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Abstract. We study finitely generated, abelian groups F of continuous automorphisms
of a compact, metrizable group X and introduce the descending chain condition
for such pairs (X, F). If F acts expansively on X then (X, F) satisfies the descending
chain condition, and (X, F) satisfies the descending chain condition if and only if
it is algebraically and topologically isomorphic to a closed, shift-invariant subgroup
of G1, where G is a compact Lie group. Furthermore every such subgroup of Gr

is a (higher dimensional) Markov shift whose alphabet is a compact Lie group. By
using the descending chain condition we prove, for example, that the set of F-periodic
points is dense in X whenever F acts expansively on X. Furthermore, if X is a
compact group and (X, F) satisfies the descending chain condition, then every
ergodic element of F has a dense set of periodic points. Finally we give an algebraic
description of pairs (X, F) satisfying the descending chain condition under the
assumption that X is abelian.

1. Introduction
This paper is motivated by the following questions:

(i) Let F be a finitely generated, abelian group of continuous automorphisms of
a compact group X. When does F have a dense set of periodic (i.e. finite) orbits in
XI

(ii) If the group F acts expansively on X, what are the algebraic and topological
properties of the dynamical system (X, F)?

We show that expansiveness of F implies a weaker notion, the descending chain
condition on closed, F-invariant subgroups of X, which in turn has two remarkable
consequences: the system (X, F) is algebraically and topologically isomorphic to a
(higher dimensional) subshift of finite type whose alphabet is a compact Lie group.
Furthermore, if G is a compact Lie group, then the closed, shift invariant subgroups
of G1 automatically satisfy the descending chain condition and present an interesting
class of examples of higher dimensional Markov shifts which lack many of the
pathologies traditionally associated with such shifts (cf. [Ro] and [Ru]).

The contents of this paper are organized as follows: in § 2 we assume that X is
a (metrizable) compact group and F a countable (and always infinite) group of
continuous automorphisms of X, and discuss some general properties of the dynami-
cal system (X, F). Lemma 2.2 shows that F is nonergodic if and only if there exists
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a closed, normal, F-invariant subgroup V of X such that the action of F on the
quotient group X/ V is equicontinuous. From this one concludes easily (a special
case of) a result due to D. Berend that (X, F) is ergodic (with respect to Haar
measure on X) if and only if F is topologically transitive on X (Theorem 2.1).
Lemma 2.2 allows us to analyze the structure of nonergodic pairs (X, F) (cf. Theorem
2.3). Finally, F is mixing if and only if every element ye F of infinite order is ergodic
(Theorem 2.4).

In §§ 3-12 we assume that F is a finitely generated, abelian group of automorphisms
of a compact group X. Theorem 3.2 states that (X, F) satisfies the descending chain
condition if and only if there exists a compact Lie group G such that (X, F) is
algebraically and topologically isomorphic to a closed, shift-invariant subgroup of
Gr. Furthermore every closed, shift-invariant subgroup Y <= Gr is a subshift of finite
type whose alphabet is a compact Lie group (Corollary 3.8). If (X, F) satisfies the
descending chain condition and F is nonergodic on X then there exists a closed,
normal, F-invariant subgroup X ' c X such that F is ergodic on X' and X/X' is a
Lie group (Theorem 3.15). Theorem 3.16 shows that every pair (X, F) is a projective
limit of pairs (Xn, Fn), n > 1, satisfying the descending chain condition.

§ 4 contains some technical results which, under certain conditions, reduce the
study of pairs (X, F) satisfying the descending chain condition to that of closed,
shift-invariant subgroups of G[, where G is a compact Lie group which is either
finite or has finite centre. In particular, if the connected component X° of the
identity in X is abelian then there exists an increasing sequence (Xn, M > 1 ) of
closed, normal, zero dimensional, F-invariant subgroups of X such that UnXn is
dense in X (Corollary 4.8).

In §§ 5 and 6 we analyze expansive automorphisms of compact groups. Theorem
5.2 shows that, if X is a compact group and F is expansive, then (X, F) satisfies
the descending chain condition. The structure of expansive automorphisms of
compact groups is discussed in detail in § 6, where we extend and combine earlier
results by Arov, Lawton, Miles, Thomas, and many others to obtain a complete
description of such maps (Theorem 6.7).

§ 7 again deals with periodic points. If X is a compact group such that X° is
abelian and (X, F) satisfies the descending chain condition, then F has a dense set
of periodic points (Theorem 7.2). If X is a compact group, and if F <= Aut (X) acts
expansively on X, then X° must be abelian (cf. [La]), and the set of F-periodic
points is dense in X (Theorem 7.3 and Corollary 7.4). Finally, if X is a compact
group, if a e Aut (X) is an ergodic (or, equivalently, topologically transitive)
automorphism which commutes with F c Aut (X), and if (X, F) satisfies the descend-
ing chain condition, then the set of periodic points of a is dense in X (Theorem
7.5 and Corollary 7.6). Neither the descending chain condition nor the assumption
of ergodicity of a can be removed in general (Examples 7.7). Furthermore, if (X, F)
satisfies the descending chain condition and F is ergodic on X, the set of F-periodic
points is - in general - not dense (Example 7.8).

§§ 8-10 contain the proofs of the Theorems 7.2, 7.3 and 7.5, respectively. Although
Theorem 7.3 is a special case of Theorem 3.2 in [La] we include a proof based on
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the descending and ascending chain conditions which gives some insight into the
dynamics of closed, shift invariant subgroups of G1, where G is a compact, connected
Lie group with trivial centre.

The last two sections (11 and 12) deal with the case where X is abelian group
and (X, F) satisfies the descending chain condition. The main result in § 11 (Theorem
11.4) states that such a dynamical system is determined by a finitely generated
module over a ring of Laurent polynomials with integral coefficients in finitely many
variables. The ergodicity and mixing properties of the dynamical system (X, F) can
be described in terms of these modules in a very straightforward manner (Theorem
11.2). The last section presents a number of examples.

This paper has benefited from conversations with a number of colleagues, and
we would particularly like to acknowledge our indebtedness to Don Coppersmith
(for alerting us to the connection between the dynamical systems in § 11 and
polynomial rings), Brian Hartley (for allowing us to include his proof of Theorem
11.3), Mike Keane (for a number of discussions when we first got involved with
these problems), Francois Ledrappier (for pointing out to us his paper [Le] and
the examples therein), Doug Lind (for discussions about solenoids), and the referee
(for alerting us to the reference [La]). There is some overlap between this paper
and several of the earlier references: e.g. §§ 5 and 6 are closely related to the results
in [MT] (where the descending chain condition is used implicitly to derive the
Markov property for a single group automorphism), and Theorems 5.3 and 7.3 are
strictly contained in Theorem 3.2 in [La] (where F is allowed to be an arbitrary
semigroup in Aut (X)). The reason for including some of these earlier results in
this paper is to present a coherent picture of the theory of automorphisms of compact
groups as (higher dimensional) Markov shifts, and to provide the basis for further
analysis of automorphisms of compact, abelian groups in subsequent papers (cf.
[S2, S3, LSW]).

2. Topological transitivity, ergodicity, and mixing
If X is a group the identity element of X will usually be denoted by 1 (or l x , if
there is any danger of confusion). Throughout this paper the term compact group
will denote a compact, second countable (i.e. metrizable) group, and a compact Lie
group will be a (possibly finite) compact subgroup of some finite dimensional matrix
group over the complex numbers. Let X be a compact group. The centre of X is
denoted by C(X), and X° stands for the connected component of the identity in
X. Any metric^ on X is assumed to be invariant, i.e. d(x, x') = d(xu, x'u) = d(ux, ux')
for all x, x', ue X. If Y is a second compact group and a: X -» Y a continuous
homomorphism we denote by ker(a) the kernel of a.

We write Aut (X) for the group of continuous automorphisms of X and denote
by idx = lAut(x) the trivial automorphism of X. Let W c V c X k subgroups of X
such that W is normal in V, and let a e Aut (X) be an automorphism with a( V) = V
and a( W) = W. Then av and av/w denote the automorphisms induced by a on V
and V/W, respectively. If f c Aut(X) and the groups W and V are F-invariant
(i.e. invariant under every y e F) we set F v = {yv: y e F} and F v / w = {yv/w: y e F}.
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Let X,, i = 1, 2, be compact groups and let a, e Aut (X,). The pairs (X,, at) and
(X2, a2) are conjugate if there exists a continuous group isomorphism <p:X, -»X2

such that

<p • a, = a2 • (p. (2.1)

More generally, if F,<=Aut(X,) are countable groups, we say that (X^F,) and
(X2, F2) are conjugate if there exist continuous group isomorphisms <p: Xx -» X2 and
e . T , ^ r 2 such that <p • y=0(y ) • tp for all y e F .

Let G be a compact group, D a countable set, and let G ° be the compact group
of maps x:D-*G. For every E <= D we denote by TT£ : G

D-> GE the projection

77-E(x) = x|£, x e G D , (2.2)

where x\E is the restriction of the map x: D-> G to E. A subgroup V<= GD will be
called /w// if it is closed, and if 77{d(( V) = G for every d e D.

Now assume that F is a countable group and consider the shift (or Bernoulli)
action of F on G1 given by

(7V*)(y') = x(y'y) (2.3)

for every xe Gl, y, y' e F. Clearly

Tr = {Ty: ye F}^ Aut (G1). (2.4)

A closed subgroup V<= G1 is shift-invariant if T>V= V for all yeY. If Vc= G1 is
a closed, shift-invariant subgroup and y e F, the restriction of 7"y to V will again
be denoted by Ty.

If X is a compact group and F c A u t ( X ) a countable group, then (X, F) is
conjugate to a closed, shift-invariant subgroup F c G 1 if there exists a continuous
group isomorphism <p : X -> F such that

V y=Ty- q> (2.5)

for all y e F. The map <p in (2.5) is a conjugacy of (X, F) m/o G'.
Let X be a compact group and let F c A u t ( X ) be a countable subgroup. The

Haar measure Ax of X is obviously invariant under F. We call F ergodic if it acts
ergodically on the probability space (X, Ax), and topologically transitive if there
exists a point X G X such that the orbit Tx = {y(x): yeF} is dense in X. If G is a
compact group and V<= G1 a closed, shift invariant subgroup, then V is ergodic or
topologically transitive if the action of T, on V is ergodic or topologically transitive.
The following result was proved by D. Berend in [Be] under the more general
assumption that F is an arbitrary semigroup of continuous epimorphisms of X.

THEOREM 2.1. Let X be a compact group and let F<= Aut (X) be a countable group.
Then F is ergodic if and only if it is topologically transitive.

Theorem 2.1 is a consequence of the following lemma.

LEMMA 2.2. Let X be a compact group with Haar measure Ax, and let f c Aut (X)
be a countable group. The following conditions are equivalent.

(1) F is nonergodic on X;
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(2) there exists a nontrivial, continuous, irreducible, unitary representation a of X
on a (finite dimensional) complex Hilbert space JC such that the group

Ya = {y e F: the representation cr- y is unitarily equivalent to a} (2.6)

has finite index in F;
(3) there exists a compact Lie group Y y* {1}, a continuous, surjective homomorphism

7}: X -» Y, and a homomorphism K : FH> Aut ( Y) such that

V 7 = K(y) • v

for every y e F, and for which the normal subgroup

A = {yeF : x(y) is an inner automorphism ofy}

has finite index in F;
(4) there exists a closed, normal, F-invariant subgroup V c X and a metric on X/ V

which is invariant under F x / V -

Proof. Assume that F ^ A u t ( X ) is nonergodic. We put $f =
{fe L2(X, Ax): \fd\x =0} and denote by p the right regular representation of X
on ffl defined by (p(x)f)(x')=f(x'x) for fe 3€, x', xeX. Choose a nonzero F-
invariant function fe 3€ and an irreducible p-invariant subspace 35f <= S€ such that
the projection Pxf of / onto X is nonzero. If <r= Px • p, consider the collection
{a- y"1: y e F } of irreducible, unitary representations of X on 3V given by
<x • y~l(x) = a(y~'(x)), x 6 X, y e F. For every y 6 F, a • y"1 is unitarily equivalent
to the restriction py of p to 5if(y) = {/• y " ' : / e 3Sf}<= %e. If a- y'y is unitarily
inequivalent to cr, J{(y) must be orthogonal to SV, but the F-invariance of / implies
that | |Pjr(r)/ | | = ||Py/H 5*0 for every y e F , where || • || denotes the norm in S€. Hence
the group F^ = {y e F: a • y"1 is unitarily equivalent to a) has finite index in F. This
proves (2).

Now assume that (2) is satisfied. Since every nontrivial, continuous, irreducible,
unitary representation a of X occurs as a subrepresentation of p on $f, we may
assume that we are in the situation described at the end of the first part of this proof
and use the same notation. For every y e F,r there exists a unitary operator Vy:3fc^J{
such that V~^o-(x)Vy = a- y~'(*) for every xeX.

We write F = F/FCT for the space of left cosets of F,,, denote by TT.T^F the
quotient map, and choose a map c :F -»F with ir-c = idF and c(ra.) = lr. The
restriction of p to i? = 0 5 e c ( F ) ^ ( 5 ) is denoted by 17, and a typical element fe 5£
is written as / = (fs • 8~\ S e c(F)) with fse5V for every 5 e c(F). For every y G F
we define a unitary operator Uy on if by setting Uyf= ((VaiyS)fs) • c(7r(y~15))~l,
S e c(F)) for every / = (/s • 8'', 8 e c(F)) e if, where a(y, 8) = y"15c(77-(y"15))"1 £
Fo- for every y e F, 8 e c(F). It is clear that, for every y € F and x e X,

U~l
V(x)Uy = V-y-l(x). (2.7)

Put Y = T7(X)<= °IL{!£), where <%(if) denotes the group of unitary operators on
the finite dimensional Hilbert space if, observe that Y is a compact Lie group, and
define a homomorphism K :F-» Aut ( Y) by setting K(y)(y) = U~]yUy for every 17 6 Y
and y e F (cf. (2.7)). We furnish Y with the metric induced by the operator norm
on %(i?) and note that *(y) is an isometry of Y for every y e F . Since the group
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of isometric automorphisms of the compact Lie group V (with respect to a fixed
metric on Y) is again a compact Lie group, and since the group Inn (Y) of inner
automorphisms of Y is an open subgroup of the group of isometric automorphisms
of Y, we conclude that the subgroup A = {y e F: /<(y) G Inn (Y)} has finite index in
P. This shows that (3) is a consequence of (2).

If we can find Y, 17 and K as in (3), there exists a metric d on Y which is invariant
under every *(y) , y e T , and we obtain a FX/v-invariant metric on Xj V= Y where
V = ker(T?), as claimed in (4).

Finally, if (4) is satisfied, we write rj: X -* X/ V for the quotient map, choose
e > 0 such that B = {xe X: d{\x/v, v(x)) — e i ^ X> ar>d note that B is F-invariant.
Hence F is not ergodic. •

Proof of Theorem 2.1. If F is ergodic it is topologically transitive. Conversely, if F
is nonergodic, Lemma 2.2 implies the existence of a closed, normal, F-invariant
subgroup Vg: X such that F x / v acts isometrically on X/ V for some suitable metric
on X/V. The automorphism group F x / V is thus not topologically transitive (cf the
last part of the proof of Lemma 2.2), which implies that F is not topologically
transitive on X. •

THEOREM 2.3. Let X be a compact group with Haar measure Ax, and let f c Aut (X)
be a countable group. Then there exists a countable ordinal w={a: a<(o} and a
collection {V o :a<a>} of closed, T-invariant subgroups of X with the following
properties:

(1) V0=X;
(2) if 0 < a < a + 1< 10 then Va+l is a proper normal subgroup of Va, Va/ Va+1 is

a Lie group, and there exists a metric on Va/ Va + l which is invariant under TVj v,,+l;
(3) if a is a limit ordinal, then Va =DOsl3<_a

 vn '-
(4) the action of F on X' = (~]Osa<w Va is ergodic, and X' is a maximal ergodic

subgroup of X.

Proof. The subgroups {Va : a e w} satisfying (l)-(3) are obtained from Lemma 2.2
by a (necessarily countable) transfinite induction argument. In order to prove (4)
we assume that W is a closed, F-invariant subgroup of X with W 2 X', and that
Tw is ergodic. Then kw(X') = 0, and we set

a0 = min {a: a <u> and Xw{ W n Va) = 0} if this is nonempty,

and

a0 = co otherwise.

If a0 is a limit ordinal then there exists a /? < a0 with 0< XW(W r> V/3)<1, contrary
to the ergodicity of F on W. Hence a0 is not a limit ordinal, and the ergodicity of
F implies that W n Vao_, is an open, F-invariant subgroup of W and hence equal
to Wei Vao_,. From the definition of a0 we know that W is not contained in Van,
and (2) implies that W has nontrivial open, F-invariant subsets, which is absurd.
Hence Tw cannot be ergodic, as claimed in [4]. •

If F is a countable group and (X, if, n) a probability space, a measure preserving
action (y,x)->Ryx of F on (X,Sf,fj.) is (strongly) mixing if lim,,^^^(Bn RyC) =

for all B, CeSf (cf. e.g. [Dy, SI]).
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THEOREM 2.4. Let X be a compact group with Haar measure \ x and let F c Aut (X)
be a finitely generated, infinite, abelian group. If y e F is an element of infinite order
then y is mixing if and only if it is ergodic, and the action of F on (X, \x) is mixing
if and only if every element y e F of infinite order is ergodic (or mixing).

Proof. If cr is a nontrivial, continuous, irreducible, unitary representation of X we
define FCT by (2.6). From the proof of Lemma 2.2 we see that F is mixing if and
only if FCT is a finite subgroup of F for every such <r. The assertion of the theorem
is an obvious consequence of this observation. •

Remark 2.5. The connection between ergodicity, mixing, and orbits of irreducible
representations for automorphisms of compact groups was first pointed out in [Ha]
(in the abelian case) and [Ka] (in the nonabelian case).

3. The descending chain condition
We leave the discussion of general groups of automorphisms of a compact group
X and impose a further condition on the pair (X, F) which turns out to have some
interesting consequences.

Definition 3.1. Let X be a compact group and let Fez Aut (X) be a countable group.
The pair (A", F) satisfies the descending chain condition (or, equivalently, X satisfies
the descending chain condition for F-invariant subgroups) if there exists, for every
sequence X => V(l) => V(2) => • • • 3 V(n) => • • • of closed, F-invariant subgroups, an
integer N > 1 with V(n)=V(N) for all n>N.

The main aim of this section is to prove the following result.

THEOREM 3.2. Let X be a compact group and let F<= Aut (X) be a finitely generated,
abelian group. Then (X, F) satisfies the descending chain condition if and only if there
exists a compact Lie group G such that (X, F) is conjugate to a shift-invariant subgroup

For the proof of Theorem 3.2 we require four lemmas, the first of which is obvious.

LEMMA 3.3. Let X be a compact group, F c Aut(X) a countable group, and let D be
a countable set. We define FD = {yD: y e F}c Aut (XD) by setting, for every y e F,

),i€D. (3.1)

If D is finite and (X, F) satisfies the descending chain condition, then (XD, FD)
again satisfies the descending chain condition. In other words, the descending chain
condition is inherited by finite cartesian products.

For the next two lemmas assume that X is a compact group and F c Aut (X) a
countable group such that (X, F) satisfies the descending chain condition. Put
Y = XZ and write Uk = TT{0 k}: Y-* Xk+\ fc> 1, for the projection onto the coordin-
ates {0, . . . , k} (cf. (2.2)). We define Fz = {yz: y e F} by (3.1) and denote by {Tn: n e
2} the shifts on Y given as in (2.3) by (Tny)(m) = y(n + m), m, neZ, ye Y. Clearly,
Tn- y1 = yz • Tn for every n e Z, y e F, and we set

A = {Tn- yz: n eZ, y e F}c Aut ( Y).
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LEMMA 3.4. Let Vbe a ^.-invariant subgroup of Y= Xz. For every k>\ consider the
closed, T-invariant subgroup

X(k) = {y(k):yeV and y(0) = y(l) = • • • =y(k- 1) = l x } c X (3.2)

(note that X(k) is the usual follower set of [ l x , . . . , 1*]). Then X(k) => X(k+ 1) for
all k>l, and there exists d K > l with X(k) = X(K) for all k>K. Put

H = UK (V)<=XK + l.

Then

V = {xeY:UK(Tmx)eH forallmeZ}.

Proof Since (X, F) satisfies the descending chain condition, there exists a K > 1
with X(k) = X(K) = X', say, for all A: > K. We set H = Y1K (V) and observe that

H' = nK ({ye V: n * _ , (y) = (lx,..., l x )} ) = {Ux, . . . , l x , x): xe X'}^ XK+1

is a closed, normal subgroup of H, and that

xKex'K-X' (3.3)

whenever (x0, x , , . . . , xK), (x'o, x\,..., x'K) e H satisfy that x, = x', for 0< /< K (in
other words, the follower set of [x0,..., xK_l] is a coset of the follower set X' of
[\x,..., l x ] ) . Our choice of X' also implies that there exists, for every x e X', y e V,
and «eZ , an element z e V with z(m) = y(m) for m < n and

z ( « ) = j ( n ) - x (3.4)

Put

YH={xe Y:UK(Tmx)eH for all me 2}. (3.5)

In order to verify that V= YH we first note that YH is shift-invariant, and that
V<= yH. Conversely, if ze YH, there exists an element yoe Y such that YlK (z) =
n K (jo). From (3.3) and (3.4) we know that we can find yx e Y with y^(m) = yo(m)
for all msK and yl(K + \) = z(K + \). By repeating this argument we obtain a
sequence (>>,, l>0 ) in y such that j^^m) = z(w) for all 1 >0 and m< K + 1. Since
V is closed there exists a >>e V with j>(m) = z(m) for all w>0.

We have proved that the set P(z) = {ye Y: y(m) = z(m) for all m>0}isa closed,
nonempty subset for every zeYH. For every zeYH, the intersection Q(z) =
O n a 0 Tn(P(T_n2))c y is again nonempty, and Q(z) = {z}. This shows that YH <= V,
i.e. that V= yH. D

LEMMA 3.5. The group Y = Xz satisfies the descending chain condition for ^-invariant
subgroups.

Proof. We use the notation of Lemma 3.4. Let (V(n), n > l) be a decreasing sequence
of closed, A-invariant subgroups of Y. We fix n for the moment and define a sequence
of closed, T-invariant subgroups (X(n, k), k> 1) of X by (3.2) with V(n) replacing
V. Our assumptions imply that, for all k, « > 1, X(n, /c)=>X(w + l, k) and X(n, k) =>
X(n, k+\). Since (X, F) satisfies the descending chain condition there exists, for
every n > l , an integer X ( n ) > l with Xn:= X(n, K(n)) = X(n,k) for all k>K(n).
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Since Xn => Xn+1 for all n > 1, we may apply the same argument once again to obtain
an integer Nzl with X':= XN = Xn for all n > N. Put K =max l s n s N K(n) and
note that X(n, k) = X' for all n > JV and fc > K Let D = {0,. . . , K}. For every n > 1,
the group H(n) =ITK( V(/i))<= XK + 1 = X ° is rD-invariant, and the sequence
(H(n), n > 1) decreases. By Lemma 3.3 there exists an N'> N with H(n) = H(N') =
H for all n > N'. From Lemma 3.4 we know that V(n) = YH(«) for all n > JV (cf.
(3.5)) and conclude that V{n) = V(N') for all n > AT. This shows that the sequence
(V(n), n > 1) is eventually constant and hence that (Y, A) satisfies the descending
chain condition. •

LEMMA 3.6. If G is a compact Lie group and d > 1 then G z satisfies the descending
chain condition for shift-invariant subgroups.

Proof. This lemma is proved by induction. Since G is a Lie group, every decreasing
sequence of closed subgroups of G eventually becomes constant, so that we may
apply Lemma 3.4 with X = G and F = {idG} to conclude that Gz satisfies the chain
condition for shift-invariant subgroups. Now assume that m > 1, and that the group
Gr" satisfies the descending chain condition for shift-invariant subgroups for every
compact Lie group G. Since Gz ' = (G2 )z, Lemma 3.4 (with X = Gz and F = Tz>»)
implies that Gz +' satisfies the descending chain condition for shift-invariant sub-
groups. This proves the assertion of the lemma. •

Proof of Theorem 3.2. First assume that (X, F) satisfies the descending chain condi-
tion. Since X is compact there exists a sequence of (finite dimensional) continuous,
irreducible, unitary representations (p n ,n>l ) of X which together separate the
points of X. For every n > 1 we put crn= pl@p2®- • -®pn, denote by Gn the compact
Lie group o-n(X) = {<xn(x): xeX}, and define a continuous group homomorphism
(pn : X -» GT

n by setting, for every x e X, y e F, <pn(x)(y) = an(y(x)). Then <pn(y(x)) =
Ty<pn(x) for every x e X, y e F, and ker (<pn) is a closed, F-invariant, normal subgroup
of X. Since ker (<p,) =>ker (<p2)

 3 • • • ^ker (<pn) => • • • for every n > l and
Pln*i ker (<pn) = {lx}, the descending chain condition implies that ker (cpm) = {lx}
for some wi>l, i.e. that <pm is a topological isomorphism of X onto a closed,
shift-invariant subgroup V<= G^, where Gm is a Lie group.

The proof is completed by showing that, for every Lie group G, and for every
finitely generated, abelian group F, the group Y = G1 satisfies the descending chain
condition for shift-invariant subgroups. We choose an integer d > 1 and a surjective
homomorphism f: Zd -* F and define a continuous, injective homomorphism £: Gr -»
GzJ by setting, for every xeG1 and every yeZd, g(x)(y)=x(t;(y)). For every
closed, shift-invariant subgroup Vc G1, the closed subgroup ^(K)c Gz is again
shift-invariant, and the descending chain condition for shift-invariant subgroups of
Gz implies that Gr also satisfies the descending chain condition. •

For the remainder of this section we assume that F is an infinite, finitely generated,
abelian group.
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COROLLARY 3.7. Let Xbea compact group, and F c Aut (X). The following conditions
are equivalent.
(1) (X, F) satisfies the descending chain condition;
(2) the group X satisfies the descending chain condition for closed, normal, Y-invariant

subgroups;
(3) there exists a compact Lie group G such that (X, F) is conjugate to a full,

shift-invariant subgroup of G{.

Proof. The implications (3)=>(1)=>(2) are either obvious or part of Theorem 3.2.
The final implication (2)=>(3) is a consequence of the first part of the proof of
Theorem 3.2. •

COROLLARY 3.8. Let G be a compact Lie group. If n>\ and Y , , . . . , Yn are closed,
shift-invariant subgroups ofGr there exists a finite set D c f with the following property:
for every k = 1 , . . . , n,

Yk = {x e Gl: TTD{ Tyx) e Hk for every y e F}, (3.6)

where

Hk = nD(Yk). (3.7)

Proof. Let ( D ( r a ) , m > l ) be an increasing sequence of finite subsets of F with
U m D(m) = F. For every m > 1 and k = 1 , . . . , n, we have that

V k i r , = { x e G ' : irD(m)(Tyx)e irO(m)(Yk) for every y e F} 3 Yk,

and f~)m Ykm = Yk. The descending chain condition implies that there exists
an m ' > l with YKm,= Yk for k = \,... ,n, and D = D(m') satisfies (3.6) and
(3.7). ' •

COROLLARY 3.9. Let G be a compact Lie group. If V c G r is a closed shift-invariant
subgroup there exists a finite set D<= F with the following properties.

(1) Y = {xeGr:nD(Tyx)eH for every yeT}, (3.8)

where H = TTD( Y) is a closed subgroup of GD;
(2) if Y° and H° denote the connected components of the identity in Y and H,
respectively, then TTD( Y°) = H°, and

Y° = {xeGr:TTD(Tyx)eH0 for every y eF}; (3.9)

(3) " C(Y) = {xeGl':TrD{Tyx)eC(H) for every yeT}. (3.10)

Proof. Corollary 3.8 implies that there exists a finite set D c f such that

Y = {xe G1: ITD{ Tyx) e TTD{ Y) for every y e F},

Y° = {x e Gl: TTD( Tyx) e TTD( Y°) for every y € F},

and

C( Y) = {x€ Gv: jrD(Tyx) e TTD(C{ Y)) for every y e F}.

Clearly irD(C(Y))cC(irD(Y))t C(Y) = {xe Gl: irD(Tyx)e C{wD(Y)) for every
-yeF}, nD(Y0)c(wD(Y))0 (the connected component of the identity in nD{Y)),
and 7rD( Y°) is an open subgroup of irD( Y). Hence TTD{ Y°) = (irD( Y))°. D

Remarks 3.10. (1) If D ' c F is a finite set with D^D' then D' satisfies (3.6)-(3.10).
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(2) Let G be a compact Lie group. The corollaries 3.8-3.9 show that the closed,
shift-invariant subgroups of G1 are in a natural sense subshifts of finite type (or
Markov subshifts) of G1.

C O R O L L A R Y 3.11. Let K be a compact Lie group and let V , , . . . , Yn be closed,

shift-invariant subgroups of K1". Then there exists a compact Lie group G and an

isomorphism ip of Kz' into Gz such that, for k = 1 , . . . , n,

ip(Yk) = {xeGz":irlid)(Tnx)eHk forevery neZd}, (3.11)

where

I(d) = {0,l}d (3.12)

and

Hk = irHd)(<p(Yk))cG'{d). (3.13)

Proof. Choose D and Hk, 1 < k s n, as in Corollary 3.8 and set G = Kd.We define
a continuous, injective homomorphism <p: Y^GZ by setting <p{x)(n) = TrD{Tnx)
for every xeK1, neZd. According to remark 3.10(1) the groups <p(Yk) satisfy
(3.11)-(3.13). •

PROPOSITION 3.12. Let X be a zero dimensional compact group. F c Aut (X), and
assume that (X, F) satisfies the descending chain condition. If G is a compact Lie
group such that (X, F) is conjugate to a full, shift-invariant subgroup YofGr then G
is finite.

Proof. Since G is a Lie group and a homomorphic image of the zero dimensional
group X, G must be finite. •

For abelian groups X and F = Z, the descending chain condition on (X, F) is
equivalent to a condition which appears in the literature (cf [Ln] and [LP]).

PROPOSITION 3.13. If X is a compact group and F<= Aut (X), then (X, F) satisfies
the descending chain condition if and only if there exist finitely many continuous,
irreducible, unitary representations x , , . . . , Tn of X such that the representations
{T( • y: y e F, 1 < i < «} together separate the points ofX. In particular, ifX is abelian,
(X, F) satisfies the descending chain condition if and only if the dual group X of X

A

is finitely generated under F (i.e. there exist characters \ i , • • • ,Xn e X such that

iXi' y- 1 — ' — M> y e n generates X ) .

Proof. If (X, F) satisfies the descending chain condition we may regard A" as a full,
shift-invariant subgroup of G1, where G is a compact Lie group (cf Theorem 3.2).
Since G possesses finitely many irreducible representations at,... ,an which
together separate points, the representations T, = o-, • irm, 1 s / < n, of X have the
property that {T, • y: y e F, 1 < i^ n} separates the points of X.

Conversely, if T, , . . . , rn are continuous, irreducible, unitary representations of
X with that property, put T=T]@T2@- • -®rn. Then G = T(X) is a compact Lie
group, and the homomorphism T:X -> G1 given by T(x)(y) = i{y(x)), y eF, xeX,
separates points and embeds X as a full, shift-invariant subgroup of G1. By Theorem
3.2, (X, F) satisfies the descending chain condition.
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The statement about abelian groups is verified by noting that, if X is abelian, the
characters {*, • y: 1 < i < M, y e F} generate X if and only if they separate the points
of X. •

LEMMA 3.14. Let X be a compact group, F<= Aut(X) a countable group, V c X d
closed, normal, T -invariant subgroup, and let W<^ V be a V-invariant subgroup which
is open in V. Then there exists a T-invariant subgroup V c W e V c X which is normal
in X and open in V.

Proof. We choose a (translation invariant) metric d on X and an e > 0 such that
B(e) = {xe V: d(\x,x)<e}^ W and observe that Y = C\xex

xWx~' is a F-
invariant, normal subgroup of X, and that B(e)<=Y<=Wcy. •

By specializing Theorem 2.3 we obtain the following result.

THEOREM 3.15. Let X be a compact group, FczAut(X), and assume that (X, F)
satisfies the descending chain condition. Then there exist closed, F-invariant subgroups
X' = Vn c Vn_, c • • • c Vo = X with the following properties.
(1) F is ergodic (or, equivalently, topologically transitive) on X';
(2) for k = 0 , . . . , n — 1, Vk+t is a normal subgroup of Vk, Vk/ Vk+l is a Lie group,

and the action of F on Vk/ Vk+l admits an invariant metric;
(3) if X is zero dimensional, then X' is an open, normal subgroup of X.

Proof. The descending chain condition implies that the ordinal a> in Theorem 2.3
is finite, which proves (1) and (2). If X is zero dimensional, X' has finite index in
X by (2), and Lemma 3.14 shows that X' has a F-invariant subgroup Y of finite
index which is normal in X. The ergodicity of F on X' implies that X '= Y. •

Our last theorem in this section shows that every pair (X, F) is a projective limit
of pairs (Xn, Fn) satisfying the descending chain condition.

THEOREM 3.16. Let X be a compact group and F<=Aut(X). Then there exists a
sequence X => V, 3 V2 z> • • • of closed, normal, F-invariant subgroups of X with the
following properties:
(1) D n Vn = {lx};
(2) for every n > l , put X(n) = X/ Vn. Then (X(M) , r.*(n)) satisfies the descending

chain condition.

Proof. As in the proof of Theorem 3.2 we choose a sequence of continuous,
irreducible, unitary representations (pB, n s l ) of X which together separate the
points of X. For every M & 1 put o-n = pt®p2®- • -®pn, Gn = an(X), and define
cpn:X-* G[

n by <pn(x)(y) = an{y(x)), yeT,xeX. By Theorem 3.2, the groups Vn =
ker{(pn), n s l , have the required properties. •

A. An approximation theorem
LEMMA 4.1. Let H be a compact Lie group with centre C(H), and let Ac C(X) be
a connected subgroup. For every character \ £ A there exists a continuous homomorph-
ism gx: H-* S' = {zeC: \z\ = 1} and an integer k> 1 such that £x(a) = \(a)k for every
ae A.

Proof. Let <p: H -* H/A be the quotient map, choose a Borel map a: H/A^> H with
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<p-a(x) = x for every xeH/A, and put c(h,x) = o-(hx)~'ha(x) for every heH,
xeH/A. We denote by U the unitary representation of H on the Hilbert space
%=L2(H/A,AH/A) given by

(Uhf)(x) = X(c(h,h->x))f(h'lx), heH, feX, xeH/A.

(U is the representation of H induced by \.) Since A is central, Ua =x(a) • I for
every a e A, where / is the identity operator on $f. We choose an irreducible
subrepresentation V of U on some finite dimensional subspace SV<= "X and put
Cx(h) = det (V,,) for every heH. Then £x : H-* S1 is a continuous homomorphism,
and ^ ( a ) =;f(a)fc for every a e A, where k is the dimension of 3if. •

LEMMA 4.2. Le/ A = T", « >2 , F c Aut (A) a finite group, and let {0}^ B e A be a

closed, connected, F-invariant subgroup. Then there exists a closed, connected, F-
invariant subgroup C of A such that B + C = A and B n C is finite.

Proof. For every a s F we consider the dual automorphism a e Aut (A ) =
GL(n, Z) c GL(n, U), and we set ««, »» = £ a e F (a\u), a\v)), u,ve U", where < •, •)

denotes the Euclidean inner product on W. The annihilator subgroup B x <= Z" c R"
of B spans a subspace V c R " of dimension rf with 1 <d<n. The subspace W =
{»eR°: ({u, v)) = 0 for all u e V} is obviously invariant under F = {a : a e F}, and
we can find a finite subset 5 c W n Q " such that 5 spans W and a {v)e S for every
a e F and ue S. Choose k> 1 such that kveZ" for every c e S and denote by H
the subgroup of Z" generated by {kv: ve S}. The group Bx + E has finite index in
Z", B i n H = {0}, and the connected component C of HX in A is an F-invariant,
closed, connected subgroup of A such that B n C is finite and £ + C = A. •

LEMMA 4.3. Lef H be a compact Lie group, and let A<^ H be a closed, normal, abelian
subgroup. Then there exists a closed, normal subgroup H'<^ H such that H'nA is
finite and H' • A = H. In particular, H/H' is abelian.

Proof. If A0 is the connected component of the identity in A then it is obviously
sufficient to prove the statement of the lemma with A0 replacing A, and we assume
for simplicity that A itself is connected. Let G c / f be the centralizer of A, i.e.
G = {he H: ha = ah for every a e A}. Since the automorphism group of A is discrete
and H is compact, the quotient group K = H/G is finite with cardinality n, say.
The group A is isomorphic to Jd for some d > 1, and we choose and fix characters
Xi,...,XdtA. such that the map a ̂ (x\(a),..., x<t(a)) from A to (S1)'/ isbijective.
Lemma 4.1 allows us to find an integer /c>l and continuous homomorphisms
& = £Xi: G-^5 1 such that £,(a) = Xi(a)k f ° r every a e A and /' = 1 , . . . , d. Denote by
ip-.H^K the quotient map, choose a map a: K -» H with <p • a(k) = k for every
keK, and set c(h, k) = o-(hky'ha(k), heH, keK.

Let V be the unitary representation of H induced by the representation
£ = £ i © - - - © & of G on Cd. Then V acts on the Hilbert space "M=l2{K)d

and can be written as V= V ( " © • • • © Vtd), where

{V^f){k) = Ci{c{h,h-xk))f{h-'k) forevery he H,fel2(K),keK. (4.1)

For every ke K we write ek for the unit vector in 12(K) given by ek(k')= 1 if
k = k', and ek(k') =0 otherwise. Then {ek: ke K} is an orthonormal basis of 12(K),
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and we identify each Vj,0, he H, 1 s i < d, with its representation as an n x M-matrix
in this basis. This allows us to regard V(l), 1 s i < d, as continuous homomorphisms
from H into the group U(n) of unitary n x n-matrices, and to consider the representa-
tion V as a continuous homomorphism V= V<0®- • -® V(d): H-* U{n)d c U(nd).

The restriction of V to A has finite kernel, and Va e D{nd) for every a e A, where
D(nd) is the group of diagonal matrices in U(nd). Eq. (4.1) shows that, for every
he H, there exist unique matrices D^\ 1 s / < d, and Ph in U(n) such that Ph is a
permutation matrix, D^] is diagonal, and

Vi/' = £>!/> • PA for every i = 1 , . . . , d.

We set Dh = D^@- • -®D{d)e D(nd), Qh = Ph®- • -®Ph, and observe that

Vh = DhQh, (4.2)

and that the map « -»Qh is a (continuous) homomorphism from H into the group
of permutation matrices in U(nd). For every he H we denote by ah the automorph-
ism of D(nd) given by ah(D)= VhDVh

x = QhDQ~h
l. Since the group F =

{ah:heH}cAut(D(nd)) is finite and Td s e = { Va : a e A}c D(nd) = J"d is a
closed, connected, F-invariant subgroup, Lemma 4.2 implies the existence of a
closed, connected, F-invariant subgroup C<= D(nd) such that C- 0 = D(nd) and
C n 0 is finite. Put A = {V :̂ h e H}c U(nd), A = A • D(nd)^ U(nd), and note that
C is a normal subgroup of A. The quotient map £:A-»A/C satisfies that

f(8) = D(m/)/C = 0/C = £(0)<=f(A), (4.3)

and we define a continuous homomorphism w : H ~> f (A) by setting

for every h e H (cf. (4.2)-(4.3)).
Put H'=Vl(£-l(<o(H)) = {h<=H: Vhew{H)}. From (4.3) and (4.4) it is clear

that there exists, for every he H, an element a e A with ah e H', i.e. that A- H' =
H'A = H. Furthermore, since w(A) = {lA-}, and since ker (£)n 6= Cn 0 and
ker(V)n A are both finite, the group H'nA is finite. •

LEMMA 4.4. Let H be a compact Lie group, A <= H a closed normal, abelian subgroup,
and let H' ^ H be a closed, normal subgroup such that H' nA is finite and H- A = H.
If 17: H -» HIH' = H" is the quotient map and n > l , put

Hh = v-\{ueH":u"' = I „-,}). (4.5)

Then ( / /„ ,«>!) is an increasing sequence of closed, normal subgroups of H,{Jn Hn

is dense in H, and Hnn A is finite for every n s 1.

Proof. For every n > l we set H"(n) = {ue H": u"'=lH}. Then H"(n) is a finite
subgroup of the abelian Lie group H", and U n H"(n) is dense in H". Hence
Hn = t]~\H"(n)) has finite intersection with A, and {Jn Hn is dense in H. •

For the remainder of this section F will denote an infinite, finitely generated,
abelian group.

LEMMA 4.5. Let X be a compact, abelian group, f c Aut (X), and assume that (X, T)
satisfies the descending chain condition. For every n > I, put Xim) = {x e X: xm = \x).
Then L L *< m ) is dense in X.
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Proof. If X is abelian, Theorem 3.2 implies that (X, Y) is conjugate to a closed
subgroup Y of (T*)1 for some fca 1, where T = R/Z. Hence the dual group Y is
isomorphic to a quotient group of the direct sum of infinitely many copies of Z,
and we can find a decreasing sequence (V n ,n>l) of subgroups of Y such that
Y*/Vn is finite for every n > l and (~)nsl K={0}. Put An = Vi<=X, where Vx

n is
the annihilator subgroup of Vn. Since A*= Y*/ Vn, An is finite, and Un A. is dense
in X. For every n > l w e can find a n m > l such that An c A1'"0, and this proves
that U m *< m ) is dense in X. •

LEMMA 4.6. Lef G be a compact Lie group, Y<=: G1 a full, shift-invariant subgroup,
and let B c Y be a closed, normal, abelian, shift invariant subgroup. Choose a finite
set D c r such that

Y = {yeGv:irD(Tyy)eH for every yeY}

and
B = {yeGv\TTD{Tyy)eA for every yeY},

where H = nD( Y) and A = irD{B) (cf. Corollary 3.8). Then Ac H is a closed, normal,
abelian subgroup. LetH'<= H be chosen as in Lemma 4.3, denote by-n: H -* Hf H' = H"
the quotient map, and define (//„, n > 1) by (4.5). For every n > 1 put

Yn = {yeGr:TrD(Tyy)eHn for every ye T}. (4.6)

Then (Yn, n > l ) is an increasing sequence of closed, normal, shift-invariant subgroups
of Y, U n y» >s dense in Y, and Ynr\ B is zero dimensional for all ml.

Proof Consider the homomorphism t|: Y-*H"y given by i\{y)(y) = i){TrD(Tyy)),
yeT, ye Y. Since H" is abelian, the group t|( Y) = Z c H"r is abelian. Furthermore
Yx = ker (t|), and our choice of H' implies that V, n B is zero dimensional. Lemma
4.5 shows that the elements of finite order are dense in Z. Hence the subgroups
Z(n) = {zeZ: z" = lz}, n > l , have dense union in Z. From (4.5) it is clear that
T\~l(Zin)) <= Yn, and hence U n Yn is dense in Y. Since Hnn A is finite we also know
that Yn n B is zero dimensional for every n > 1. •

THEOREM 4.7. Lef X be a compact group, F<=: Aut (X) a finitely generated, abelian
group, and assume that (X, F) satisfies the descending chain condition. Suppose that
B^ X is a closed, normal, abelian, Y-invariant subgroup. Then there exist a compact
Lie group H, a closed, normal, abelian subgroup A<^ H, an increasing sequence
(Hn, «>1) of closed, normal subgroups of H and a continuous conjugacy <p of (X, Y)
onto a full, shift invariant subgroup Y of Hi with the following properties.
(1) For every n > 1, Hn A = H, and HnnA is finite;
(2) ifXn = (p'\ YnHl

n), n > l , then (Xn, n > 1) is an increasing sequence of closed,
normal, Y-invariant subgroups of X such that [_jn Xn is dense in X, and <p(Xn)
is a full, shift-invariant subgroup of Hl

n for every n > l ;
(3) <p(B)= YnAv, andcp{B) is a full subgroup of A1';
(4) for every n s: 1, Xn n B <= <p~\Hn n A)1 and hence zero dimensional, since Hhn A

is finite.

Proof. Use Theorem 3.2 to find a compact Lie group G and a continuous conjugacy
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<p:X-*G' of X into G1 such that Y = <p(X) is a full, shift-invariant subgroup of
G1. We choose D<=F, He GD, and A<= H as in Lemma 4.6 and define (Hn, n > 1)
by (4.5) and ( y n , « > l ) by (4.6). If Yn c (//„)'" is not full we re-define Hn as
Hn = 7T(ir((V^), n a l , without affecting any of the other assertions. The proof is
completed by setting Xn = <p~\ Yn), n > 1. D

COROLLARY 4.8. Let X be a compact group such that X° is abelian, where X° is the
connected component of the identity in X, F c: Aut (X), and assume that (X, F) satisfies
the descending chain condition. Then there exists an increasing sequence (Xn, n > l )
of closed, normal, zero dimensional, F-invariant subgroups of X such that {Jn Xn is
dense in X.

Proof. Apply Theorem 4.7 to B = X° and observe that A is open in H, H/ A is finite,
and hence Hn is finite and Xn is zero dimensional for every n > 1. •

COROLLARY 4.9. Let X be a compact, connected group, F<= Aut (X), and assume that
(X, F) satisfies the descending chain condition. Then there exists a compact, connected
Lie group H, an increasing sequence (Hn, n > 1) of closed, normal, subgroups of H,
and a continuous conjugacy <p of (X, F) onto a full, shift invariant subgroup Y of H1

such that the following conditions are satisfied for every n > 1:
(1) the centre C(Hn) of Hn is finite;
(2) Yn =Yn(Hn)

r is a full subgroup of ( t f j 1 ;
(3) ifXn = <p~\Yn), n > 1, then \Jn Xn is dense in X.

Proof. Put B = C(X) in Theorem 4.7 and observe that, if H is a compact, connected
Lie group and K c H a closed, normal subgroup, then C(K)<= C(H). •

5. Expansive automorphisms of compact groups
Definition 5.1. Let X be a compact group, and let Fez Aut (X) be a countable group.
The pair (X, F) is expansive (or F acts expansively on X) if there exists a neighbour-
hood N of the identity in X such that n y 6 r y(N) = {\x}. If G a compact group,
and X c G1 a closed, shift-invariant subgroup, then X will be called expansive if
the shifts Tr act expansively on X.

THEOREM 5.2. Let X be a compact group, F c Aut(X) a finitely generated, abelian
group, and assume that (X, F) is expansive. Then (X, F) satisfies the descending chain
condition. Conversely, if X is zero dimensional and (X, F) satisfies the descending
chain condition then (X, F) is expansive.

Proof. Since the action of F on X is expansive, there exists a neighbourhood N of
\ x with P|y e r y(N) - {lx}- The compactness of X implies the existence of a finite
dimensional, continuous, unitary representation or of X and of an e > 0 such that
N' = {xeX: ||o-(x)-o-(lx)|| < e}<= ]V, where || • || denotes the operator norm. We
put G = cr(X), observe that G is a compact Lie group, and define a continuous,
injective homomorphism (p-.X-^G1 by tp(x)(y) = o-(y(x)) for every xeX, yeF.
By Theorem 3.2, (X, F) satisfies the descending chain condition. The converse follows
from Proposition 3.12. •

If X is a compact group and aeAut (X) we say that (X, a) is expansive or
satisfies the descending chain condition if the corresponding condition holds for
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(X, {a": ne Z}). Similarly we call (X, a) conjugate to a shift-invariant subgroup Y
of Gz, where G is a compact Lie group, if (X, {a": n eZ}) is conjugate to Y.

THEOREM 5.3. Let X be a compact group and let a e Aut (X) be expansive. Then there
exists a compact Lie group G whose connected component G° of the identity is abelian,
and such that (X, a) is conjugate to a full, shift-invariant subgroup ofGz. In particular,
the connected component X° of the identity in X is abelian.

The assertion that X° must be abelian was proven in [La, Corollary 3.3]. We
shall derive Theorem 5.3 from certain properties of shift-invariant subgroups of Gz,
where G is a compact group. The following result shows that every automorphism
a of a compact group X which satisfies the descending chain condition can be
represented as a one step Markov shift.

PROPOSITION 5.4. Let X be a compact group, a e Aut (X), and assume that (X, a)
satisfies the descending chain condition. Then there exist a compact Lie group G, a
full subgroup H <= G x G, and a continuous conjugacy tp ofX into Gz with the following
properties.
(1) <p(X)=YH, where

YH={yeGz:(y(k),y(k+l))eH for every keZ}; (5.1)

(2) if G°, H° and X° are the connected components of the identity in G, H, and X,
respectively, then H° is a full subgroup of G°x G°, and

<p{X°) = {yeGz:(y(k),y(k + l))eH° for every keZ}. (5.2)
In particular, X is connected if and only if H is connected.

Proof. This is a consequence of the Corollaries 3.9 and 3.11, applied to the groups
X and X°. If G, <p and H e Gx G satisfy (5.1) then <p(X°)<= (G°)z. Since X/X°
is zero dimensional and G and H are Lie groups, 7r(0((<p(X0)) and TT|0,i}(<p(x0)) are
open subgroups of G° and H°, respectively, hence Tr{0]{(p{X°))= G°, and
Trm)(<p{X0)) = H° is a full subgroup of G°xG°. This proves (5.2). •

Definition 5.5. Let G be a compact group. A full, shift-invariant subgroup X <= Gz

is called a Markov subgroup if there exists a (necessarily full) subgroup H a Gx G
such that X = YH, where YH is defined by (5.1).

Proposition 5.4 implies in particular that every expansive automorphism of a
compact group X is conjugate to the shift on a Markov subgroup of Gz, where G
is a compact Lie group. For the following lemma we fix a compact group G (not
necessarily Lie) and a Markov subgroup YH <= Gz, where H<= GxG is a full
subgroup (cf. (5.1)). For every geG and neZ, put

FH(g,n) = {y{n):ye VH and y(0) = g}e G (5.3)

and

FH(n) = FH(la,n). (5.4)

Then FH(n) is a closed, normal subgroup of G with

FH(n)cFH(n + l) and FH(-n)c FH(-n -1) (5.5)
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for every n >0, since (1G, 1G) e H. Note that FH(g, n), n > 1, are the usual follower
sets of symbolic dynamics, and FH(g, n), n<— 1, are the predecessor sets. From
the definition of FH(g,n) it is clear that the map O'n:G^G/Fh(n), obtained by
setting

O'n(g) = FH(g,n)/FH(n), (5.6)

is a well denned, continuous group homomorphism with kernel FH(-n) and induces
a continuous isomorphism

6n:G/FH(-n)^G/FH(n). (5.7)

The next lemma (and its proof) is largely contained in Lemma 4 in [MT] (cf.
also [Ki]). The reason for presenting it in such detail is that it provides one of the
main steps in many of the later proofs in this paper, where the precise identification
(in terms of predecessor and follower sets) of the various subgroups and maps
involved will be of crucial importance.

LEMMA 5.6. Put A= F H ( - l ) n FH(1), G'=G/FH{\), H' =
H/(FH(l) x FH( l ) )c G'xG', and denote by -q-.G^G' the quotient map. The shift
commuting homomorphism TJ: YH -» G'z given by f\(y)(n) = r](y(n)), neZ, ye YH,
has the following properties.

0 ) ti( YH)=YH., (5.8)

where YH<= G'z is defined by (5.1) with H' replacing H.

(2) r H n F H ( l ) z = ker(T,) = A2. (5.9)

(3) IfFH{n), neZ, is defined by (5.4) with YHc G'z replacing YH, then

FH.(n) = FH(n + l)/FH(l) (5.10)

for every n > 1.
(4) There exists a Borel isomorphism tp: YH -* Az x yH. which carries the shift on YH

to the cartesian product of the shifts on Az and YH.
(5) IfG is finite the map <p: YH -» Az x YH- in (4) can be chosen to be a homeomorphism.
(6) / / YH is expansive then A is finite and YH. is again expansive.

Proof. From the definition of FH(±1) it is clear that h e FH(1) (h e FH(-1)) if and
only if (1G, h)e H ((h, l c ) e H). In particular, if 17': H -» H' denotes the quotient
map, and if (g, h)e H and rj'(g, h) = (r)(g), TJ(/J)) = (U, v)e H', then (g, hk)e H and
17'(g, hk) = (M, V) for every ke FH{\). It follows that there exists, for every (M, v)e FT,
and for every heG with r/(/i) = v, an element ge G with r/(g) = u and (g, /»)e H.
This implies (5.8).

Now assume that (g, /i)eker (v'). Then g,/ ieFH(l) , i.e. {(lc , h), (g, lG)}c
ker(r?')c W. In particular, g€ F H ( - l ) n FH(1). This shows that yeker( i i )c yH if
and only if y{n)eA for all neZ. From the definition of YH it is clear that Azc yH.
We have proved (5.9), and (5.10) follows from the definition of FH(n), n > 1.

We denote by T : G - > G / A the quotient map, choose a Borel map w:G/A-*G
with <w(lc/A) = l c and r- co = idG/A, and define a Borel map u>: (G/A)z-> YH c Gz

by (o(u)(k) = <o(u(k)), IceZ, u e (G/A)z. Equation (5.9) shows that the continuous
homomorphism 1: YH -* (G / A)z with -r(y)(k) = r(y(k)), keZ, yeYH, has the
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property that ker (-r) = ker (t|). It follows that map 6: Y-» A z x YH., given by 8(>>) =
(y • io(i(y))~\ i\(y)), y e Y, is a Borel isomorphism, and that 9 • T, = (T, x T\) • 8,
where 7"', is the shift on YH . If G is finite, then w and « are both continuous, and
we have proved (4) and (6).

If YH is expansive, then Az<= YH is again expansive, which implies that A is
finite. We write p : G-» G/A for the quotient map and observe that p is a homeo-
morphism of a neighbourhood N of the identity in G onto a neighbourhood N' of
the identity in G/A. By decreasing N, if necessary, we may assume that YH n Nz =
{la

z} (the existence of such a neighbourhood N <= G is equivalent to the expansive-
ness of YH). Define a shift commuting homomorphism p : YH -»(G/A)zbyp(_y)(n) =
p(y(n)), neZ, and put Y ' = P ( Y H ) - If Y' is not expansive there exists a point
ue Y 'niV' z such that M ^ 1 ( G / A ) Z . If w=p(_v) for some ye YH we can choose a
point ze Az with M(/i)z(n)~'e AT for all n e Z . Since u z 1 e YH n N z , but uz' ^ lGz
we have arrived at a contradiction. Hence Y' is expansive. The continuous
homomorphism -q: YH -» G'z has kernel Az and therefore induces a continuous,
shift commuting isomorphism r)': Y'= Y/AZ-> YH>, and the expansiveness of Y'
implies that YH- is expansive. This proves (5). •

PROPOSITION 5.7. Let G be a compact group and let Y = YH <= G z be a Markov
subgroup. We define FH(n), neZ, by (5.4). For every k^O we set Yk= Yn FH(k)z,
Gk = G/FH(k), denote by -qik): G -> Gk the quotient map, and define a shift commuting
map T](k): Y^G\ with ker(t )

( ' °)= Yk by i\ik)(y)(n) = T?"
t)(>'(n)), n e Z . 77ie map*

tl"1', fe>0, have the following properties.
(1) t|(k)( Y) = YHk <= Gz, w/jere Hk = H/(FH(k) x FH(Jk)), and w/iere YHk is

by (5.1) wif/i ^ and Gk replacing H and G.
(2) Yk+1/ Yk =f\{k)( Yk+i) = A z

+ | /or some closed, normal subgroup

/ / G is a compact Lie group with finite centre then the following stronger assertions
are true.
(3) There exists an integer K > 1 with FH(k) = FH(K) for every k> K, and a con-

tinuous automorphism T of the group GK such that HK ={(u, T(M)): t / e GK}.
Hence

Y/ YK =-t]
iK)(Y)=YHK={veGz

K:v(n + l) = r(v(n)) for every neZ}=GK,

and this isomorphism sends the shift T, on i\lK){ Y) to the automorphism T on GK.
(4) There exists a Borel isomorphism

<p: Y^Af xAf x- • - x A | x G K

which carries T, to T\l) x • • • x T\K> x r, and <p can be chosen to be a homeomor-
phism whenever G is finite.

(5) The restriction ofTx to Yk is ergodic, and T, is ergodic on X if and only ifGK = {1}.
(6) If YH is expansive, then G is finite.

Proof. In order to prove (1) we apply Lemma 5.6 to see that t|(1)( Y) = YH| and note
that the groups FHi(n), n e Z , defined by (5.4) with YH| and G, replacing YH and
G, satisfy that FHi(n) = F H ( M + 1 ) / F H ( 1 ) for all « > 1 . Repeated application of
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Lemma 5.6 shows that r\ik)(Y)= YHk<zGf and FHk(n) = FH(n + k)/FH{k) for k,
« a l , where FHk(n) is again obtained from (5.4) by using YHk and Gk instead of
YH and G. All the assertions in (1) are now obvious.

For every k>0, put Al+1 = F H l ( - l )nF H l ( l ) c :F H ( t + l ) /F H ( l i )cGt , where
H0=H and G0=G. From Lemma 5.6 we know that r\{k)(Yk+l) =i\{k)(Y) n FHk(l)

z =
Ak+i, and this proves (2).

If G is a compact Lie group with finite centre then G has only finitely many
closed, normal subgroups. In particular the sequence (FH(n), n > 1) must eventually
become constant. The first part of the proof shows that FHli(n) =
FH (n + K)/ FH (K) = {1 Ck} for every n > 1. Since GK is a quotient of a compact Lie
group with finite centre, GK again has finite centre, and we conclude that there
exists an L > 1 with FH/<( — n) = FHK( — L) for all n a L . For every n > 1 we denote
by 0n:GK/FHl<(-n)^> GK/FHK(n) = GK the isomorphism described in (5.7) and
put T = 0L+10Z': GK -»GK. From the definition of T it is clear that HK =
{(w, T(M)): Me GK}, and the other statements in (3) are immediate consequences of
this.

Repeated application of (4) and (5) in Lemma 5.6 yields (4), and (5) is obvious
from (4), since GK has no ergodic automorphisms. Finally, if Y is expansive, Lemma
5.6(6) implies that YHk is expansive and Ak is finite for k = 1 , . . . , K. In particular,
YHK ={ve G\: v(n + 1) = r(v(n)) for all neZ} is expansive. Since GK is a compact
Lie group with finite centre, Aut (GK) is compact, and hence there exists a metric
d on GK which is invariant under Aut(G K ) and in particular under T. For every
£ > 0 , denote B{e)<=- GK the e-ball in the metric d centred at \GK. If GK is not
finite, there exists, for every e > 0 , a point 1CK ^ UF e J3(e),and we define VF e YHK n
B(e)z by setting Ve(n) = T"(UF) for every n eZ. This contradicts the expansiveness
of YHK, and we conclude that GK must be finite. From (l)-(3) we see that Y is
zero dimensional, and Proposition 3.12 shows that G is finite. •

COROLLARY 5.8. (cf. [Ki] and Theorem A in [MT].) Let X be a compact, zero
dimensional group, and let a e A u t ( X ) be an expansive automorphism. Then there
exist finite groups A , , . . . , AK, GK, an automorphism T of GK, and a homeomorphism
<p : X -> Af x • • • x A K x GK which carries a to T\'' x • • • x T\K' x T, where T\'' denotes
the shift on Af. The automorphism a is ergodic if and only if GK ={1}.

Proof. Theorem 5.2 and Proposition 3.12 allow us to regard X as a Markov subgroup
Y= YH a G z , where G is finite. Now apply Proposition 5.7(4) and (5). •

Proof of Theorem 5.3. We have to show that X° is abelian. Assume for simplicity
that X = X° and that a is expansive. By Theorem 5.2 (X, a) satisfies the descending
chain condition. We apply Corollary 4.9 and choose a compact, connected Lie group
G, an increasing sequence ( G B , n > l ) of closed, normal subgroups of G with finite
centres such that [_Jn Gn is dense in G, and a continuous conjugacy <p of (X, a)
onto a full, shift invariant subgroup Y<=• G z such that t j n Xn is dense in X, where
Xn = (p~l(Yn) and Yn = YnGz

n. Then Yn is expansive, and Proposition 5.4 and
Proposition 5.7(6) together imply that Gn is finite for every M > 1 . Since G is
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connected and Gn is normal in G we conclude that Gn c C(G), and the density of
U n Gn in G implies that G is abelian. •

PROPOSITION 5.9. Let X be a compact group, and let a e Aut (X). Denote by X° the
connected component of the identity in X and write a0 and a' for the automorphisms
induced by a on X° and X/X°, respectively. Then there exists a homeomorphism
tl/:X^X°xX/X0 such that i]/- a- 4i~x = aox a'.

Proof. First assume that (X, a) satisfies the descending chain condition. We apply
Proposition 5.4, use the notation employed there, and assume for simplicity that
X = YH and that a = Tl (cf. (5.1)). We can find a homeomorphism of G onto
G°x G/G° which acts as the identity on G°, and this homeomorphism induces a
homeomorphism of H and H°xH/H°, since H°= H n ( G ° x G°). From Proposi-
tion 5.4(2) we see that YH is homeomorphic to y°x YH/ Y°, and this homeomorph-
ism conjugates 7", in the required manner.

If (X, a) does not satisfy the descending chain condition, Theorem 3.16 implies
the existence of a decreasing sequence (V(n), n > 1) of closed, normal, a-invariant
subgroups of X such that f~]n V(n) = {lx} and (X/ V(n), ax/V(n)) satisfies the
descending chain condition for every n > 1. For every n > 1, X/ V(n) is homeomor-
phic to X0/ V(n)x[X/ V(n)]/[X0/ V(n)] in the manner just described, and it is
not difficult to verify that this splitting can be chosen consistently and therefore
extends to the projective limit (X, a). •

COROLLARY 5.10. Let X be a compact group, and let a e Aut (X) be ergodic. Then
a0 is ergodic on X°.

Remark 5.11. The last statement in Theorem 5.3 generalizes a result in [Wu].

6. The structure of expansive automorphisms of compact groups
Let X be a zero dimensional compact group, and let a be a continuous automorphism
of X such that (X, a) satisfies the descending chain condition. From Theorem 5.2
we know that a is expansive. In [Ki] the first named author proved that the dynamical
system (X, a) is topologically conjugate to one of the following three models,
depending on the entropy h(a) and the topological transitivity of a (cf. Corollary
5.8):
(1) if h(a) = 0 then a is an automorphism of a finite group X;
(2) if h(a)>0 and a is topologically transitive (or ergodic) then h(a) = log m for

some m >2, and (X, a) is topologically conjugate to a full w-shift;
(3) if h(a)>0 and a is not topologically transitive then (X,a) is topologically

conjugate to the direct product of a full w-shift and an automorphism of a
finite group.

We refer to [Ki] for examples. If the group X is connected we obtain a much
more intricate class of automorphisms. The first description of an expansive
automorphism of a compact, connected group X (which has to be abelian by
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Theorem 5.3) was given by Williams [Wl] in 1955, and Reddy [Re] gave examples
of expansive automorphisms of finite dimensional tori in 1965. Later studies of
expansive automorphisms of compact, connected abelian groups are due to Lawton
[Ln], Aoki and Dateyama [AD], Aoki [Ao], Miles and Thomas [MT], Wilson [Ws],
Arov [Ar] and Yuzvinskii [Yu].

When describing the general form of an automorphism a of a compact,connected,
abelian group X such that (A", a) satisfies the descending chain condition, Proposi-
tion 5.4 allows us to assume that

X = YH = {xe(J"f:(xk,xk+l)eH for every keZ}, (6.1)

and that a = T, (the shift on X), where n a 1 and H <= T" x T" is a full, connected
subgroup. If h(a) <oo or, equivalently, if the topological dimension of YH is finite,
the two coordinate projections TT, : / /->¥", i = \, 2, must be finite-to-one. In this
case an elementary argument shows that there exists a unique matrix A e GL(n, Q)
such that H is the image of the subspace LA = {(v, Av): veU"}cU" xR" under the
quotient map ( c : i " x R % T " x T". Conversely, if A e GL(n, Q), define LA as above,
and set

H(A) = K({(v,Av):veU"}). (6.2)

Then H(A) is an n-dimensional subtorus of T" xT", and the two projection maps
•n-i : / / -»¥", i = 1, 2, are finite-to-one. We denote by YHiA)<=(T")z the group defined
by (6.1) with H = H(A). By combining this discussion with Theorem 5.3 we have
proved the following theorem.

THEOREM 6.1. Suppose that either of the following two conditions is satisfied:
(1) X is a compact, connected group and a e Aut (X) is expansive,
or
(2) X is a compact, connected, abelian group, and a e Aut(X) is an automorphism

with finite entropy such that (X, a) satisfies the descending chain condition.
Then there exists an integer n > 1, a matrix A e GL(n, Q), and a continuous isomor-

phism <p:X-> YH(A) such that <p(a(x))= TA<p(x), where TA denotes the shift on the
group YH(A) defined by (6.1) and (6.2).

The assertion of Theorem 6.1 under assumption (1) is contained in [Ln], as is
our next result.

PROPOSITION 6.2. Let n > 1, Ae GL(n, Q), and let H(A) and YH{A) be defined by
(6.1) and (6.2). The shift T = TA is topologically transitive (or, equivalently, ergodic)
on X = YH(A) if and only if A has no eigenvalues which are unit roots, and T is
expansive if and only if A has no eigenvalues of modulus 1.
Proof. In order to prove the proposition we have to compute the action of a on
the dual group X of X. Put

\me2 /
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where <UmeZ (A')mZn) denotes the subgroup of Q" generated by U m £ Z (ATI",
furnished with the discrete topology. Let E = £ z Z" denote the dual group of (T")z.
The annihilator Ar±<= E of X <= (T")z is generated by

{k = ( . . . , fc_,, k0, kx,...) e S: / e I, dk, = -BrA:,+ 1, and it, = 0 for i£{l, 1+ 1}},

where d s 1 is an integer such that B = d • A has integer entries. Now consider the
homomorphism ij/:S-*Z"[A', (A')~'] defined by

for every k = (... ,fc_1,fc0,A:I,.. .)eS. It is clear that ip is well defined, and that
ker(i//) = X±. Hence </* defines an isomorphism rj of X = E/X~L onto Z"[A, A"1],
and

^ ( T ^ r H ^ V * ) for every * e **,

where T is the automorphism of X dual to the shift T on X. We may thus assume
that

X* = Z"[A\{ATll

and that T is multiplication by A' on Z"[A', (A1)'1]. The first assertion in Proposi-
tion 6.2 is now obvious: 7" is ergodic if and only if A' has no finite orbits on
Z"[A',(A')~1] other than {0}, i.e. if and only if A' - and hence A - has no unit
roots as eigenvalues. The second assertion is Theorem 21 in [Ln] (the equivalence
of topological transitivity and ergodicity is proved in Theorem 2.1). •

When a is expansive it has local product structure, shadowing, and hence Markov
partitions (cf. [Bo] and [Fr]). The classification of toral automorphisms by topologi-
cal conjugacy is achieved by observing that the action of a toral automorphism
given by a matrix A e GL(n, Z) on the first homotopy group of T" is isomorphic to
the action of A' on Z". Hence two such matrices A, A' induce topologically conjugate
automorphisms of T" if and only A and A' are similar over Z, i.e. if A and A' lie
in the same conjugacy class of GL(n,Z). In fact, any topological conjugacy of two
ergodic toral automorphisms is given by an algebraic isomorphism of the underlying
tori (cf. [AP]). Arov has obtained an analogous result for automorphisms TA of
YH(A). In this context the action of A' on Z" can be replaced by the action of A
on the Cech homology group HX(YH{A), T).

LEMMA 6.3. Hx(YH(A),J)=YhHA), and the automorphism induced by TA on
HX{YH{A),1) is equal to TA.

Proof. For every Jt>O,the groupfi* =(A')~kZ" + - • •+Z" + - • • + (A')kZ" is a finitely
generated subgroup of Q" and hence isomorphic to Z". The map A' :flk-*Clk+i is
injective, and Z"[A', (A1)'1] is equal to the direct limit

AT AT AT

n , — » n 2 — » n 3 — > • • • . (6.4)
We obtain a corresponding inverse limit for the dual group YHiA) of Z"[A', (A1)'1]:

A A A

X,< X2* X3 * , (6.5)
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where each Xk = £lk* = T". Since H,(T", T) = T" (cf. [ES]), we conclude from (6.4)
and (6.5) that Hx(YHiA), T)= YH{A). The automorphism (TAf of 1"[A', (AT']
dual to TA corresponds to multiplication by A' in the direct limit (6.4). Hence TA

corresponds to the map A in the projective limit (6.5), and the automorphism
induced by TA on //,(YH(A),J) is equal to TA. •

THEOREM 6.4. Let A e GL(m, Q), y4'e GL(n, Q), and consider the shifts TA and TA

on YH{A) and YH{A1, respectively. The following conditions are equivalent.
(1) (V«(A), TA) and {YmA), TA) are topologically conjugate;
(2) m = n and there exists a continuous, shift commuting group isomorphism <p : YH{A) -»

(3) m = n and there exists a group isomorphism ip*:Z"[A", (A"y"]^lm[A', (A')~l]
such that 4i" • A" = A' • t//'.

Proof. For Ae GL{m,Z) this result is due to Adler and Palais (cf. [AP]), and for
A e GL(m, Q), the equivalence of (1) and (2) was proved by Arov. The implications
(3)O(2)=J>(1) are obvious. By Lemma 6.3, any homeomorphism \: YH(A)-> YmA)

with^- TA = TA • x induces a group isomorphism i//: //,(YH(A), T)-> H}(YH{A), T)
such that rp • TA = TA • $. The dual isomorphism ^•.Z"[A",(A")~1]^
Zm[A',(A')~l] satisfies that i/T • A" = A' • t/T, as claimed in (3). The groups
Zm[A', ( A ' H c Q " and Zm[A",(A"yl~\cQ" have dimension m and n, respec-
tively, over Q. Since Zm[A', (A')"1] and Z"[A", (A")1] are isomorphic as groups
we conclude that m = n. This proves that (1)=>(3). •

Remarks 6.5. (1) For every AeGL(n,Q), the path-connected component of the
indentity in VH(A) is an immersed copy of Uk xJ"~k for some k with 0< fc< n: the
dual group Z"[A', (A1)""'] c Q" <= |R" spans R", hence there exists a homomorphism
from R" into yH(/n whose kernel is discrete in U", and the integer n is clearly
maximal with respect to this property. It is not difficult to check that the topological
dimension of YmA) is, in fact, equal to n (the homological dimension of YH{A) is
equal to n by Lemma 6.3).

(2) The (topological or metric) entropy h(TA) of TA has been computed by
Abramov [Ab], Arov [Ar], and Yuzvinskii [Yu]: if P(x) = x"+ an_lx"~> + - •• + <*<,
is characteristic polynomial of the matrix Ae GL(n,Q) then

h(TA) = \ogs+ I log |A(/)|, (6.6)
| A ( i ) | > l

where s is the least common denominator of {a 0 , . . . , an_t} and {A(l), . . . , A(n)}
is the set of eigenvalues of A. This computation follows easily if we know that TA

has Markov partitions: the entropy h(TA) is the growth rate of the periodic points
which can easily be computed. The same formula holds, however, for the entropy
h{a) of the automorphism a defined by A on the group X = (Q") , although a will
in general have no periodic points other than the identity (cf. Example 7.7(1)). A
recent proof of Yuzvinskii's formula can be found in [LW].

(3) According to Theorem 6.4, two automorphisms TA and TB arising from
matrices A, Be GL(n,Q) are topologically conjugate if and only if there exists a
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group isomorphism tfi":Zn[A', (A')-']^Zn[BT, (BT)~l] such that if • A' = BT• ty\
This problem has been shown to be algorithmically decidable by Grunewald and
Segal [GS].

(4) As we have seen in (6.5), the group YH(A) is a finite dimensional, projective
limit of tori, i.e. a generalized solenoid (it may, of course, degenerate to a torus, as
Example 6.6(1) shows).

(5) Arov has proved that, if A, A'e GL(m, Q) have no eigenvalues of modulus
one, every topological conjugacy between (YH(A), TA) and (VH(A), T

A) is given
by a continuous group isomorphism of YH{A) and YH(A1. This can also be verified
by using Theorem 6.4 and the argument in [AP].

Examples 6.6. (1) Let AeGL(n,I). Then H(A) = {(s, t)el" xj": t = As}, f =
Z"[A', (A')"1] = Z", X = T", and TA is the toral automorphism associated with the
matrix A.

(2) Let A = [\ | ] . Then Z\A\ (A'y1] = Z2[l/2].
(3) Let A = [3

t *], B = [2 1]. Both matrices lie in GL(2, Z), so topological conjugacy
is the same as similarity over Z. These matrices are similar over Q, but a simple
computation shows that if AU = UB and U has integer entries then det (U) e 2Z.
Hence the shifts on YH{A) and YH(B) are not conjugate. This example is due to
Williams [W2].

(4) Let A = [\ 1], B = [6
4 *]. As in (2), Z2[A', (AT1] = Z2[BT, (Br)"1] = Z2[l/2].

The matrix U = [l ?] is an automorphism of Z2[l/2] which conjugates A and B, so
the shifts TA and TB are topologically conjugate. •

The following description of arbitrary, expansive automorphisms of compact
groups can also be deduced from Theorem A in [MT].

THEOREM 6.7. Let X be a compact group and let aeAut(X) be expansive. Then
(X, a) is topologically conjugate to a cartesian product of the form (F, T) X (Sm, T)
or (F, T)x(2m, T)x(YH(A), TA), where
(1) F is a finite group and r an automorphism of F;
(2) 1m is the full m-shift for some m > 1 and T the shift on Sm ;
(3) n > 1, A e GL(n, Q) is a matrix without eigenvalues of modulus 1, and YH{A) and

TA are defined by (6.1) and (6.2).

Proof. By Theorem 5.2 {X, a) satisfies the descending chain condition. The
assertion follows from Proposition 5.9, Theorem 6.1, Proposition 6.2, and
Corollary 5.8. •

7. Periodic points of automorphisms of compact groups
Definition 7.1. Let X be a compact group and let r<= Aut (X) be a countable group.
A point xeX is a periodic point off (or F-periodic) if rx = {y(x): yeF} is finite.
If a e Aut (X), then x e X is a periodic point of a (or a-periodic) if a"(x) = x for
some n > l .

THEOREM 7.2. Let X be a compact group such that X° is abelian, where X° is the
connected component of the identity in X.IfTa Aut (X) is a finitely generated, abelian
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group and (X, F) satisfies the descending chain condition then the set of r-periodic
points is dense in X.

THEOREM 7.3. [La]. Let X be a compact group, and let FcAut(X) be a finitely
generated, abelian group which acts expansively on X. Then X° is abelian.

COROLLARY 7.4. If F c Aut (X) acts expansively on X then the set of T-periodicpoints
is dense in X.

THEOREM 7.5. Let X be a compact group, and let F <= Aut (X) be a finitely generated,
abelian group such that (X, F) satisfies the descending chain condition. If a e F is
ergodic then the set of a-periodic points is dense in X.

COROLLARY 7.6. Let X be a compact group, and let a e Aut (X) be ergodic. Suppose
that there exists a finitely generated, abelian group F c Aut (X) which commutes with
a, and such that (X, F) satisfies the descending chain condition. Then the set of
a-periodic points is dense in X.

The proofs of the Theorems 7.2, 7.3 and 7.5 will occupy following three sections.
Corollary 7.4 is an immediate consequence of the Theorems 5.2, 7.2 and 7.3, and
Corollary 7.6 is obvious. We illustrate these results with a few examples which show
that the hypotheses in these theorems cannot be removed in general.

Examples 7.7. (1) (Furstenberg - cf. also Example 2 in [MT].) Let X=Q* be the
A A

solenoid, and let a be the automorphism of Q given by a (q) = q • 3/2 for every
q e Q. The automorphism a of X dual to a has no periodic points other than the
fixed point \x- Indeed, for every n > 1, the set {xe X: a"(x) = x} = Sn is a closed
subgroup of X, and its annihilator is S^ = {q • (3n/2n - 1): q e Q} = Q. Hence Sn =
{lx} for every w>l. Clearly Q is not finitely generated under a". If Y = (Z[\/6]f,
where Z[l/6] = {k/6': keZ, /> 1}, then Z[l/6] is finitely generated under the
automorphism ay induced by a on Y, and the periodic points of ay are dense by
Proposition 3.13 and Theorem 7.2, or by [LP].

(2) For every Ae GL(n, Q), the shift TA on YH{A) defined in (6.1) and (6.2) has
a dense set of periodic points by Theorem 7.2, since (YH{A),T

A) satisfies the
descending chain condition.

(3) Let X = SU(2), and let h e X be an element of infinite order (i.e. ft" ^ 1 for
all n 5^0). The inner automorphism a(x) = hxh~\ xe X has no periodic points other
than fixed points. The set of fixed points of a is the closure of {h": neZ} in X,
which is a circle. Clearly (X, a) satisfies the descending chain condition, but a is
not topologically transitive (or ergodic) (cf. Theorem 7.5).

(4) Let Y = Z%, where Z/2 = Z/2Z. For every n > l , define a continuous, shift
commuting, surjective homomorphism hn: Y-* Y by hn{y){i)=Ydi^m^n+jy{m). We
set /„ = hn for every n > 1 and denote by X the projective limit

Y* Y^ < y< . (7.1)

The shift on Y induces a continuous automorphism a of the compact, zero
dimensional group X, and it is not difficult to verify that a has no periodic points
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other than the identity in X. The dual group X of X is not finitely generated under
a, since a is not expansive. However, if/„ = /J, for all n > 1, the automorphism a
of the projective limit X in (7.1) does have a dense set of periodic points as a
consequence of Theorem 7.2: the homomorphism hx induces an automorphism /3
of the projective limit X, and (X, F) satisfies the descending chain condition,
where f c Aut (X) is the abelian group generated by a and /3. More generally, let
(k(n), n > 1) be a sequence of positive integers, put /„ = hk(n), n > 1, and denote
by a the shift on the projective limit X in (7.1). The proof of Theorem 7.2 can
be adapted to show that the following conditions are equivalent:
(i) for every prime p>2 , p divides 2k(n) for infinitely many n > 1;
(ii) Fix (a") = {lx} for every n>\. •

If F = Zd with d> 1, the topological transitivity (or ergodicity) of the F-action is
not sufficient to ensure the density of periodic points, even if the descending chain
condition is satisfied (cf. Theorem 7.5 and Corollary 7.6).

Example 7.8. Let X = SU(2)Z, and let h e SU(2) be an element of infinite order.
Define SeAut(X) by (Sx)(n) = hx(n)h-\ neZ, for every xeX. If 7 = 7 , (the
shift on X), the abelian group F<= Aut(X) generated by (5, 7} does not have a
dense set of periodic points (cf. Example 7.7(3)). Note that F is ergodic on X.

Remark 7.9. Let X be a compact group, F<= Aut(X) a finitely generated, abelian
group such that (X, F) satisfies the descending chain condition, and assume that
a e Aut (X) commutes with F. If a is ergodic the set of a-periodic points is dense
in X by Corollary 7.6, but the set of F-periodic points need not be dense in X (cf.
Example 7.8). However, if F satisfies the stronger condition of expansiveness, or if
X/C(X) is zero dimensional, then the set of a-periodic points is dense if a is
nonergodic, and the set of F-periodic points is again dense (cf. Theorem 7.2 and
Corollary 7.4).

8. The proof of Theorem 1.2
Throughout this section F will denote an infinite, finitely generated, abelian group.
If X is a compact group and a e Aut (X) we set

Fix(a) = {xeX:a(x) = x}. (8.1)

LEMMA 8.1. Let X be a compact group, a e Aut (X), and let V<= X be a closed, normal,
a-invariant subgroup. Suppose that the following conditions are satisfied:
(1) for every m > 1 and ve V there exists a we V with v = am(w)w~l;
(2) the set of a-periodic points is dense in V;
(3) the set of ax/ v-periodic points is dense in X / V;
Then the set of a-periodic points is dense in X.

Proof. Let d be a metric on X and let d' be the metric on X/ V induced by d. We
fix xeX and e>0 , and choose a point ueX/V such that d'(u, r/{x))< e/2 and
a j / v ( u ) = u for some m > 1, where t]: X-* X/ V is the quotient map. If y e X and
we V satisfy that -q(y) = u and am(w)w~l = am(y)y~1 e V then am(w~ly) = w~ly
and 7](w~1y) = u. By assumption there exists an a-periodic point ze V such that
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d(w~lyz, x) < e, and w~lyz is a-periodic. Hence the set of a-periodic points is dense
in X. •

Remark 8.2. If V is a compact, abelian group and a s Aut(V), then a is ergodic
if and only if V = {am(w)w~l: we V} for every m& 1 (cf. Lemma 8.1(1)). This is a
consequence of the well known fact that a is ergodic if and only if \ • a™ ^ X for
every m > 1 and every nontrivial character ^ of V ([Ha]).

LEMM A 8.3. Let G be a compact group, H a GxGafull subgroup, andletY= YH c Gz

be the Markov subgroup given by (5.1). For every neZ, define FH(n)<= G by (5.3)
and set Yn = YH n FH(n)z. Then the following is true for every n > 1.
(1) The shift T, is ergodic on Yn;
(2) foreveryye Yn and every m>\, there exists a point ve Yn such thaty = (Tmv)v~';
(3) the set of shift-periodic points is dense in Yn.

Proof. From Lemma 5.6(4) we know that there exists a Borel isomorphism <p: Yn -»
Af x • • • x Az_, which carries the shift on Y to the cartesian product of the shifts
on Az x • • • x AJi-i, and (1) is an immediate consequence of this.

The assertions (2) and (3) are obviously true if n = 1, since Yt = Af (cf. Proposition
5.7(l)-(2)). Using induction, we assume that (2) and (3) have been established for
n = l>\. We define Gk = G/FH(k) and v\(k): Y^ Gf, Jk>l, as in Proposition 5.7
and fix ye V/+1. According to Proposition 5.7(2), r\{'\ Y,+ ]) = Af+I for some compact
group A/+I, and we conclude that there exists, for every (fixed) ra>l, a point
ue Y",+1 such that T|(/)(j') = (Sm'ii(')(u))T|(')(M)~1, where Sm is the automorphism of
Y,/y,_, induced by the shift Tm, meZ. Hence (Tmu)-lyueker (y(/+1)) = Yh and
our induction hypothesis implies that there exists a ve Y, with (Tmu)~lyu =
(Tmv)v~\ i.e. y = (Tm(uv))(uv)~l. This proves (2) for n = /+ l and hence for all
n>\. Since (2) and (3) hold for n = I and Y,+J Y,=r\U){Yl+l) = Af+I, Y,+ J Y, has
a dense set of shift-periodic points, and Lemma 8.1 establishes (3) for n = 1+ 1 and
hence for every n > l . •

LEMMA 8.4. Let G be a compact Lie group with finite centre, and let H c G x G be a
full subgroup. If Y= YH <= Gz is the Markov subgroup defined in (5.1) then the
following conditions are equivalent:
(1) the set of shift-periodic points is dense in Y;
(2) the automorphism T of the group Gk = G/FH(K) defined in Proposition 5.7(3)

has finite order.

Proof. We use the same notation as in Proposition 5.7. There exists a K>\ such
that FH(k) = FH(K) for all k>K, and we define YK as in Proposition 5.7. If the
automorphism r induced by the shift on GK = G/FH(K)= Y/ YK has finite order,
the set of r-periodic points is obviously dense in Y/ YK, and the Lemmas 8.1 and
8.3 together imply that the shift-periodic points are dense in YH.

Now assume that T has infinite order. Since the group of inner automorphisms
of GK has finite index in Aut(GK) we can find an M > 1 such that rM(g) = hgh'1

for every geGK, where heGK must have infinite order. We denote by .4 the
connected component of the identity in the closure of {h": neZ} and note that
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A = Ud/Zd for some d & 1. Every geGK which is periodic under T must commute
with A, and it follows that the closure P of the set of periodic points of T is not
equal to GK, since A <£ C(GK). The set of shift-periodic points in Y is thus contained
in the closed, shift-invariant set (VK)) \P), ar>d this shows that the shift-periodic
points cannot be dense in Y. •

LEMMA 8.5. Let X be a compact, zero dimensional group, and let a be an expansive
automorphism ofX. Then the set of a-periodic points is dense in X.Ifa is ergodic and
d a metric on X there exists, for every e > 0, an integer N(s) a 1 such that Fix (a")
is e-dense in X for every n > N(e) (a set Be X is e-dense if d(x, B) < e for every xe X).

Proof. By Theorem 5.2, Theorem 3.2, Proposition 3.12, and Proposition 5.4 we may
assume that X = YH c Gz, where G is a finite group and H c GxG is a full
subgroup. Since GK = G/FH(K) is finite (cf. Proposition 5.7(3)), Lemma 8.4 implies
that the set of a-periodic points is dense in X. If a is ergodic then GK ={1} (cf.
Proposition 5.7(5)), and there exists, for every m > 1 and x = (x(i))eX, a point
yeFix(a2m+2K) with y(i) = x(i) for \i\ < m, y(m + K) = y(-m - K) = l x . By fixing
e>0 and choosing M sufficiently large we see that Fix (a") is e-dense in X for
every n> N(e) = 2M+ 2K. •

LEMMA 8.6. Let X be a compact, zero dimensional group, and let aeAut(X) be
ergodic. Then there exists, for every xe X and m > 1, a v e X with x = am(v)v~\

Proof. As we have seen in Theorem 3.16, there exists a sequence X => V, o V2 => • • •
of closed, normal, a-invariant subgroups of X such that (X(n), aXin)) satisfies the
descending chain condition, where X(n) = X/ Vn for every n > 1. We fix m, n > 1
and x e X for the moment. Theorem 3.2, Proposition 3.12, and Proposition 5.4 allow
up to assume that X(n) = YHc: Gz, where G is a finite group and H <= GxG a full
subgroup, and that aXin) is the shift T, on YH. From Proposition 5.7(5) we know
that X(n) = YK for some K > 1, and Lemma 8.3 implies the existence of an element
u £ X such that i)n(x) = (Tmt)n(v))-nn{v) = 77n(a"1(u)t)"1), where rjn : X -» X(M) is the
quotient map. We conclude that the set

B(n) = {veX: Vn(x) = TjJa-dOtT1)}

is closed and nonempty for every n > l . Since B ( l ) 3 B(2) => • • • => B(n) => . . . , the

set (~)n B(n) = {ve X: x = am(v)v~t} is nonempty. This proves our assertion. •

LEMMA 8.7. Let X be a compact, zero dimensional group, F<=Aut(X), V^X a
F-invariant, closed, normal subgroup, and A<=F a subgroup which is nonergodic on
V. Then there exists a closed, F-invariant subgroup 1V£ V such that W is normal in
X and AV/w is finite.

Proof Let a- be a nontrivial, continuous, irreducible, unitary representation of V
such that &„ has finite index in A (cf. (2.6)). The proof of Lemma 2.2 (in particular
of the implication (2)=»(3)) yields an open, normal, A-invariant subgroup V'g V,
and Lemma 3.14 implies that V contains a A-invariant subgroup W which is normal
in X and open in V. We set F = V/ W and write 17: V -* F for the quotient map.
The continuous homomorphism -q: V->F', defined by t\(x)(y) = r](y(x)), xe V,
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yeY, satisfies that i)(y(x)) = Tyi\(x) for every xeX, yeY, where Ty denotes the
shift (2.3) on F r . Furthermore,

(8.2)

for every x e V, y e Y, S e A. Equation (8.2) implies that the group of automorphisms
{7-s:seA} is finite on ^(A"). Note that W = ker(T|) = f~^yer y(W) is a closed,

normal, F-invariant subgroup of X, and. that <iN,-*,s\Tb\

LEMMA 8.8. Let X be a compact, zero dimensional group, Y c Aut (X), Va X a closed,
normal, Y-invariant subgroup such that (V, Y v) satisfies the descending chain condition,
and let i c f be a subgroup such that Av is nonergodic. Then there exists closed,
normal, Y-invariant subgroup W<= Vc X such that A^ is ergodic and &V/w is finite.

Proof. This follows from Lemma 8.7 and the descending chain condition: if Av is
nonergodic, there exists an open, normal, A-invariant subgroup W(l)<= V= V(0),
and we set F(l) = V/W(l) and i\(l):X^ Fr and V(l) = ker (t|(l)) as in the proof
of Lemma 8.7. If AV(D is nonergodic, there exists an open, normal, A-invariant
subgroup W(2) c V(l), and we define F(2), TJ(2), and V(2) = ker (i|(2)) as before.
The descending chain condition implies that this procedure has to stop after finitely
many steps: there exists a n n > l such that AVfn) is ergodic.

We may regard V as a closed, shift-invariant subgroup of Gr, where G is a finite
group (cf. Theorem 3.2 and Proposition 3.12), and use Corollary 3.8 to find a finite
set D c r and normal subgroups H(i) c GD such that, for every i = 0, . . . ,« , V(i) =
{xe Gr: TTD(Tyx)e H(i) for every y e T}. The open, normal subgroups ir~Dl(H(i))c
V contain open, normal, A-invariant subgroups Y(i) such that V-
Y(0)=> Y(l)=> Y(2)=>- • -^ Y(n) (cf. Lemma 3.14), and we set F'=V/Y{n), denote
by 77': V^> F' the quotient map, and define -q': Y^ F'1 by-q'(y)(y) = -n'(y(y)), yeT,
ye V. As in (8.2) we see that Ay(n) is finite, and the ergodicity of AV(n) implies that
W=Y(n)=V(n). This proves that Av/W is finite. •

LEMMA 8.9. Let X be a compact, zero dimensional group, a e Aut (X), and let Vc X
be a closed, normal, a-invariant subgroup. If av is ergodic and m 21 then

Proof. Let us Fix ( a " / v ) , and let u = r)(x) for some xeX. Then am{x)x~xe V, and
Lemma 8.6 implies the existence of a point ve V with am(x)x~l = am(v)v~\ Then
v~lx€ Fix (am) and 17(1; 'JC) = M. This proves our assertion. D

If X is a compact group, let

r(X) = oo if {xeX:xr^lx}^0 for every r > l ,

and (8.3)

r(X) = min {r^ 1: xr = l x for every xe X} otherwise.

If the group X is zero dimensional, Y c Aut (X), and (X, Y) satisfies the descending
chain condition then Theorem 3.2 and Proposition 3.12 together imply that r(X) < 00.

LEMMA 8.10. Let X be a compact, zero dimensional group with r(X)<oo, and let
a € Aut (X) be an automorphism with the following property: there exists an integer
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Q > 1 and closed, normal, a-invariant subgroups

X=> V=

of X such that (~)n V(n) = {lx} and, for every fc>l, av(k)/V((c+1) is either ergodic, or

Let p>2 be an integer with (p, Qr(X)) = 1 (i.e. p and Qr(X) are relatively prime).
If T)\X -» X / V is the quotient map and B = ax/ v, then

v(Fix(a"))^{B(u)u-1: ue Fix (/3P)<= X/ V}. (8.4)

Plroo/ Let ri,:X^X/V(l) and TJM:X/V(fc)-*X/V(/) be the quotient maps and
0* the automorphism induced by a on X/ V(fe), 0 < / < fc < n. Fix « € Fix (B ") <= X/ V
and choose x(0)eX with 7j(x(0)) = 77o(x(0)) = M. We construct inductively points
x(k) G X, fe > 1, such that

V,(x(k)) = Vl(x(l)) (8.5)

and

)S^(x)t(M(/c))u(fc)-1
eFix()8n (8.6)

for all />fc>l , where w(Jt) = ijk(x(k)).
Suppose that we have found x(0),..., x(j) with the required properties, where

7>0. If aV(ji/v(j+i) is ergodic we apply Lemma 8.9 and choose a point w€
l) such that Vj+lJ(W) = B?r(X)i(u(j))uUr1. Then

for some i; e V(j)/ V(j + 1 ) , and Lemma 8.6 allows us to find av'e V(j)/ V(j +1) with

We choose x(j+l)eX such that MO'+1) = r)J+1(x(j+l)) = Tjj+l(x(j))v' and note
that %(x(y+l)) = r)k(x(j)) for fc<; and

/3J?,(X)J(«0'+ DMj+ D"1 = w e Fix (/3/+1),
and hence

p$iX)J*\u(j+ l))u(j+ I)"1 6 Fix (^/+1).

This construction yields the required point x(y+l) under the assumption that
avo>/vo+n is ergodic. If aVO)/vO+i) is nonergodic then a^
We put u'= r)j+l(x(j)) and observe that

^ 1 ( i 8^ I
( X ) ' ( « ' )« ' - I )=^ I

( X ) J (« ' ) i

for some ve V(j)/V(j+1). Hence

fi${X)\u'-lp?+l(u')) = vu'-'B^iu
and

for every i a l , since Bf;\X)i{v) = B?+l{v) = a%)/V{j+x){v) = v. By setting i = r(X)
we see that

or, equivalently, that
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It follows that the point x(j + l) = x(j) satisfies (8.5) and (8.6).
This induction process yields, for every « > 1 , a point x(n)eX satisfying (8.5)

and (8.6). We fix n for the moment and note that, since (p, Qr(X)) = 1, there exist
integers a, b such that aQr{X)n + bp = l. Then

)8^(X)"(M(n))U(«)-1 = T?n(a
a<3r<X)"(x(»))x(»)-1) e Fix (/?„')

and

We have proved that

for every n > l . Clearly F(l)=> • • • => F(n)=> • • • , F = (~)n F(n)*0, and F c
Fix (ap)n ^^ ' ({^(M)! /" 1 }) . This proves (8.4), since we Fix (y3p) was arbitrary. •

LEMMA 8.11. Let X be a compact, zero dimensional group and let r<= Aut (X) be
expansive. Then the set of F-periodic points is dense in X.

Proof. (1) Initial reduction. According to Theorem 3.2, Proposition 3.12, and Theorem
5.2 we may regard X as a closed, shift-invariant subgroup of GT, where G is a
finite group, and the last step in the proof of Theorem 3.2 allows us to assume that
F = Zd for some d > 1. If d = 1, and if d is a metric on X c Gz, Lemma 8.5 shows
that the set of shift-periodic points is dense in X, and that, for every e > 0, Fix (Tn)
is e- dense in X for all sufficiently large n > 1.

We use induction and assume that, for some d > l , every finite group G, and
every closed, shift-invariant subgroup X <= Gz\ the following conditions are satisfied.

The set of shift-periodic points is dense in X; (8.7)

if d is a metric on X, and if Tm is ergodic on X for some m e Zd, there exists an
integer L(m) such that Fix (Tkm) is e-dense in X for all sufficiently large I:>1 with
(k, L{m)) = 1 (i.e. k and L{m) are relatively prime). (8.8)

Let G be a finite group, X c Gz a closed, shift-invariant subgroup, ^ a metric
on X, and let m = (m, , . . . , mit+l)eZd+l. We denote by a = (mh . . . , wd+1) the
highest common factor of {m,, . . . , md+l) and set m' = (m\,... ,m'd+l) =
(mja,..., md+i/a). Suppose that we can prove the following:

(1) the set of Tm -periodic points is dense in X; (8.9)

(2) if Tm is ergodic on X there exists an integer L(m') > 1 such that, for every
£>0, Fix(Tkm.) is e-dense in X for all A:>1 with (k, L(m')) = l. (8.10)

Then Tm satisfies (8.10) with m replacing m' and with L(m) = aL(m'). Let A'<= Zd+1

be a subgroup such that A' = Zd and {n + km1: neA' and fceZ} = Zd+1. For every
n&l, the set Y(n) = Fix (Tnm) is a closed, shift-invariant subgroup of X, and
(F(n), TA) satisfies the descending chain condition. Our induction hypothesis (8.7)
implies that the set of TA-periodic points is dense in Y(n) for every n >: 1, and we
conclude that X satisfies (8.7). Hence (8.7) and (8.8) are satisfied with d +1 replacing
d, and the lemma is proved.

There exists a matrix A e GL(d +1, Z) with Am' = e = (0 , . . . , 0,1) e Zd+I, and the
automorphism £eAut(Gz"+') given by (&)(*) = y(A"'k), keZd+l, yeGz"+\
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satisfies that €Teg"' = Tm . Furthermore £ sends the set of shift-periodic points in X
to the set of shift-periodic points in g(X). If we can prove (8.9) and (8.10) for ij(X)
and Te then the corresponding statements hold for X and Tm with L(m') = L(e).
This allows us to assume that m'= e in (8.9) and (8.10).

(2) The proof of (8.9) and (8.10) in the ergodic case. Assume that Te is ergodic.
According to Corollary 3.11 we may also assume that

X = {xeGz"+':77,((;+1)(Tnx)E//forevery/teZd+1}, (8.11)

where I(d + \) = {0, l}d+l and H = 7r/(d+1)(X)<= G/(d+1). Put

A = {« = (n1, . . . , f l d + l )eZ' J + l :n1 = 0} (8.12)

and set, for every k>0, A(fc) = {« = (n , , . . . , nd+l)eld+1: |/i,|< A:} and V(fc) =
wA(*,(X) (cf. (2.2)).

Let F ' c F<=Zd+1. In order to keep notation simple we shall not distinguish
notationally between the projection TTF•: X c Gz ' -» GF and the map from wF(A')
to GF induced by TTF • , and we write T± = {Tn: «e A} for the shift-action of A on
X as well as on any ^-invariant subgroup or quotient group of X. For every k > 0,
put W(k) = ker(irMk)) and Y(k) = irMk)(X), and observe that (Y(k), TA) satisfies
the descending chain condition. According to (8.11), the pairs (W(k)/ W(k+ 1), Ts),
fc>0, are all conjugate (cf. (2.1)). Lemma 8.8, applied to W(0)/W(l), allows us to
choose a closed, normal, TA-invariant subgroup W(l)<= V(l)<= V(0) = W(0)<=X
such that Te is ergodic on V(l)/ W(l) and has finite order Q on V(0)/ V(l). From
the inclusions W(0) => W{\) => • • • 3 W(k) => • • • we obtain a sequence

W(0) = V(0) = V(l) => W(l) = V(2) ^ • • • 3 v(2n) = W(«) => • • •

of closed, normal, rA-invariant subgroups of X such that (V(i)/ V(i + 1), T,) is
conjugate to (V(i + 2k)/V(i+l+2k), Tc) for all i = 0, 1 and k>\. We can thus
apply Lemma 8.10 and conclude that

irMk)({xeX: Tpex = x})=>{Te(u)uK. ue Y(K) and Tpeu = u} (8.13)

for all K, / > 1 , and foral lp>2 with (p, <?r(X)) = 1.
Let e > 0. There exists an integer X > 1 such that d(x, x') < e/2 for all x, x'e X

with TTMK)(X) = rrMK){x'). Since r, is ergodic on Y(K) the map de: Y{K)^> Y(K)
defined by dr(y) = (Tey)y~l, ye Y(K), is continuous and surjective (Lemma 8.6).
Hence there exists an e '>0 such that de(B) is e/2-dense in X for every e'-dense
set £<= Y(K). The pair (Y(K), TA) satisfies the descending chain condition, and
the induction hypothesis (8.8) implies that there exists an integer L>1 such that
{ye Y(K): Tney = y} is e'-dense in Y(K) for all sufficiently large n > 1 with (n,L) =
l.Then {Te(u)u~K. ue Y(K) and Tneu = u} is e/2-dense in Y(K), and from (8.13)
and the choice of K it is clear that Fix (Tne) is e-dense in X for all sufficiently large
«>1 with (n, LQr(X)) = l. By setting L(Te) = LQr(X) we have proved (8.9) and
(8.10), and hence (8.7), if 7, is ergodic.

(3) The proof of (8.9) in the nonergodic case. If Te is nonergodic on X we apply
Lemma 8.8 and find a closed, normal, shift-invariant subgroup W<= X such that T,
has finite order on X/ W and is ergodic on W. From part (2) of this proof we know
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that the set of 7Vperiodic points is dense in W, and the Lemmas 8.1 and 8.6 show
that the set of 7>periodic points is dense in X. This proves (8.9) if Te is nonergodic.

The proof of Lemma 8.11 is complete. •

Proof of Theorem 7.2. Corollary 4.8 and Lemma 8.11. •

9. The ascending chain condition and the proof of Theorem 7.3
Although Theorem 7.3 is a special case of Theorem 3.2 in [La], where F c Aut (X)
is assumed to be an arbitrary semigroup, we present here an alternative proof based
on the fact that, if G is a compact, connected Lie group with trivial centre, then
the closed, normal, shift-invariant subgroups of G1 satisfy both the ascending and
descending chain conditions.

LEMMA 9.1. Let X be a compact, connected group with trivial centre, F c Aut (X),
and assume that (X, F) satisfies the descending chain condition. Then there exists a
compact, connected Lie group G with trivial centre and a continuous, injective
homomorphism <p:X-»G' such that <p{X) is a full, shift-invariant subgroup of G[,
and <p(y(x)) = Ty<p(x) for every xe X, yeT.

Proof. According to Theorem 3.2 we may regard X as a full, shift-invariant subgroup
of / / ' , where H is a compact (and necessarily connected) Lie group. We denote
by r): H -* H/ C(H) = G the quotient map and define a continuous homomorphism
t | : / / ' ^ G ' by r\(x)(y) = rj(x(y)), yeT, xeH1. The restriction tp of r| to X is
injective, since ker (t|) n X = C(X) = {lx}, and has the required properties. •

LEMMA 9.2. Let Gbea compact Lie group with finite centre, G'= G/C(G), rj.G^G'
the quotient map, and define t j : G1 -> G'1 by setting r\(x)(y)= r)(x(y)), yeT, xe X.
If X a G1 is a closed, shift-invariant, expansive subgroup then T|(X) is a closed,
shift-invariant, expansive subgroup of G'1.

Proof. Let d be a metric on G and denote by d' the induced metric on G'. We
choose and fix <5>0 such that d(g, g')> 25 whenever g, g'e C(G) and g ̂  g', and
set

B(e) = {x 6 X: d(x(y), C(G)) < e for every ye T}

for every e >0. Now assume that 2e < 8. For every xe B(e) there exists a unique
element zve C(G)' such that d(x(y), zv(y))<e for every yeF. If e is small (e.g.
e < 5/4) then zxx> = zxzx- for all x, x'e B(e). We denote the order of C(G) by M
and observe that, for e<S/2M, zx" =(zx)

M = 1G
| for every xeZ(e). Since X is

expansive we conclude that xM = lx for every xe B(e) with e < 5/2 M. By decreasing
e, if necessary, we may assume that

and hence that B(e)a C(G)[. This proves that

for all sufficiently small e >0, i.e. that r\{X) is expansive. •

LEMMA 9.3. Let Gbea compact, connected Lie group with trivial centre and let X c G 1
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be a full, connected, shift-invariant subgroup. For every closed, normal, shift invariant
subgroup V <= X we put

V* = {xeX:xv=vxfora\\ ve V}. (9.1)

Then V*nV = {l x } , V- V* = X, and V** = ( V*)* = V for every closed, normal,
shift-invariant subgroup V<= X. Furthermore every closed, normal, shift-invariant sub-
group V c X is connected.

Proof. First assume that V = X. Since C ( X ) c C(G)1 ={1G'} we have that X* = {lx}
and X** = X. If V£ X is a closed, normal, shift-invariant subgroup of X we apply
Corollary 3.8 and choose a finite set D<= F such that

X = {xe G': nD(Tyx)e TTD(X) for every ye F}

and

V = {xe G1: TrD(Tyx) e nD( V) for every y e F}.

Let (E (n), n > 1) be an increasing sequence of finite sets such that D <= E (n) for
every n > 1 and [Jn E(n) = F. We fix n > 1 for the moment and note that, since G
has trivial centre and X c G1 is full, 77E(n)(X) c G£ ( n ) is a compact, connected Lie
group with trivial centre. Furthermore 7rE(n)(V) is a closed, normal subgroup of
irE{n)(X). Clearly

Hn={h£TTE(n)(X): hu = uh for every ue irE{n)(V)}

is a closed, connected, normal, subgroup of nEin)(X), 7rE(n)( V)n Hn = {1}, and
7rE(n)(X) = 7TE(n)(V) • / /„ . Since the Lie groups irE(k)(A'), fc>l, all satisfy the
descending chain condition on closed (normal) subgroups there exists, for every
/c> 1, an integer m(k) > k with 7rE(k)(//n) = -rrE{k){Hm(k)) for all n > m(k). Put

Cn = {xsX: 7r£(n)(x)€Hn} = {x6A-: 7rE(n)(xu)= 7rE(nl(^x) for every ve V}.

The sequence (Cn, n > 1) of closed, normal subgroups of X decreases, V* = f \ Cn,
"•£<*)( V'*) = TTE{k){Hmlk)) for every /c > 1, and V* is a closed, normal, shift-invariant
subgroup of X.

From the definition of V* it is clear that V** 3 V. If Vc V** then irE(Jt)(V)g
«•£(*>( Vr**)c7rE(*)(wE(m(k))(V)) = 7rE(it)(V) for all sufficiently large /c>l , which is
absurd. Hence V**= V, as claimed. Finally we note that, for every /c> 1,

"£(*,( V- V*) = nEik)( V) • nEik)( V*) = nEm(irElm(k))( V) • Hm(k))
= irE(k)(TTE[m(k))(X)) = TTE(k)(X).

We conclude that, for every xeX, Pk(x) = {(v, u)e Vx V*: TrE(k){vu) = TTE(k){x)}^
0 a n d Pk(x) => Pk+t(x) for every k>l. Hence H* Pk(x) = P(x)*0, and x = vu for
every (v,u)eP(x)a Vx V*. This proves that V- V* = X and Vn V* = {lx}. In
particular V = X/V* and hence connected. •

LEMMA 9.4. Let G be a compact, connected Lie group with trivial centre, and let
X c: G1 be a full, connected, shift-invariant subgroup of X. Then X satisfies both the
ascending and the descending chain conditions on closed, normal, shift-invariant
subgroups (the ascending chain condition is defined in analogy to the descending chain
condition for increasing sequences of shift-invariant subgroups).
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Proof. From Theorem 3.2 we know that X satisfies the descending chain condition
on closed, shift-invariant subgroups. If (V n ,M>l) is an increasing sequence of
closed, normal, shift-invariant subgroups of X we define V*, n > l , by (9.1) and
obtain a decreasing sequence (V*, n > 1) of closed, normal, shift-invariant subgroups
of X. The descending chain condition implies that there exists a k > 1 with V* = Vf
for every n > k, and hence Vn = V** = Vf* = Vk for every n > k. This proves the
ascending chain condition. •

The Lemmas 9.1 and 9.4 have the following interesting consequence.

PROPOSITION 9.5. Let X be a compact, connected group with trivial centre, F c Aut (X),
and assume that (X, F) satisfies the descending chain condition. Then X satisfies both
the ascending and the descending chain conditions on closed, normal, F-invariant
subgroups.

Let X be a compact, connected group with trivial centre and let a e Aut (X) be
an expansive automorphism. Then Theorem 5.3 implies that X is trivial (i.e. X = {1}).
We proceed by induction and assume that d > 2, and that we have proved the
following: if X is a compact, connected group with trivial centre and F c Aut (X)
a group such that F s Z ^ ' and F acts expansively on X then X = {!}.

LEMMA 9.6. Let G # {1} be a compact, connected Lie group with trivial centre and let
X <= G z be a connected, expansive, full, shift-invariant subgroup. Then Tn is ergodic
on X for every 0 ̂  n e Zd.

Proof. We fix a primitive element n = (nx,... ,nd)eZd (i.e. « ^ 0 , and the highest
common factor of { n 1 ; . . . , nd} is 1), and choose a subgroup A c J_d with As=Zd~'
and {m + kn: m e A, k e Z} = Zd. If Tn is nonergodic on X we apply Lemma 2.2 and
find a closed, normal, Tn-invariant subgroup V s X and a metric d' on X/ V which
is invariant under the automorphism Sn induced by Tn on W = X/V. We write
17: X -> W for the quotient map and define a continuous homomorphism -q: X -» IV2'
by setting -n(x)(m) = T/(X(/M)), /W e Zd, x e X. Since

for every meZ'1, xeX, it is clear that there exists a metric on t)(X)c: W2' which
is invariant under Tn (we are using the same symbol Tm to denote the shift on
XcGZd and on n ( X ) c Wz").

Now consider the closed, normal, shift-invariant subgroup Y = ker(T))<= X and
define the closed, connected, normal, shift-invariant subgroup Y*<^X by (9.1).
Lemma 9.3 implies that X = Y- Y* and Yn "K* = {lx}. In particular the group Y*
has trivial centre, and there exists a continuous group isomorphism i/f:-q(X)s
X/ y-> Y* such that ^ • Tm = Tm • 4, for every »i e ZJ

By combining this with the first part of this proof we see that there exists a metric
on the subgroup Y*cX which is invariant under Tn, and conclude that TA =
{Tm: me A} acts expansively on Y*. Since Y* is connected and has trivial centre
and AsZ d ~ ' , our induction hypothesis implies that y* = {l}, i.e. that Y = X (cf.
Lemma 9.3). This violates our earlier assertion that Vcj X, and the resulting contra-
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diction implies that Tn is ergodic - and hence mixing - on X for every primitive
neZd (cf. Theorem 2.4). It follows that Tm is ergodic on X for every 0^ meZd.

LEMMA 9.7. Let G be a compact, connected Lie group with trivial centre and let X
c Gz be a connected, expansive, full, shift-invariant subgroup. Then G = {1}.

Proof. Without loss in generality we assume that

X = {x£Gz":77,(dl(7>)e77,(d)(X)foreverynGZd}, (9.2)

where I(d) = {0,1}" <= Zd (cf. Corollary 3.11). Put e = (1 ,0 , . . . , 0)eZd, A =
{n = (nu...,nd)eZd: /?,=()}, and W=7rA(X)c= Gz ' '.Then W is a full, connected,
shift-invariant subgroup of G2 , and we define a continuous, injective homomorph-
ism rj:X^ Wz by setting v(x)(n) = Try(Tnex), neZ,xeX. The group T?(X)C WZ

is full, connected, and shift-invariant, and (9.2) implies that TJ(X)= YH, where
H = TT!0 u(r)(X)) and YH is the Markov subgroup of Wz given by (5.1). We define
the closed, normal, shift-invariant subgroups F H ( n ) c W, neZ, as in (5.4) (with W
replacing G) and conclude from (5.5) and Lemma 9.3 that there exists an integer
K>\ such that FH(k) = FH(K) for all k>K.

Next we prove that FH(K)= W. Indeed, if D c A is a finite set, then TTD{W)<= GD

is a full, connected subgroup and hence a compact, connected Lie group with trivial
centre. We define a continuous homomorphism ip'- YH H>(7!'D( W ) ) Z by t//(x)(n) =
-7TD(x(n)), neZ, xe YH <= Wz, and note that i//• T, = S, • i/>, where T, and S, are
the shifts on Wz and (vD( W))z, respectively. Since Te is ergodic on YH by Lemma
9.6, 5, is ergodic on <p{YH). For every n a 1 we put F'(n) = -rrD(FH(n)), and the
ergodicity of S, on 4>(YH) implies that there exists an L>1 such that 77-D(W) =
F'(L) = TTD(FH(L)) = TTD(FH(K)) (cf. Proposition 5.7(5)). We have thus shown that
TTD(FH(K)) = TTD(W) for every finite set DcA and hence that FH(K)= W, as
claimed.

From the definition of YH and FH(n), n e Z, it is clear that there exists, for every
we W, a point yeYH with ^(0) = y(2K) = 1 w, y(K) = w, and T2Ky = y. In other
words, the set U = {ye YH : T2Ky = y} is a full subgroup of YH. For every n > l ,
the group FH(n) is connected by Lemma 9.3, and this is easily seen to imply the
connectedness of U. Hence V = {x e X: T2Kex = x} <= Gz is a full, connected, shift-
invariant subgroup of Gz and has trivial centre. The group TA = {Tn: n e A J s Z ^ 1

acts expansively on V, and our induction hypothesis implies that V = {1}. Hence
X = G =={1}, since V was a full, connected subgroup of Gz . •

In view of the induction process described in the paragraph preceding Lemma
9.6, the Lemmas 9.1 and 9.7 imply the following result.

LEMMA 9.8. Let d a l , and let X be a compact, connected group with trivial centre
and F<= Aut (X) a group such that Y = Zd and Y acts expansively on X. Then X = {\).

Proof of Theorem 7.3. Let X be a compact, connected group and assume that
F c Aut (X) acts expansively on X. We have to show that X is abelian. In order to
prove this claim we note that Y = I" x Y", where Y' where Y" are subgroups of Y,
Y' = Zd for some d > l , and Y" is finite. Clearly Y' still acts expansively on X, hence
(X, Y') satisfies the descending chain condition (cf. Theorem 5.2), and Theorem 3.2
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allows us to find a compact (and necessarily connected) Lie group H such that X

can be regarded as a full, shift-invariant subgroup of Hz . An application of Corollary

4.9 allows us to find an increasing sequence (Hn, n > 1) of closed, normal subgroups

of H with finite centres such that H/C(H) = HJC(H) for each n > 1 and (Jn X*

is dense in X, where Xn = X n Hz''. We fix « > 1 for the moment, denote by Y the

connected component of the identity in Xn, and put G = TT|0}( Y) C //„. Since X is

full in H z and V is normal in X, G is a closed, connected, normal subgroup of

H and hence of Hn. In particular the centre of G is finite, G' = G/ C(G) is connected

and has trivial centre, and C(G)<^ C(H). We write T? : G-» G' for the quotient map,

define the homomorphism r\: Gz -* G'z by y\(x)(m) = Tj(x(m)), meZd, xeGz ,

and conclude from Lemma 9.2 that r\( Y) <= G'z< is a connected, expansive, full,

shift-invariant subgroup of G'z . Lemma 9.8 shows that T)(Y) = {1}, i.e. that Y<=

C(G)Z' n C(X). Furthermore Xn/ Vis a zero dimensional, closed, normal subgroup

of the connected group X/ Y, and we conclude that XJ Y<= C(X/ Y) = C(X)/ Y

and therefore Xn <= C(X). Hence X is abelian, since U n Xn is dense in X. This

completes the proof of Theorem 7.3. •

10. The proof of Theorem 7.5

LEMMA 10.1. Let G be a compact, connected Lie group, rf>l, and let X <= Gz be a

full, shift-invariant subgroup. Ifn s Zd and Tn is ergodic on X, then the set of Tn-periodic

points is dense in X.

Proof. We put G'= G/C(G), write K:G-> G' for the quotient map, and define a

homomorphism K : G Z -» G'z' by K(X)(#M) = K(X(/H)), meZd, xeGz . According

to Corollary 3.11 we may assume without loss in generality that

X = {x e Gz'': irnd)( Tmx) e 7r/(d)(X) for every meZd} (10.1)

and

X' = K ( X ) = {x e G'z": 77,(d)( Tmx) e irluf ,(X') for every m 6 Zd}, (10.2)

where 7(cf) = {0, l } d cZ d . We fix « = ( n , , . . . , nd)eZd such that Tn is ergodic on

X, denote by« ' = (n' , , . . . , /7d)eZd the primitive element with n = In' for some I>1 ,

and choose a group A = Zd~] in Zd such that {/« + kn': m e A, fc e Z} = Zd. Let W =

TTA(X)C GA and W'= TTA(X')<= G'A. Then W, W are connected, full, 7>invariant

subgroups of GA and G'A, respectively. Exactly as in the proof of Lemma 9.7 we

define continuous, injective homomorphisms 17 :X-» Wz, 17' :X'-> W'z, by TJ(X)-

(fc) = irA(rknx) and 7/'(^')(fc) = ^(Tfcn^'), fceZ, xeX, x'eX', and observe that

T/(X) = YH, r,'(X') = YH. with H = ir,o.,,(7,(X)), H' = irR,»(t?'(-V')). If K': G d ^ G'A

is the obvious quotient map arising from K : G -> G', then it is clear that

H ' C ( K ' X K ' ) ( H ) . (10.3)

Consider the closed, normal, TA-invariant subgroups F H («)c W, FH(n)c W',

neZ, defined by (5.4). From (10.3) we know that F H (n) c K' (F H (n)) for every

n e Z. As in the proof of Lemma 9.7 we conclude that there exists an integer K > 1

such that

W, (10.4)
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and we conclude that V = W/FH(K) is abelian. Put YK = YH n FH(K)Z and apply
Lemma 8.3 to see that the shift T = T, is ergodic on YK, that the set of shift-periodic
points is dense in YK, and that there exists, for every ye YK and every m > 1, a
point t; e YK such that >» = (Tmv)v~]. We write 0: W-> V for the quotient map and
define a homomorphism 8: YH -» Vzby setting 8(M)(M) = 0(M(H)) for every ue TJ(X).

Then ker(6)= VK, and 0(Y H )c Vz is a closed, ergodic, shift invariant, abelian
subgroup.

The group l/ = ker(0- rj)<=X is closed, normal, and shift invariant, X/U is
abelian, 7V is ergodic on £/, and the set of Tn-periodic points is dense in U.
Furthermore there exists, for every ueU and m > l , a point veLJ such that
y = (T'mH'f )f '• From Theorem 7.2 we know that the set of shift-periodic (and hence
the set of Tn -periodic) points is dense is X/ U, and Lemma 8.1 implies that the set
of Tn-periodic points is dense in X. •

Proof of Theorem 7.5. Since (X, F) satisfies the descending chain condition we may
assume that X is a full, shift-invariant subgroup of Hl, where H is a compact Lie
group, and the last part in the proof of Theorem 3.2 allows us to assume that F = Zd

for some d > 1. Suppose that Tn is ergodic on X for some n e Zd. By Corollary 5.10
the restriction of Tn to X° is ergodic, where X° is the connected component of the
identity in X. We write H° for the connected component of the identity in H and
note that X° is a full, shift invariant subgroup of (H0)2' . Theorem 7.2 shows that
the set of shift-periodic points (and hence the set of Tn-periodic points) is dense
in X/X°, Lemma 10.1 implies that the Tn-periodic points are dense in X°, and
Proposition 5.9 yields the density of the set of Tn-periodic points in X. •

11. Commuting automorphisms of compact, abelian groups
In this section we give a brief description of pairs (X, F), where X is a compact,
abelian group and F c Aut (X) a finitely generated, abelian group. As we have seen
in the last part of the proof of Theorem 3.2, it is no real restriction to assume that
F = Zd for some d > l , and we shall do so throughout the following discussion.
Consider the ring

R = R(d)=Z[ui,...,ult,u;\...,ud
i] (11.1)

of all Laurent polynomials in the variables u , , . . . , ud with coefficients in Z. If Ji
is a finitely generated /f-module and {/,,... ,/„}<= M we write ( / , , . . . ,/„) =
«/, + ••• + Rfn for the submodule of M generated by {/,,... ,/„}. Let X = XM = M"
be the dual group of M, where Ji is regarded as a countable, discrete, abelian group
under addition. Then Zd acts on X" in a natural way as a group of automorphisms.
In order to describe this action we denote a typical element of Zd by « = ( « , , . . . , nd)
and put M" = u" u"/. The identity element in Zd will be denoted by 0. Every
n e Zd defines an automorphism /?„ of M by

0 . ( / ) = 0."(/) = «"•/, f*M, (11.2)

and we set

a. = a;" = |8;, (11.3)
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where /?„ is the automorphism of XM dual to /6n, and

r = r " ={«•„": neZd}<= Aut(X") . (11.4)

LEMMA 11.1. Assume that d>\, M = R(d), and let X = R(df. Then there exists a
continuous isomorphism cp : X -» Tz such that <p • an = Tn • <p for every n e Zd, where
Tn denotes the shift by n on Tz'' (cf. (2.3) and (11.3)). In particular (X, F) satisfies
the descending chain condition, where F is defined in (11.4).

Proof. From (11.1) we obtain an isomorphism H:£ Z
J Z-» R(d), where £2./ Z is the

direct sum of copies of Z indexed by Zd and where

S(c)= I c(/i)u"e/?(</) (11.5)
neZ''

for every c = {c(w): « e Z d } e X r ' Z. For every meZd we write Sm for the shift on
£z.< Z defined by

Sm(c)(n) = c(n-m), m,neZd, (11.6)

and define /3m by (11.2) (for M = R(d)). Then H • Sm = /3m- H for every ifieZd. Let
X = Flnez''""" denote the cartesian product of copies of T = R/Z indexed by Zd. For
every c = {c(n): n eZd}e£2 . / Z we obtain a continuous homomorphism %c: X -> T by

Xc(x)= I_(c(n)x(»), (11.7)

where

Equation (11.7) gives a specific isomorphism 17: £z.* T ^ X , and the isomorphism

<p:X^R(df (11.8)

dual to 77 • Sr ' : l? (d)-»X* allows us to identify X with R(df. Clearly, the
automorphisms Tm = (Sm) and am = ()3m) dual to Sm and /3m correspond under if,
i.e. (p • am = Tm- <p. The last assertion follows from Theorem 3.2. •

THEOREM 11.2. Let d >l, Ji is a finitely generated R(d)-module, and put X = X " =
M*. If T = {an: « e Z d } c A u t ( X ) is the group defined by (11.2)-(11.4), then the
following is true.

(1) The pair (X, F) satisfies the descending chain condition.
(2) There exists an integer k a 1 and a continuous, injective homomorphism

(p : X -»(Jk)z' such that

,p • an = Tn- (p (11.9)

for every n e Zd, i.e. tp is a conjugacy of (X, F) into (Tfc)z .
(3) The closed, F-invariant subgroups of X (or, equivalently, the closed, shift-

invariant subgroups of (p(X)c (Jk)z') are in one-to-one correspondence with
the submodules ofM: if V is a closed, F -invariant subgroup ofX and Vx <= M =
X is the annihilator subgroup of V in M, then V± is a submodule of M;
conversely, i / l c M is a submodule, then X1- is a closed, F-invariant subgroup
ofX.

(A) For every n e Zd, the automorphism an is ergodic on X if and only if, for every
/ ^ l , multiplication by the polynomial (uln — 1) on M is injective. Ifan is ergodic
on X for every 0 ^ n e Zd then the action of F on X is mixing.
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Proof. This follows from Lemma 11.1, Theorem 2.4, Lemma 3.3, and duality consider-
ations. •

Remark 11.3. For a compact group X of the form X = M , the descending chain
condition on (X, F) is equivalent to the ascending chain (or Noetherian) condition
on submodules of M.

THEOREM 11.4. Let Y be a compact, abelian group, and let A <= Aut (Y) be a finitely
generated, abelian group such that (V, A) satisfies the descending chain condition.
Then there exists an integer d > 1, a finitely generated R(d)-module M, a continuous
isomorphism (//:XW-»Y, and a surjective homomorphism £:Zd-»A such that
^(an*(x)) = f(n)(tMx)) for every xeX" and n<=Zd, where Yu =
{aB

<':«eZd}cAut(X") is defined in (11.2)-(11.4).

Proof. Since (Y, A) satisfies the descending chain condition we may assume without
loss in generality that Y is a closed, shift-invariant subgroup of (Jk)A for some
k>l (cf. Theorem 3.2). Furthermore there exists a d > l and a surjective
homomorphism £:Zd->A, and we define a continuous, injective homomorphism
£:y->(Tfc)z'' by setting ^ ) ( » ) = M f ( « ) ) for every yeY, neZd. Note that
£• T'C{n)= Tn • £ for all neZd, where T'± and Tr< denote the shifts on (T*)A and on
(Tk)z', respectively. Theorem 11.2(2) yields an isomorphism <p:X = (R(d)kf-*
(Jk)z'' satisfying (11.9). By Theorem 11.2(3) there exists a submodule Js"aR(d)k

with <p~'(£( Y)) = (R(d)k/Jff, and the proof is completed by setting M = R(d)k/N
and i/» = r ' • V-X"^ Y. •

COROLLARY 11.5. Let Y be a compact, abelian group, let F c Aut(K) be isomorphic
to Zd, and assume that ( Y, F) satisfies the descending chain condition. Since Y = Zd,
we can write it in the form F = {yn: neZd}. Then there exists an integer (c>l, a finitely
generated R(d)-module M, and a continuous isomorphism <p:Xl1^> Y such that
4i{a"{x)) = yn(A(x) for every neZd, xe XAi.

We are grateful to B. Hartley for communicating to us the following simple proof
of Theorem 7.2 under the additional assumption that Y is abelian.

THEOREM 11.6. Let Y be a compact, abelian group, and let F c Aut ( V) be a finitely
generated, abelian group such that (V, F) satisfies the descending chain condition.
Then the set of F -periodic points is dense in Y.

Proof. By Theorem 11.4 we may assume that F = Zd for some d > l , and that there
exists a finitely generated i?(d)-module M such that X = M and F = r w =
{ct"n\ neZd}. F ix /V0 in M and choose a submodule Mj-czJl which is maximal
with respect to the property that/£ Mf. Then the /?(d)-module M' = M/Mf has the
minimial nonzero submodule Mx = ((/) + Mf)/Mf.

We claim that M' is finite. Indeed, if ^czR(D) is defined by / =
{h e R(d): hM^ ={0}}, then $ is a maximal ideal (cf. Corollary 2.5 in [AM]), and
4 = R(d)/'$ is a field which is a finite /?(d)-module and hence finite. The Artin-Rees
lemma (Corollary 10.10 in [AM]) implies that there exists an integer m > 1 such
that Jf'M'aJpJli ={0}. Since 4 = R{d)/£ is finite, the decreasing sequence of
/?(<i)-modules Jt'^J?M'=> Jf2M'^ • • • ^^mM' = {0} has the property that the
quotients J'rM'/J>r+lJt', 0^r<m, are all finite, and hence M' is finite, as claimed.
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We have thus found, for every nonzero / e Ji = Y , a submodule Mfc M such
that fi Jif and Ji/Mf is finite. The subgroup Yf = Jtf^ Y is therefore finite, and
is not annihilated by f. In particular there exists a F-periodic point yeYf which is
not annihilated by the character/of Y. It follows that the group Per (F) of F-periodic
points is dense in Y. •

Remark 11.7. From an algebraic point of view it would have been more natural to
put R = R(d) = Z[ut,..., ud] instead of (11.2). In this case the maps fln:Jl->M.
and an:X^X, 0 < n e Z d (i.e. « = ( « , , . . . , nd) and n,>0 for i = \,...,d) defined
by (11.5) and (11.6), would have been injective and surjective homomorphisms,
respectively. Replacing the ring Z[w,,.. . , ud] by its localization R(d) is equivalent
to replacing the surjective homomorphisms an, 0 < n e Zd, by their natural extensions
to automorphisms.

12. Examples of commuting automorphisms of compact, abelian groups
As we have seen in § 8, there exists a very simple algebraic formalism for describing
all pairs (X, F), where X is a compact, abelian group and FcAut(X) a finitely
generated, abelian group such that (X, F) satisfies the descending chain condition.
In this section we give some examples of dynamical systems of this form. A more
detailed study of dynamical properties of such systems will appear in a subsequent
paper.

Let d>\ be fixed, put R = R(d) (cf. (11.2)), and let M be an /?-module. We put
X = M and define the group F = {an : neZd} as in (11.2)—(11.4). The conjugacy tp
of (X, F) into (T*)2'' (cf. theorem 11.2(2)) allows us to identify X with a closed,
shift-invariant subgroup of (T*1)2 and to assume that F is the group of shifts on
X. If the module M is of the form M = R/(f) = R/R f we shall write Xf, a{ and
F / instead of XR/(f\ a?'<» and FR/</>.

Examples 12.1. Let d = 1 and M = R/(f) for some feR = R(\).

(1) Let a, beZ be relatively prime. If f{u) = a-bu, then X1 — YHiA), where
A = (a/b)e GL(l,Q), and a{= T{a/h) (cf. Theorem 6.1 and Proposition 6.2).

(2) Let/(u) = 2-2u. Then there exists a homeomorphism ijj:Xf -*JxZ% which
sends a{ to the automorphism idTx T of TxZ2

2, where T is the shift on Zz
2. In

particular, a{ is nonergodic.
(3) Let/(w) e R be arbitrary. We can multiply/by one of the units {uk: k e Z} <= R

and assume that /(«) = co+c,u + - • • + cnu" with co-cn^O. If D is the highest
common factor of co,...,cn, then there exists a homeomorphism il/:Xf^>
(Z/DZfxXJ/D which carries a{ to Txa{

/D, where T is the shift on (Z/DZ)2.
The group Xr/D is isomorphic to YHiA)> where A'eGL(n,Q) is the companion
matrix of the polynomial g(u) = c'0+c\u + - • • + «" with c\ = cjcn, and YHtA) is
defined in (6.1) and (6.2). Clearly a{/D is conjugate to the shift TA on YH(A). By
using Yuzvinskii's formula (6.6) we can compute the entropy of the automorphism
TA and conclude that

Maf) = log D+ / i ( a O = log cn+ I log|A(i)|, (12.1)
| A ( f ) | > l

where {A(l),. . . , A(M)} are the roots of the polynomial/

https://doi.org/10.1017/S0143385700005290 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005290


Automorphisms of compact groups 733

Examples 12.2. For the following examples we assume that d = 2 and R = R(2).
(1) Let / (« i , u2) = 1 + u, + u2. One can easily see that the polynomial / is prime

and not cyclotomic in any of the u", n eZ2. Hence a{ is ergodic on Xf for every
nonzero net2, and the action of Yf on Xf is mixing (cf. Theorem 11.2(4)).
Furthermore, Xf = {x = (xu)eJz2: xij + xiJ+l + xi+lj = 0(mod 1) for all i,jeZ}.

(2) Let/(«!, u2) = \ + ul + u2+uxu2- The automorphisms a{h0) and a(0,i) are both
nonergodic, but a/u) is ergodic by Theorem 11.2(4). The group Xf is given by

{x = (xiJ)eX: Xij + xiJ+l + xi+ij + xi+lj+1 = 0 (mod 1) for all i,jeZ}.

(3) Let / ( M , , M2) = ( 2 - 3 M , ) ( 5 - 7 M 2 ) . The polynomial / is not prime, but
Yf is mixing on X1 by Theorem 11.2(4). Furthermore, Xf =
{x = (xiJ)eJz2: 10x,J-15x,+ 1 J-14xu + 1 + 21x,+ 1 J + 1=0(modl) for all iJeZ}.

(4) Let/,(«„ M2) = 2 - 3 M , , / 2 ( M 1 , M2) = 5 - 7 M 2 . If / = (/,,/2><=Jf is the ideal gen-
erated by /i and f2 then XR/Jf = {x = (x,;,)eT22: 3x,?; = 2xi+lJ and 7xlV/=
5xiy+1(modl) for all i, jeZ}. Note that J is a prime ideal in /?. Since every
polynomial/e / vanishes at (2/3, 5/7), / cannot contain any cyclotomic polynomial
in the variable u" with 0^ / ieZ 2 . Since $ is prime, Theorem 11.2(4) implies that
the action of F^ on XRlf is mixing.

(5) Let f,(ut, M2) = 1 - u,, / = 1, 2. If $ = </, ,/2) cz R is the ideal generated by / ,
and/2 then R/# = Z, and X w s T , and the action of YR'f on X*/Jf is trivial and
hence nonergodic.

(6) Let/(u,,M2) = m>2. Then Xf = (Z/mZ)z\ and Yf corresponds to the shifts
TZ2 on (Z/mZ)z\

(1) (Ledrappier [Le].) Let / (« , , u2) = I + U ^ M T ' + MZ+MJ1, and let / = <2,/>.
From Theorem 11.2(4) it is clear that FR/J* is mixing on XR/l?. Furthermore,

XR/Jf = {x € Zf2: x,,,^ + xu_, + xfJ + x1+1>> + x u + 1 = 0 (mod 2) for all 1,7 e Z}.

The pair (XR/^, YR/f) is an example of a mixing Z2-action which is not mixing of
order 4. In order to see this note that, for every / s i , the polynomial

f2l(ul,u2) = l + u2' + u2
2' + ul2' + u2

21

lies in $, i.e. every xe XR/^ satisfies that

Xi-2'j + * , j - 2 ' + Xij + xi+2'j + xu+2> = 0 (mod 2) (12.2)

for every i,jeZ, /> 1. From (12.2) it is clear that FR/Jf cannot be 4-mixing.
(8) (Ledrappier [Le].) A mixing action of Z2 which is not 2-mixing is obtained

by setting/(«,, u2) = 1 + U, + M2 a n d / = (2,f). For every xeXR/*, i,jeZ and / s i ,

xu + xi+2'tj + xiJ+2> = 0 (mod 2). (12.3)

By Theorem 11.2(4) r*/Jf is mixing, and (12.3) shows that YRIS is not 2-mixing.

Examples 12.3. (1) Let d = \. If fe R is given by f(u) = 1 - 2 M and / = (4,/), then
/ 2 = 1 lies in / , i.e. / = R. Hence XR/JP = {0}.

(2) Let rf = 2and/(M,,u2) = l + M1 + 2u2e/? = /?(2). If / = <4,/> then

XR/Jf = {x e (Z/4)z2: x,j + xi+lJ + 2xu+1 = 0 (mod 4) for all i, j e Z}.

Since the polynomials / 2 = (1 + M,)2 and 2/= 2 +2M, lie in $ we conclude that

/ 2 - 2 / = u\-1 e / , i.e. that the automorphism a*(o) has period 2 and is nonergodic.
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The automorphism «*{;> on the other hand, is ergodic on XR/J f and has entropy
log 4.
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