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Abstract. The 'backward continued fraction' map studied by A. Reyni is defined by
y = g(x) where g(x) equals the fractional part of 1/(1 —x) for 0 < x < 1. We show
that it is a factor map of a special cross-section map for the geodesic flow on the
unit tangent bundle of the modular surface. This gives an alternative derivation of
the fact that this map preserves the infinite measure dx/x on the unit interval.

1. Introduction
In recent years much work has been done on the iterates of maps of the unit interval
into itself. (An extensive reference list is given in [4].) The subject centres mainly
on two problems: (i) the ergodic properties of the map; (ii) the existence of an
invariant measure (which we assume to be equivalent to Lebesgue measure). Con-
cerning (ii), most results are merely of an existential nature. I.e. one proves that
under certain conditions there is a unique invariant measure and one investigates
its smoothness properties. Only in rare cases is a formula produced. One of these
rare cases is given by the continued fraction transformation

0 < x < l .

The reason for the name stems from the fact that / (a , a2 • • • an • • -) = a2a3 • • • an • • •,
where axa2 • • • an • • • is the continued fraction expansion of x. For this map, Gauss
has shown that dx/1 -I- x is the invariant measure. Using this and the ergodic
properties of f(x), it is possible to conclude from the ergodic theorem some
interesting facts concerning the frequency of digits appearing in the continued
fraction expansion of real numbers [3].

Another case where an explicit formula is obtainable, probably not as well known
as the previous one, is the map

The graph of g(x) is obtained from that of f(x) by flipping the latter about the
vertical line x = \, (figure 1). For this reason, we call y = g(x) the backward continued
fraction transformation. Here the invariant measure is dx/x. This formula, apparently
attributed to Renyi [5], is derived as follows. For 0< t < 1,
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Hence
f dx » f'-<r i+1) 'dx , « n n + t
i —= s I —=log n
Jg-'(l,l) X "=1 Jl-fn+I)"1 X » = l « + l » + ( -

Observe that Ĵ  dx/( 1 + x) < oo, Ĵ  dx/x = oo, so that the two transformations y =/(x),
y = g(x) are not conjugate to each other by a non-singular measurable change of
variables.

yf(x)

0
V
f

= g(x)

FIGURE 1

In [1] we found a relation between the ergodic properties of maps of the unit
interval and the ergodic properties of geodesic flows on two dimensional surfaces
of constant negative curvature. In particular, we studied the modular surface and
showed, by simple geometric arguments, that the continued fraction map f(x) is a
factor of a certain cross section map associated with the geodesic flow on this
surface. From this fact it is possible to derive anew the invariant measure for f(x)
from the invariant hyperbolic measure associated with the geodesic flow.

In the present note we show that the same can be done for the backward continued
fraction map. To make the paper self contained, we describe in § 2 the modular
surface and its geodesic flow. In § 3, we describe the cross section and the related
cross section map. Finally, in § 4 we show how the backward continued fraction
map y = g(x) arises as a factor of the cross section map and derive from this the
invariant measure of g(x).

2. Geodesic flow
We describe the geodesic flow on the modular surface. It proves convenient to first
describe the corresponding flow on the hyperbolic plane.

Let H = {x+iy: y>0} be the hyperbolic plane. The metric on H is given by
ds2 = (dx2 + dy2)/y2 and the geodesies for it are the half circles and straight lines
orthogonal to the x-axis. Let U be the unit tangent bundle consisting of unit tangent
vectors on H. U is coordinatized by u = u(x, y, 6), where (x, y) is the base point of
ueV and 6 is the angle measured counterclockwise between the positive x-axis
and M. The geodesic flow G,, -oo < t < oo, is the class of homeomorphisms of U
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defined by w -> u,, where u and u, are the initial and terminal unit tangent vectors
of a geodesic segment of length t. G, has a simple description if we use the following
coordinates. To each u e U assign £ 17, s where £ 77 are the points on the x-axis of
the geodesic y determined by u, ij being the point in the forward direction, and s
is the hyperbolic distance on y measured from some conveniently chosen origin.
In these coordinates we have

G,:($, v, •*)->(£*?, s + t). (2.1)
The hyperbolic measure is given by

1 ds
dm = (2.2)

From (2.1), (2.2) we see that dm is invariant under Gt.
The above concepts carry over to the modular surface. Let F be the modular group

f az + b 1
r = \ r(z)= -: ad-bc=l; a,b,c,deZ\.

I cz + d J

F acts both on H and U, the action on the latter being denoted by

f(z, d) = (T(Z), 6 +arg T'{Z))

where we have written (z, 6) = (x + iy, 6) for (x, y, 6). We refer to F as F when acting
on U. Let M, M be respectively the spaces of F- and F-orbits on H, U. To obtain
concrete realizations of M, M we introduce

F is a fundamental domain for F, which means that:
(i) TlFnT2F = 0 for any two distinct elements T,, T 2 € F ; and
(ii) H = Urer TF, F being the closure of F.

Thus H is tesseiated with the images of F under F (see figure 2).

aF

- 1 0
FIGURE 2

https://doi.org/10.1017/S0143385700002583 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700002583


490 R. L. Adler and L. Flatto

The transformations a{z) = z +1, /3(z) = —1/z generate F. Opposite vertical boun-
dary lines of F are identified under a, and the left half of the bottom boundary
with the right half under /3. Consequently M can be thought of as F under these
identifications. Similarly, unit vectors with base point in the boundary of F can also
be identified under a and 0, and so M can be thought of as unit vectors emanating
from points of F under these identifications.

To coordinatize M and M, we introduce the projection maps

TT{Z) = YZ, zeH;

TT(U) = TU, ueU;

where Fz, f w denote the F- and F-orbits of z and u. IT and TT map respectively H
onto M and U onto M. With the exception of the F-orbits of the points i, j + (\/3/2)i
and the F-orbits of the unit vectors based at i, 5 + (V3/2)i, tr and if are locally 1-1,
and so x, y or £ rj provide local coordinates at points of M \ { 7 T ( J ) , TT(\ + (%/3/2)/)},
and x, y, 6 or £ 17, s provide local coordinates at points of
M\{if(0, 1, 6), TT(^,J1/2, 6), 0< 0<2TT}. If we avoid the exceptional points then
the formulae for ds, dm carry over to M and J<. Because G, commutes with T on
U, M inherits the geodesic flow G, = 7rG,TT~'. Because m is invariant under the
elements of F, G, has the invariant measure m which is defined as the m measure
of any local inverse of if.

3. Cross section map
A cross section on M is a subset of M which every G,- orbit meets infinitely often,
both past and future. The correspondence between successive return points serves
to define the cross section map. The cross section C which we choose consists of
the 77-projections of those well with base point in Y+, the positive y-axis, and
pointing to the right (see figure 3). We observe that the chosen elements are all
distinct. For if u has base point in Y+ n /3F and points to the right, then /3M has
base point in Y+ n F and points to the left. As given, C does not quite meet the
requirements of a cross section, as there are G,-orbits which do not visit it infinitely
both past and future - these are the Tr-projections of G,-orbits starting or terminating
at cusp points. Analytically, these G,-orbits are described by TT-(£ 17, 5), -00 < s <oo,
with either £ or 77 rational or 00. To get rid of this difficulty, we remove these points,
which comprise a set of measure zero, from M. Thus we tacitly assume from now
on that all £ 17 in consideration are irrational.

We assign to each u = TT(U) 6 C its £ 17 coordinates. In this coordinate description

To describe the cross section map Tc, we decompose C as Ct<j C2 where

C,={(£ i7) :0<f<l , i j<0} , C2 = {(£ij) :f>l ,7j<0}.

To obtain an expression for Tc consider the hyperbolic triangle A with vertices
0, 1,00 depicted in figure 3. The three sides of A are equivalent under F, the sides
01, loo being carried respectively into Ocb by the transformations w = z/\—z, w =
z-\. Furthermore, F-orbits of interior points of A are distinct from those of boundary
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FIGURE 3

points. Let u be as above and let y be the geodesic determined by M. If 7f(u)e C2,
then y leaves A through the right vertical wall. Let the unit tangent at the point of
departure be (£ 77, 5). -y is identified under w = z - 1 with a geodesic entering A at
the left vertical wall, the unit tangent at the point of entrance being (f - 1, TJ - 1 , s).
Hence in this case

If 7T(M)G C,, then y leaves A through the base 01 with unit tangent (£ 17, s). y is
identified under w = z/1 - z with a geodesic entering A at the left vertical wall with
unit tangent (£/1 — £ 17/1 —17, 5). Hence in this case

Thus

on (3.1)
on C2.

The sets C, and their images C^TdQ) are depicted in figure 4 where Ch C\ are
replaced respectively by i, i".

FIGURE 4
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As explained in [1], the invariant measure dmc for Tc is obtained from dm by
dropping ds, i.e.

4. Factor map
From (3.1) we see that G(f) is a factor map of Tc($, rj) where

— , 0 < £ < l
- f (4.1)

The invariant measure ft(l) dg for G(£) is obtained by integrating dmc with respect
to r} [1]. I.e.

The backward continued fraction map g(£) is G(f) induced to (0,1). I.e. for 0 < £ < 1,
let «(£) be the smallest positive integer such that G"(f), the n'th iterate of
is in (0, 1). Then

(4.3)

It follows that the invariant measure for g(£) is also dg/g [2].
Finally, we remark that g(£) is itself a factor of a cross section map. We just

interchange the operations of factoring and inducing given above. Let

and let To(£ 77) be Tc(£ TJ) induced to Q. It follows from (3.1) that

»̂ 17) is the cross section map for the cross section Q and has the invariant
measure d^drf/(^-rj)2. (4.4) shows that TQ(£;,r}) has the factor g(£) with the
invariant measure d£/ £.
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