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Abstract. We classify finite-to-one factor maps between shifts of finite type up to
almost topological conjugacy.

0. Introduction
In [2], shifts of finite type (SFT) were classified up to almost topological conjugacy.
The purpose of this paper is to classify finite-to-one continuous factor maps between
shifts of finite type. We consider two equivalence relations. The first is very strong:
two maps are equivalent if they have the same range shift and they differ by a
special kind of almost continuous change of variables in the domain; for a fixed
range shift and a fixed generic cardinality of the fibre of the factor maps (a natural
invariant), we get infinitely many equivalence classes. The second (more natural)
equivalence relation allows the same kind of change of variables in the range (as
well as in the domain) and gives only finitely many equivalence classes (for a fixed
entropy class and generic cardinality of the fibre). For the latter classification, we
reduce the problem to a group action problem which was solved by us in [1]. Our
results are completely analogous to and were inspired by those of D. Rudolph [10]
in the measure-theoretic category (i.e. classification of finite-to-one factor maps
between Bernoulli shifts). Our work is basically a more concrete version of Rudolph's
work. In particular, let T be a Bernoulli shift whose measure-theoretic entropy
(log (A)) is the same as the topological entropy of an aperiodic SFT; then for any
finite-to-one factor map of T, we construct (theorem 4.3) an equivalent (in the
measure-theoretic sense) factor map w:2A->SB, where 2B is an arbitrary aperiodic
SFT of entropy log (A) and SA is some aperiodic SFT of entropy log (A). (In general,
2A cannot be chosen arbitrarily.)

It would perhaps have been most natural for us to classify our factor maps with
respect to continuous changes of variables (i.e. topological conjugacy) since, after
all, our factor maps are continuous themselves. But the simplest case of this, when
the factor maps involved are identity maps, reduces to the classical topological
conjugacy problem for shifts of finite type—which is not yet solved satisfactorily.

For background, we basically refer to [2]. We use the notation 2A for an SFT
defined by 0-1 transition matrix A, crA for the shift, and LA for the alphabet (or
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states or symbols) used. The notation i-*j indicates an allowable transition from
symbol i to symbol / We assume that the reader is familiar with the definitions of
irreducible (ergodic) and aperiodic (mixing) and also the graph-theoretic description
of SFT's.

We shall be interested in continuous factor maps (i.e. onto, continuous, shift-
commuting maps) v. 2,4 -» SB between aperiodic SFT's. It is well known that every
such map can be represented as a sliding block map which depends on finitely many
coordinates. We shall frequently use the fact that every continuous factor map can
be recoded to a one-block map (i.e. a sliding block map depending on only one
coordinate:

i r ( - • • x _ , x o x , • • • ) = • • • 7 r * ( x _ 1 ) 7 r * ( x 0 ) n - * ( x 1 )

where IT* is some map v*:LA-*LB).
The following is a basic fact:

PROPOSITION 0.1 ([3, theorems 3.3 and 5.7]). Let ir:1A^1.B be a continuous shift-
commuting map between irreducible SFT's. Then, any two of the following conditions
imply the third condition:

(1) IT is onto;
(2) h(l.A) = h(1.B) (where h denotes topological entropy);
(3) 7T is finite-to-one (i.e. every point has finitely many inverse images).

From the point of view of ergodic theory, every finite-to-one continuous factor map
is fc-1 a.e. for some k. (Here 'a.e.' means a.e. with respect to any fully supported
ergodic measure, e.g.. the unique measure of maximal entropy.) But more is true,
as the following indicates:

PROPOSITION 0.2. Let IT:1A^1B be a finite-to-one continuous factor map between
irreducible SFT's. Then there is a positive integer k such that:
(a) Every point in 1.B has at least k mutually separated inverse images (if IT is a
one-block map, then a pair of points x,ye1A is mutually separated if for all i, xt ^ yt).
(b) Every doubly transitive point in 1B (i.e. a point whose forward and backward
orbits are dense) has exactly k inverse images, whence, by (a), all its inverse images
are mutually separated.

For the proof of the above, we refer the reader to [3, theorem 6.5]; see also [5].
We also have:

PROPOSITION 0.3. A continuous factor map between irreducible SFT's is finite-to-one
if and only if it is fc-1 a.e. for some k.

Proof, (only if) Proposition 0.2(b) is a strong version of this.
(if) follows from application of k-l a.e. to the measure of maximal entropy to

obtain condition (2) of proposition 0.1. •

The following characterizes maps which are constant-to-one.

PROPOSITION 0.4 ([8, Theorem 6.3], see also [5]). A continuous factor map is k-to-l
everywhere for some k if and only if it is right and left closing. (Right (left) closing
means that the map does not identify two negatively (positively) asymptotic points.)
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For some illuminating examples, we refer the reader to those constructed by P.
Shields [10, p. 258].

1. The strong relation
In this section, SA], 1Al and 2 B are aperiodic SFT's all with the same topological
entropy. Let IT^IA^IB and 77-2:2,42-»2B be continuous factor maps.

Definition. We say that TT, and TT2 are almost topologically conjugate over 2 B (A.T.C.
over £B) if there exists an aperiodic SFT 1D and 1-1 a.e. continuous factor maps

e,:ZD + *A, « = 1,2

such that the diagram:

(1)

commutes.
Remark. It follows that 1D has the same entropy as 2 A l and 1Al and so the maps

0, and 02 must be finite-to-one (by proposition 0.1).

Definition. The fibred product over TTJ and TT2 is the SFT

2 B = {(*, JO e 2A l X2A2: 7r,(x) = TT2(}>)}

together with the factor maps

i/»,:2B^i:Al, i/>,(x,y) = x;

iA2:2E^2A 2, iA2(x, >>) = y.

Note that the diagram

commutes. Also, each i/>, must be finite-to-one.

THEOREM 1.1. The factor maps TT, and ir2 O-Te A.T.C. over 1B if and only if there is
an irreducible component 2 E . of the fibred product, DB, with maximal entropy (in 2 E )
such that the restrictions I^I/IE1 and (II2/^-E- ore 1-1 a.e.

Proof, (if) Set 0/ = i/>,, i = 1,2 and observe that the 0, must be onto since 1E- has
full entropy and t/f, are finite-to-one (proposition 0.1). Also, 1E' is aperiodic since
i/», is 1-1 a.e. and SAl is aperiodic.
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(only if) Let 0, and 02 be the maps that provide the A.T.C. over Sfl. Now, define
the map:

p :Z D -»2 ; B <p(z) = (0,(z), 02(z)).

This is well-defined since the diagram (1) commutes. Since 2 D is aperiodic, so is
its image <p(2D).

Since the 0, are assumed to be 1-1 a.e., they are finite-to-one by proposition 0.3.
Thus, <p is finite-to-one. So, <p(2D) has the same entropy as la, which is the same
entropy as 1Aj and XE (since the tfo and 0, are finite-to-one and onto). So, XE- = <p(1D)
has maximal entropy in Z E ; since 2E> is also aperiodic, it follows that SE. is an
irreducible component of maximal entropy in 1E.

Moreover the diagram:

commutes. Now, since 0; are 1-1 a.e. i = 1,2, it follows that t/f,|2E. are 1-1 a.e.
/ = 1,2 as desired. •

Remarks, (i) The classification given above is completely effective since: (1) the
construction of the fibred product is constructive (assuming by recoding that TT,
and TT2 are 1-block maps, then S E is the SFT with alphabet

LE = {(a,, a2) e LAi x LAl: 77,(0,) = n2(a2)},

and transitions (a,, a2)^{a\, aj) if and only if a,-»ai &n& a2^> a'2)\ (2) the determina-
tion of irreducible components is constructive; and (3) there is a finite procedure
for deciding whether or not a factor map is 1-1 a.e. (see [4, 3.4]).

(ii) The generic cardinality of the fibre for a finite-to-one continuous factor map
(which always exists (proposition 0.2)), is clearly an invariant of A.T.C. over J.B
(i.e. if 7T, and TT2 are A.T.C. over 1B and TT, is fc,-to-l a.e. and v2 is k2-to-\ a.e.,
then fe, = k2).

(iii) From a measure-theoretic point of view, the factor map TT,: 2A l -*• 1 B decom-
poses 2 A i as a skew-product over 1B with fc-point fibres (where k is the generic
cardinality of the fibre): namely, 1Al can be written as 1B x { l , . . . , k} and the shift
aAi can be represented as

<rAl(x,i) = (*B(x),f1(x)(i)), (2)
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where/,: 1B -> Sk is a measurable (in fact, almost continuous) map into the symmetric
group on fc letters. Here, the measure structure is given by the measure of maximal
entropy, and almost continuous means continuous on some subset of full measure.
Similarly, we get a function f2\1B^*Sk for the map ir2.

Now, one can easily show that if TT, and ir2 are A.T.C. over 1B, then there exists
a measurable (in fact, almost continuous) map h: J.B -* Sk such that the cohomology
equation:

f^ih'cr^-A-h-1 (3)

holds a.e., (where for xe1B, h~\x) denotes the inverse permutation of h(x)) (see
[10, p. 256]).

(iv) If TTj and TT2 are fc-to-1 everywhere, then / , and f2 can (in (2)) be chosen
continuous and in fact depend on only finitely many coordinates (see [8]). It follows
then that the solution h to (3) (if it exists) must depend on only finitely many
coordinates as well, and in fact (3) holds everywhere. The proof of this is similar
to the results [6, theorem 1 and remark 2] [9, 2.42] and is deferred to the appendix.
The continuity of h then yields:

PROPOSITION 1.2. If two k-to-\ everywhere extensions TT, and n2 of1B are A.T.C.
over £B, then in fact they are topologically conjugate over 1,B (i.e. there is a topological
conjugacy h:2.Ai-*1.A2 such that TTX = Tr2°h).

From this, one can use the form (2) to construct, for each SFT SB and integer k > 2,
infinitely many inequivalent (in the sense of A.T.C. over 2B) fc-to-1 everywhere
extensions of 2B. (Just play with the zeta functions of the domains.)

2. The weak relation: reduction to constant-to-one maps
In this and the next section, 2Al, ~LAl, 2Bl and 2 ^ are aperiodic SFT's of the same
entropy. Let 7r,:2Al-»2Bl and ir2:'LAl-*'S.Bl be continuous onto factor maps (hence
finite-to-one).

Definition. We say that IT2 is an almost topological factor of TTX (and TT, is an almost
topological extension of ir2) if there exist 1-1 a.e. continuous factor maps 0:2Al-»2A2

and p-.is^ify such that the diagram:

commutes.
Definition. We say that TTX and TT2 are almost topologically conjugate (A.T.C.) if they
have a common almost conjugate extension (cf. [2]).
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We show, in this section, that we may as well assume that our factor maps are
constant-to-one (i.e. fc-to-1 everywhere for some k).

THEOREM 2.1. Let 1A and XB be aperiodic SFT's and let TT:1A-*1B be a k-to-l a.e.
continuous factor map. Then there is an almost topological extension of IT which is
k-to-l everywhere.

Proof. We may assume that IT is a 1-block map by the usual recoding argument.
Define XB. as follows: the alphabet of 2B> is the set of all distinct unordered

fc-tuples of symbols from LA with the same 7r-image:

L& = { { « i , • • •, a k } \ a u . . . , a k e L A a r e d i s t i n c t a n d 7 r ( a i ) = /ir{a2) = • • • • = n { a k ) }

and transitions

{au...,ak}^{a'u...,a'k}

if and only if there is a permutation qe Sk such that for each i = l,... ,k

ai^a'qii) in 2,4.

Let p:1B^1B be defined in the obvious manner; namely:

Then Coven and Paul ([4, 3.4]) proved that there is an irreducible component of
2B. such that the restriction of p to this component is finite-to-one, onto and 1-1
a.e. (We will abuse notation and call this component SB. as well.)

Now let I* , be the SFT defined by

L * = { ( a , { a u ..., a k } ) : a e L A , { a u . . . , a k } e L B , and a e { a u ..., a k } }

with transitions:
(a, { a , , . . . , ak})-»(a', {a ' , , . . . , ai})

if and only if
a-* a' and {au...,ak}-*{a'u...,a'k}.

Define </»,: 2A.-* 1A by i/^x, y) = x and t//2:SA ^ 2 B . by ^2{x,y) = y. (Note that we
have here a subshift of the fibred product over n and p.)

Of course the diagram:

commutes.
Since n and p are finite-to-one and onto, so are i/̂  and i/f2. So, if we replace 1.A'

by any one of its irreducible components of maximal entropy (which we will still
call 2 A ) we can assume (by proposition 0.1) that 2A- is irreducible and that <iix and
t/r2 are finite-to-one and onto. Moreover, since p is 1-1 a.e. so is i/*,. So, the factor
map i/f2 is an almost topological extension of IT. It remains to show that i/>2 is fc-to-1
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everywhere. The proof of this follows from the following:

LEMMA 2.2. If {au ..., ak} -» {a ' , , . . . , a'k} in EB. then for all i = 1 , . . . ,k there exists
a unique j e { 1 , . . . , k} such that a, -» a).

Proof. By definition of the transition

for each i, there exists j such that

a, -* a]-

Suppose there were two such j (call them _/, and j 2 ) . Let w be a doubly transitive
point in S B . Assume also that

wo = {au...,ak}, H>, = { a ' , , . . . , a'k}.

Then p(w) is a doubly transitive point in 1B and v~1(p(w)) contains two mutually
separated points x and y where

x0 = at, x, = a'h, y1 = a'h.

But then the point u defined by

}x,

hi
is also in 7r~1(p(w)); also u is not mutually separated from x (nor y); this contradicts
the fact (proposition 0.2) that the inverse images of a doubly transitive point (in
this case p(w)) are mutually separated. This completes the proof of lemma 2.2.

•
One might ask for more than the preceding result yields: namely, if T T : S A - > 2 B is
a fe-to-1 a.e. factor map, then can TT be written as

where the (range of TT2) = (domain of TT,) is an SFT and
(i) 77, is k-to-l everywhere? or
(ii) TT2 is fc-to-1 everywhere?

The following examples show neither of these to be true.

Example 1. Let 1A be the SFT defined by the graph:

The labels on the edges define a factor map T T : S A - » 2 B where S B is the full 2-shift.
The map is 2-1 a.e. since the collapsing of vertices (3 and y decomposes ir into
a l - l a.e. map followed by a 2-to-l map.

However, if TT could be factored v = TT2° TTX where TTX was 2-to-l everywhere, then
every fibre of ir would have an even number of points. But Tr"^... 1111...) has 3
points.
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Example 2. Let 2 A and 2 B be the SFT's defined by: 

The map 7 r : 2 A - * 2 B is defined by 'dropping subscripts ' . One easily sees that this 
map is 2-to-l a.e. Suppose that IT factored as TT = IT2°TT1 where 7r 2 was 2-to-l 
everywhere. Then, by proposit ion 0.4, ir2 would be left closing. Then, -IT1 must identify 
the following 2 pairs of points: 

(a) blblb1b1clc2c1c2... and . . . b4b3b4b3c1c2clc2 ... ; 

(b) . . . b2b2b2b2c2cxc2cx... and ... b3b4b3b4c2cxc2cx  

But then by the continuity of TTU it must also identify the pairs of points: 

(c) . . . . . . and . . . b4b3b4b3... ; 

(d) . . . b2b2b2b2... and . . . b3b4b3b4  

Thus, 77, must identify all the points in the 7r-fibre of b =... bbb So, Tr2*{b) is 
a single point . But this contradicts the assumption that 7r2 was 2-to-l everywhere. 

Finally we remark that the direct product m a p of the factor maps 77 constructed 
in examples 1 and 2 provides an example of a 4-to-l a.e. map which cannot be 
factored: TT=IT2°ITX S O that either trx or 7r 2 is 4-to-l everywhere. 

3. The weak relation: reduction to group actions 
In this section, we reduce the classification of factor maps to the classification of 
certain group actions (theorem 3.1 below); this is very much analogous to [10]. 
However, our group actions are continuous, a fact that follows basically from 
theorem 2.1. 

Let S A and 2 B be irreducible SFT's of the same entropy and let •JT:1a-*1b be a 
fc-to-1 everywhere factor map . As mentioned before (§ 1, remark (iv)), up to a 
topological conjugacy of ir, 2 A can be written as a continuous skew-product over 
2 B and, in fact, the skewing function depends on finitely many coordinates; by 
recoding, we can actually assume that the skewing function depends on only two 
coordinates: i.e. 

S / t = 2 B x { l , . . . , f c } 
and in this form 

ir(x, i) = x, 
(4) 

°-A(X, 0 = (o-B(x),f(x0xl)(i)), 

where / is some function on 2-blocks taking values in Sk (the symmetric group). 
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So LA = LB x { l , . . . , k} and the transitions are given by

493

if and only if

b^b'in1B and j=f(bb')(i).

As in [10], we introduce the full extension of IT as the SFT

2,r = 2fl X Sfc,

ov(*, g) =

Definition. Let G be a finite group and 1 an SFT. A Z x G action on 1 is the action
of the shift together with a continuous action of the group G on S in which each
element of G commutes with the shift. We assume that the G part of the action is
free, i.e. that no non-trivial element of G fixes any element of 2 .

The Z x G action we are most interested in is the following: let Sk, the symmetric
group on k letters, act on 2 ^ by its natural action on the alphabet of 1W namely,
g(x, g) = (*, g§)• We call this the full ZxSk action on 2 r We let G act on the right
since the shift o~v acts on the left. (This makes the G-action commute with a^)

Definition. Let G be a finite group and let 2 , and 2 2 be two SFT's, each with a
Z x G action. We say that these two Z x G actions are almost topologically conjugate
(A.T.C.) if there is another SFT 2 3 with a Z x G action and 1-1 a.e. continuous
factor maps 23-»2i and 23-»22 which also commute with the G-actions.

The reason for our interest in group actions is the following:

THEOREM 3.1. Letirx:'LAl-*'LBx andir2'-'Z'A2-*^B2 be two k-to-1 everywhere continuous
factor maps. Then TTX and n2 are A.T.C. if and only if the full ZxSk actions on 1ni

and I T 2 are A.T.C.

Proof, (only if) Let TT1 and TT2 be A.T.C. and let TT3: 2 A S - » SB, be the common almost
topological extension of TT, and TT2. Clearly, TT3 is fc-to-1 a.e. We may assume by
theorem 2.1 that TT3 is in fact fc-to-1 everywhere and that all maps TTU TT2, TT3 are in
the form (4) with 1Al built with skewing function / over 2B(.

We have the commutative diagram:

(5)

Since TT,, TT2 and TT3 are simply projections onto the first coordinate of (4), we have

https://doi.org/10.1017/S0143385700003114 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003114


494 R. Adler, B. Kitchens and B. Marcus

and

e2(x,i) = (P2x,l2(x){i))

for some lu l2: £», -* Sk. Clearly, /, and l2 are continuous (since ph dj are). Now define

e,:2^-»2^, e1(x,g) = (Plx,li(x)g),

and

«2:2^-»2^, 02(x, g) = (p2x, /2(x)g).

We leave it to the reader to verify that

2.

is an A.T.C. of group actions.
For the converse, let S3 be a common almost topological extension of £.„, and

1^ (in the ZxSk category). We would like to produce a continuous factor map irj
for which the full action is £3. This is done as follows: we construct two equivalence
relations on 2.3:

x ~ y if there exists g e Sk such that gx = y,

x*=y if there exists geSk such that gx = y and g( I) = I.

(When we say g(l) = I, we are thinking of g acting on {I , . . . , n}.) Let

and let TT3: 2 A J -» 2 ^ be the obvious map. One can verify that 1A, and 2 ^ are indeed
SFT's. Moreover, since the continuous factor maps S3-»SW, and S3-»S,2 commute
with the Sk actions, they naturally induce 1-1 a.e. maps 0,, pu 02, p2 such that the
diagram (5) above commutes, i.e. an A.T.S. between TT, and ir2. •

Finally, we mention that the work in this section can be viewed in a slightly more
concrete manner:

Namely, 1^ can be defined as the SFT whose alphabet is the set of ordered
fc-tuples {bu ... ,bk) where bu...,bk are distinct elements of LA all with the same
7r-image, b in LB (the transition are the ones naturally inherited from 1A). In this
setting, Sk acts by permuting the ordering.

4. Construction of factor maps
Theorems 2.1 and 3.1, together with theorem 4.2 below, will give an effective
procedure for classifying finite-to-one factor maps between shifts of finite type up
to A.T.C. In particular, for a fixed entropy class and a fixed generic cardinality of
the fibre, we will show that there are only finitely many equivalence classes all
defined by the algebraic invariants of [10].

We first recall the results of [1]. Consider an irreducible SFT 2C, with period
p=pc- This means that 2 C can be written as a disjoint union of p subsets £'c,
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i = 0 , . . . , p — 1 such that
(i) (7(2'c) = 5;U+1)(modp

(ii) o-p/Sc is aperiodic.
For a Z x G action on Z c one defines

Note that g(2J
c) = 2 ( ^ ) m o d p for all g 6 H'c and j e {0,. . . , p -1}. The main result

of [1] is:

THEOREM 4.1. ([1, theorem 6]) Let 2Cl and 2 Q be irreducible SFT's. Two ZxG
actions, one on 2C i and the other on 1Cl, are A.T.C. if and only if

(a) M2Cl) = M2c2);
(b) pCl = Pc2; and
(c) for all i, H'Ct = H'C2.

We now restate this result in a slightly different form (similar to [10]). First observe
that, since the G-part of a Z x G action on 2 C commutes with the shift, H°c is a
normal subgroup of G. Next observe that if g c e Hc, then for each i = 0 , . . . , p -1
(where p=pCl= Pc2)

H| , = (gc)1Ho
c.

So, each Hc is actually a coset of H°c; since g £ e H°c it follows that G/H°c is a
cyclic group with generator gcH^.

Now, suppose for two Z x G actions:

(c') H°Cl = H0
C2 and gc, = gCz mod (H°C[).

This is equivalent to saying

H°Ci = H°C2 and H ^ = H^2.

Then we also get

H'Cl = (gc,)"H0
Cl = (gc2yH0

C2 = H'c2

which is condition (c). So, condition (c') can replace condition (c) in theorem 4.1.
Unfortunately, the SFT's we must consider may be reducible. However, they do

satisfy a weaker property:

Definition. An SFT 2 C is non-wandering if it is a disjoint union of irreducible
components.

Note. In general, an SFT may have points that 'wander' from one component to
another (see [2, p. 21]).

For any Z x G action on a non-wandering SFT, the G-part of the action acts on
the set of irreducible components of the SFT. If this G action is transitive, we say
that the Z x G action is G-transitive.

For a non-wandering SFT, 2C. and a G-transitive Z x G action on 2C, pick an
arbitrary irreducible component Se of S c and let Gc = {g&G: g(2.c) = ̂ cl- Define
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H°c and gc as H% and ge(resp.) where the latter are denned as above for the
restricted Z x Gc action on Xc- Now, H°c = H c is normal in Gc, but not necessarily
normal in G. However, gc e N(H°C}, the G-normalizer of H°c.

Now, suppose one picks two different components Sg and £ c of 1C- Let geG
map 2 e onto 2 C ; then

gHcg-' = H£

and

The latter is equivalent to:

~iggcg~i = gc mod He.

So, our choices of H°c and gc are unique only up to conjugation in G (and gc is
unique only up to that conjugation plus multiplication by an element of H°c). Using
these observations, the following is straightforward:

THEOREM 4.2. Let 2 C | and 2C 2 be two non-wandering SFT's each with a transitive
ZxG action. Then these actions are A.T.C. if and only if:

(A) / l (sC i ) = /.(2c2);
(B) HCl is conjugate to H°c2 {by a conjugacy g);
(C) ggClg-1 = gClmod H°C2.

We leave it to the reader (see [10]), to see that the full action for a factor map
between aperiodic SFT's of the same entropy satisfies the above hypothesis: i.e. £„
is non-wandering and the full action is G-transitive. Now we prove:

THEOREM 4.3. For any aperiodic S F T 1 B and any subgroup HofSk (k e N) and any
element ge N(H), there is a factor map T T : 2 A - » Z B where 2 A is an SFT and it is
fc-1 everywhere and the full Z x S k action on 2 ^ realizes the invariants H and g (i.e.
there is an irreducible component S c of "L^for which H°c = H and gc = g).

One can show, as Rudolph did ([10, theorem 2]), that if H acts transitively on
{ 1 , . . . , k}, then ZA can be chosen aperiodic. The reader should compare theorem
4.3 with the construction given at the end of [10].

Question. Given k, H and g, for which SFT's 2 A does there exist an SFT 1B and
fc-to-1 a.e. factor map n:1A^1B realizing the invariant H and g? Arguments in
Hedlund ([5]) can be used to show that for k = 3 and 1A = (the full 2-shift) no such
map exists (for any choice of H and g).

The proof of theorem 4.3 follows the lines of [10]. First we need:

LEMMA 4.4. Let 2 B be an aperiodic SFT. Let n be a positive integer. Then there is an
SFT, topologically conjugate to 2B, which has a state with at least n successors (i.e.
outgoing transitions).

Proof. We do this by induction on n. For n = 2, this follows immediately from the
fact that J.B is aperiodic. Now, assume that S B has a state v with n 2 2 successors;
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we will produce a conjugate SFT which has a state with at least n +1 successors.
Let 7] = 17,772 • • • 17, be a simple path (in the denning graph for 2B) where 77, has
at least two predecessors (i.e. incoming transitions) and 77, = v. The existence of 77
follows from aperiodicity. By a complete splitting of the state v, we mean a new
graph denned by splitting the vertex v into new vertices, one for each successor of
v (see [7] for the notion of state splitting); here, each predecessor (in particular,
i7,_t) of v is a predecessor of each of the new vertices, and each new vertex has
exactly one successor, namely the successor that it represents.

before splitting after splitting

The SFT denned by this new graph is naturally conjugate to 1B and the state i7,_,
now has at least n successors. So, by a conjugacy, we have effectively reduced the
length of the path 77. By continuing this inductively downward (shortening 77), we
obtain an SFT conjugate to 1.B which has a state v with at least n successors and
2 predecessors. A complete splitting of v now gives us two distinct vertices vu v2

each with at least n successors. Now, let 77' be a simple path in the denning graph
of the new SFT which originates at a successor s of vx and terminates at v2.

We may assume that 17' does not pass through u, or any successors of vx (other
than s). Again, we can do a complete splitting of v2 and thereby effectively reduce
the length of 77'; continuing inductively downward (shortening 77'), we can assume
that v2 is a successor of t>i. Now, a complete splitting of v2 will provide u, with at
least 2 n - l > w + l successors as desired. •

We apply the lemma as follows. Let n be the order of H and write

H = {hu...,hn}.

Let m be the order of g in Sk and let p be the order of gH in N{H)/H.
By virtue of the lemma, we may as well assume that SB itself has a state v with

at least n + 2 successors, s , , . . . , sn+2. Moreover, using the aperiodicity assumption
and replacing EB by some higher-block presentation (see [2, p. 13]) of itself, we
may assume that there exist cycles yu ..., ym au a2 such that:

(1) the initial edges of -y, , . . . , yn, au a2 are the edges vsu . . . , vsn+2;
(2) the set of noninitial edges of y , , . . . , ym au a2 is disjoint from the set of initial

edges;
(3) the lengths of -y, , . . . , yn are multiples of m; and
(4) the lengths of a,, a2 are multiples of p by a pair of relatively prime numbers.
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(We leave it to the reader to verify this.) Now, define / on the 2-blocks of 1B by:

!

ghj if bb' = vsh 1 < i < n

(g)'-H if bb'=vsn+i, i = l,2

g otherwise.
(Here, \at\ denotes the length of the cycle a,.) Note that since |OJ| is a multiple of
p, the order of gH in the group N{H)/H, it follows that (g)H"'' belongs to H. So,
the range of/ lies in the coset gH. Using this / let IT be the map defined as in (4)
of §3.

We will show that SB x H is a cyclic subset for an irreducible component of £„.
Since the range of / is contained in gH, this will show that the full ZxG action
for £„ realizes the invariants H and g. Let

Y=LUU2Bxtf)
i=0

where G(g, / /) is the group generated by g and H. We will show that Y is an
irreducible component for 2 ^ Since crn operates in the 2nd coordinate only by
elements of G(g, H), it immediately follows that Y is an invariant set, and since
1B is a direct factor of Y, Y is a union of irreducible components. Thus it suffices
to show that aj\ Y is transitive. In view of the irreducibility of 1B, it then suffices
to show that for all pairs h, h'€ H there is a path in the graph of 1V which starts
at (v, h) and ends at(v,h'). One does this by 'lifting' the cycle yt where i is defined
by

hi = h'h~l,

namely: if yi = x1- • • x, with xx = v and x2 = st then the path

(*„ h){x2j(xxx2)h) • • • (XI./CKPO/CKI-,*!) • • •f(x1x2)h)

starts at (v, h) and ends at (v, h'), as desired. (Recall that / is a multiple of the order
of g in Sk.) So, Y is an irreducible component. To see that 2B x H is a cyclic subset
of Y with period p, it simply suffices to find two cycles in the graph of 2W which
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start i n l g x H and whose lengths are multiples of p by a pair of relatively prime
numbers. This is done by lifting the cycles a,, a2 to 1B x H.

Appendix
Let SB be an irreducible SFT and / i , / 2 : 2 B -> Sk be locally constant functions. If h
is an almost continuous solution to the cohomology equation:

/ l = (ftoO-B)./2./,-1
 a .e.

then h is locally constant and in fact depends on at most as many coordinates as
/ , and f2 do.

Proof. Assume for simplicity that / , and f2 depend on only 1 coordinate. Since h is
almost continuous, there exists an element re Sk and a cylinder set C on which
h = x modulo a set of measure zero. By recoding, we may assume that C is a 1-block
cylinder C = {x: x0 = c}.

For d e LB let w = w0 • • • w, be a block such that w>0 = c and w, = d. Let

(By this product, we mean/2(w/_i) • • •f2(w0).) Also let

Define h: LB -» Sfc by

h(d) = awTa~l.

We claim that hi is well-defined (i.e. does not depend on the choice of block w).
To see this, let w = w0 • • • w, and w1 = wl • • • w\ with

wo=wl=c and H>, = w}. = d.

Let z = ZiZ2 • • • zk be a path which begins with d and ends with a predecessor of c.
Then, wz and w'z are both paths which begin with c and end with a predecessor
of c. Then, using the cohomology equation and the fact that h is constant on C
(mod 0), one sees that

PawT(pawr' = T

and

where /3 =\\]=kf2(zi) and )8 =n!=fc/i(z.)- From this, one sees that

So, his well-defined. Then h defines a 1-block solution to the cohomology equation.
(The reader can now verify that in fact h = ft mod 0).
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