently more variable and
carry a greater degree of uncertainty than eco-
logical count data (Fig. 1B). In paleoecological
studies, these effects are often addressed by
making assumptions (Table 2) or assessed as
alternative explanations for observed biological
patterns. That is, they are either ignored a priori
or discounted after the fact—including in
our own previous work. The hierarchical
Bayesian framework developed here allows
for the effects of time averaging and preserva-
tional bias to be included while examining

potential biological processes and patterns.
In essence, the analysis treats variation intro-
duced by preservational bias and time aver-
aging as if it was overlain on the variation
inherent to the ecological processes, which is
more realistic.
Analytically, incorporation of these sources

of variation is important when choosing the
model to represent the data. Each model carries
assumptions about how the data, and thereby
community or assemblage, are structured. As
demonstrated in the case study here and in pre-
vious studies (Martin et al. 2005; Wenger and
Freeman 2008; Blasco-Moreno et al. 2019),
whether the underlying assumptions of the
models are valid (e.g., variance equal to the
mean in a Poisson distribution) can influence
the model that best fits the data. Despite the
similarities in ecological and paleoecological
count data, it is oftenmore challenging to valid-
ate these assumptions in paleoecology because
of the long-acting processes at play. Conse-
quently, there is more uncertainty in paleoeco-
logical inferences. By accounting for
uncertainty from time averaging within a hier-
archical Bayesian framework, our case study
suggests that those inferences can be improved.

FIGURE 2. The effect of zero inflation on estimates of predation frequency. Species are sorted by sample size in decreasing
order from left to right, with specimen counts given above the black bars for confidence regions—species with fewer than
15 individuals were excluded (see Supplementary Fig. S2). Black circles represent predation frequencies accounting for zero
inflation ( p), with 95% confidence regions (black bars). Red diamonds represent predation frequencies for each species esti-
mated with the traditional calculation (number of drilled individuals divided by the total number individuals in each sam-
ple). Data from Martinelli et al. (2015). Asterisks on the x-axis with bolded taxon names indicate the two species,
Pinguitellina robusta (far left) and Notocochlis gualtieriana (central), discussed in the main text.

TABLE 4. Parameter estimates for the posterior predictive
check assessing goodness of fit for the model of predation
counts onNotocochlis gualtieriana. Predation frequency ( p) is
estimated using the hierarchical Bayesian model. For
comparison, the predation frequency estimate using the
traditional method (number of drilled individuals divided
by the total number of individuals) is 0.02. SD, standard
deviation.

Parameter Posterior mean SD 2.5% 97.5%

Omega_predation 0.82 0.11 0.56 0.98
Omega_sampling 0.35 0.11 0.14 0.57
Lambda 4.48 0.65 3.29 5.86
p 0.24 0.13 0.04 0.56
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To address this uncertainty with respect to
zero inflation and overdispersion, estimation of
the potentially confounding sources of variation
(i.e., time averaging, preservational bias) is a
necessity. Though it was hitherto rare for such
data to be collected and integrated into a single
paleoecological study, the risk of misinterpret-
ing data and drawing erroneous conclusions
makes the incorporation of such data para-
mount. Whereas the effect of preservational
biaswill tend to be unidimensional (i.e., removal
of specimens resulting in zero inflation), the
effects of time averaging are more complicated.
As treated here, time averaging can be

thought of as a temporal sampling window.
Whether an assemblage accumulated over a
decade, century, or longer, the end result is a
set of individuals that have been “sampled”
from the entire period of time (Fig. 1B). In a
dataset composed of such samples, time aver-
aging has two potential effects: (1) reduced
zero inflation because of extended temporal
sampling capturing rare events and occurrences
and (2) increased uncertainty because of
sample-to-sample variability in the extent of
time averaging. The first effect, capture of rare
occurrences, is often viewed as a positive attri-
bute, as it allows for amore complete accounting
of the average state of the community. Typically,
the “rare occurrence” being captured is that of a
rare species in a community (e.g., Prey 4 in
Fig. 1B), which results in greater richness of
death assemblages (Kidwell 2002, 2013; Ols-
zewski and Kidwell 2007; Bürkli and Wilson
2017). This effect likely can also be extended to
rare predation events. For example, if a prey
type is ranked low in a predator’s preference
hierarchy, predation on this prey type may
only occur with very low frequencies (e.g.,
<1%). Yet, because time averaging captures rare
occurrences, it would be more likely to find a
rare instance of predation in a death assemblage
than in a survey of a corresponding living
community. Thus, this first effect likely reduces
zero inflation, and thereby overdispersion, with
respect to the occurrence of species in an assem-
blage and the incidence of rare predation events.
The second effect, increased sample-to-

sample variability in extent of time averaging,
increases the uncertainty in inferences drawn
from the count data. Though it is often

assumed, individuals likely do not accumulate
in an assemblage at a constant rate, especially
individuals of different species (Kosnik et al.
2009; Olszewski 2012; Holland 2016; Tomašo-
vỳch et al. 2016; Kowalewski et al. 2018).
Many factors (e.g., bioerosion intensity, sedi-
mentation rate, water chemistry, taxonomy)
affect the inclusion of specimens in an assem-
blage, and they vary through space and time.
Ecological communities also vary through
space and time, with various correlations to
the factors affecting preservation. Conse-
quently, the living community from one year
may contribute more individuals to a death
assemblage than the living community from
the next year or the living community 10
years later. Though paleoecologists do regu-
larly standardize one aspect of sampling effort
by taking volumetrically controlled samples
(i.e., bulk samples) from a locality, the true
sampling effort represented by a paleoeco-
logical sample is uncertain, because the assem-
blage itself accumulated variably. For example,
in the two cores used here to estimate time aver-
aging, there was a fourfold difference in the
range of ages of individuals—core 1 ranged
from 2 to 1019 years and core 2 ranged from 4
to 4670 years—despite samples being taken
from the same general area (Kosnik et al.
2009). If one is only comparing samples from
the same assemblage, there is a greater likeli-
hood that the temporal sampling effort will be
similar; however, when comparing assem-
blages from different times and places, time
averaging may vary substantially (Kowalewski
et al. 1998; Kosnik et al. 2009; Ritter et al. 2017).
Incorporation of time averaging into analyses
of count data can improve model fits by
accounting for this additional variability.

The Issue of Preservational Bias.—The assump-
tions used commonly by paleoecologists to
account for the effects of preservational bias
are not unlike assumptions applied in ecological
studies. For example, in surveys of ecological
communities, it is common to assume that all
individuals have equal and independent detec-
tion probabilities (Martin et al. 2005; Wenger
and Freeman 2008). Intuitively, we know that
this is unlikely to hold because of variations in
size, morphology, behaviors, and life histories,
among others. The paleoecological assumption
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that all individuals are equally likely to be pre-
served in an assemblage, and thus equally likely
to be found in a paleoecological sample, is based
on the same general sampling principles. Both
assumptions rest on the shared premise that
the sample taken is representative of the poten-
tial individuals that were available (i.e., living
in the community) for sampling. Convenient
as it is to make this assumption in paleoeco-
logical studies, several studies on drilling preda-
tion have cast doubt on its validity, at least when
drill holes are involved (e.g., Roy et al. 1994;
Klompmaker 2009; Smith et al. 2019; Sarkar
et al. 2020).
Unlike the extent of time averaging, which

can be estimated using temporal information
(e.g., carbon isotopes) extracted from speci-
mens and sediments, preservational bias
describes the preclusion or removal of informa-
tion (i.e., individuals) from a sample. It is an
estimate of what has been lost and, because it
is derived from assumptions and generalized
patterns based on characteristics of preserved
specimens, cannot be known with absolute
certainty. Furthermore, each prey type in a
sample may be affected differently by preser-
vational processes based on size, habitat, and
other factors. For example, Kosnik et al.
(2009) examined the age distributions of four
taxa in a death assemblage and, within the
same core, found shell half-lives (i.e., the
time it takes for half of the shells of a species
to be removed from the death assemblage) of
574 (Abranda), 630 (Natica), 925 (Ethalia), and
1229 (Turbo) years. In a core taken nearby,
the half-life was 171 years for Abranda and
552 years for Turbo. This variability in cores
taken from the same area suggests a need to
account for preservational bias, for which Kos-
nik et al. (2009) suggested a composite shell
durability score from shell density, thickness,
and shape, to predict shell half-life. The uncer-
tainty introduced by time averaging likely
compounds the uncertainty from preserva-
tional bias, because the processes contributing
to preservational bias are also variable in space
and time.
Preservational bias is onerous to estimate

and likely contributes to zero inflation and
overdispersion in paleoecological count data.
The general assumptions, used in many

studies, that individuals accumulate at a con-
stant rate and accumulation exceeds removal
(Table 2) may not hold (Olszewski 2012; Hol-
land 2016; Tomašových et al. 2016). When esti-
mates on preservational processes are
available, they can be readily incorporated
into the framework developed here (eq. 7).
This hierarchical mixture model approach is
well suited to incorporate the uncertainty
inherent to paleoecological data by identifying
and beginning to account for zeros introduced
by ecology and preservation.

Conclusions and Future Work

Overdispersion and zero inflation are com-
mon in paleoecological count data and, just as
is the case with ecological count data (MacKen-
zie et al. 2002;Martin et al. 2005; Blasco-Moreno
et al. 2019), can lead to misinterpretation of
data and erroneous conclusions. We illustrate
this potentiality using data on drilling preda-
tion (Martinelli et al. 2015) and time averaging
(Kosnik et al. 2009) from molluscan death
assemblages as a hypothetical case study. The
hierarchical Bayesian framework we present
here to analyze these data builds on the founda-
tion of overdispersion and zero-inflation ana-
lyses in the ecological literature by allowing
for two sources of related count data (i.e.,
counts of species abundance and predation
traces) to be modeled together, rather than
from a single source (i.e., counts of species
abundance or predation traces) of count data.
To the best of our knowledge, this study is the
first attempt to incorporate the effects of over-
dispersion and zero inflation into inferences
about predation drawn from paleoecological
count data—related methods have been used
in occupancy (e.g., Liow 2013) and fossilized
birth–death (Barido-Sottani et al. 2019; War-
nock et al. 2020) models in paleontology.
Though this represents a step forward, it is
only a single step among many to be taken to
produce more confident ecological interpreta-
tions of species’ interactions in the paleonto-
logical record. Indeed, because of the longer
timescales involved, these issues may be more
pervasive in fossil assemblages than in the rela-
tively young death assemblages considered
here.
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Further work is needed to better account for
and understand the complex relationships
between overdispersion and zero inflation, and
preservational bias and time averaging. Most
pressingly, there is a need for paleoecological
studies that incorporate estimates of time aver-
aging and preservational bias in the process of
drawing inferences, rather than ignoring or dis-
missing them in advance or checking for their
influence after the fact. Without doing so, the
long-standing assumptions applied in paleo-
ecology (Table 2), and used here, will continue
to limit the inferences drawn from paleoeco-
logical data. Collecting data on each of these ele-
ments in a single study represents a considerable
challenge and deviation from standard practice
in the discipline, where these elements are
often considered in isolation. With a better
accounting of these effects, and thereby uncer-
tainty in paleoecological data, the barriers to
integration of data across timescales can more
readily be overcome. That is, ecological data
and paleoecological data will be more readily
comparable, enablingmore seamless hypothesis
testing across timescales.
It is also important to note that the frame-

work developed here is not one-size-fits-all
but can be modified to accommodate different
hypotheses. Whereas it would be appropriate
to apply the entire framework to evaluate
zero inflation in a study examining predator
preference, when only ecologically plausible
interactions have bearing on the hypothesis
(e.g., prey type 1 is preferred over prey type
2), it may not be appropriate in a study evaluat-
ingmortality risk. Becausemortality risk is con-
sidered from the perspective of the prey
population, a zero for drilling predation should
not be excluded, for example, when testing a
hypothesis on the relative importance of mul-
tiple selective agents (e.g., durophagous preda-
tion, drilling predation, abiotic stress). Still,
even in the latter case, accounting for uncertainty
from time averaging and zero inflation from pre-
servational bias remains relevant, and the mod-
els can be adjusted accordingly. As has been
stated elsewhere (e.g., Blasco-Moreno et al.
2019), the treatment of zeros in a dataset should
be determined by the hypothesis being tested.
Though our case study focused on the effects

of overdispersion and zero inflation in

paleoecological studies of drilling predation,
the modeling framework we developed can
be applied to a variety of ecological and paleo-
ecological contexts. Indeed, paleoecological
studies examining other predation traces (e.g.,
repair scars from failed attacks by crabs on
clams and snails) or morphological features
(e.g., spines, ribs) would likely also benefit
from analysis with a hierarchical Bayesian
framework that accounts for overdispersion
and zero inflation in multiple types of count
data. The same is true of ecological studies
that make use of more than one type of count
data. For example, these methods could be
applied to studies of disease prevalence in
communities with respect to abundance in the
community, the frequency of herbivory on
different species in a community with respect
to abundance, or any similar set of data with
multiple count variables. Ecological and paleo-
ecological inference stand to benefit by more
completely addressing the potential for misin-
terpretation of data caused by overdispersion
and zero inflation.
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