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Abstract. We prove that the automorphism group of a one-sided subshift of finite
type is generated by elements of finite order. For one-sided full shifts we characterize
the finite subgroups of the automorphism group. For one-sided subshifts of finite
type we show that there are strong restrictions on the finite subgroups of the
automorphism group.

1. Introduction
Let {0,. . . , n -1} be an n point space with the discrete topology. The space of
one-sided sequences {0, . . . , n-l}N = X[n] and the space of two-sided sequences
{0,. . . , « - l } z = l [ n ] with the product topologies are Cantor sets. The shift
transformation, a, is defined on each by (<r(x)), = x1+1. In the case of X^, a- is a
continuous, onto, expanding map. In the case of 2[ n ] , <r is an expansive homeo-
morphism. The dynamical system (X[n], cr) is the one-sided n shift. The dynamical
system (2[n],tr) is the (two sided) n shift. A continuous shift commuting map
<p: X(n]-> X[n] is a block map. That is, there is a k so that <p(x), = <p([x,,..., *,+*]),
where we use <p to denote both a map from X[M] to itself and a map from {0, . . . , n — l}k

to {0,. . . , n -1}. In the two sided case there is a k so that <p(x), = <p([x,_k,..., x,+fc]).
Observe that the only difference is that in the one-sided case the map is not allowed
to have any 'memory'. This turns out to have very strong consequences. In both
cases a homeomorphism that commutes with the shift is called an automorphism.
The groups of automorphisms are denoted by Aut (X[n]) and Aut (£[„]), respectively.
In a fundamental paper [H, 1969] Hedlund showed that Aut (X[2]) is isomorphic
to Z/2, while Aut (S[2]) contains every finite group. The primary purpose of this
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422 M. Boyle et al. 1

paper is to study the structure of Aut (X[n]). We show that Aut (X[n]) is generated
by elements of finite order and characterize the finite subgroups. The first of these
results is the one-sided analog of a well known question about the two-sided 2 shift:
is Aut (2[2j) generated by elements of finite order and the shift? One of opr
motivations was questions arising in complex dynamics. These were posed to us by
C. McMullen. The results do turn out to have a nice application to the dynamics
of the complex polynomials. This is shown in the work of P. Blanchard et al. [BDK]
and J. Ashley [A].

A subshift of finite type is defined by a square, nonnegative integral matrix, A,
or equivalently by a directed graph. The graph has A(i,j) edges from vertex i to
vertex / Then the one-sided subshift of finite type defined by A, XA, is the set df
one-sided infinite walks on the edges of this graph. The two-sided subshift of finite
type defined by A, "LA, is the set of two-sided infinite walks on the edges of this
graph. If the matrix is A, the directed graph is GA and the set of edges is EA, then
XA is the set of x e (EA)N such that the terminal vertex of x, is the initial vertex of
xi+i for all i, and 2A is the set of all such xe (EA)Z. The shift map will map X+
and 1A, onto themselves. Again, an automorphism is a one-to-one and onto block
map of XA or 1A to itself. The group of automorphisms of XA will be denoted by
Aut (XA) and the group of automorphism o(1A will be denoted by Aut (SU). Here,
we also show that Aut (XA) is generated by elements of finite order and put strong
restrictions on the finite groups that can occur as subgroups of Aut (XA).

Our methods are an outgrowth of the methods used by R. F. Williams in [W].
In [W] Williams showed that any conjugacy of a one-sided subshift of finite type
can be decomposed into a sequence of elementary conjugacies, introduced the use
of the total amalgamation, and in a remarkable theorem (theorem G [W]) gave
simple necessary and sufficient conditions for two one-sided subshifts of finite typê
to be conjugate.

This paper is organized as follows.
In § 2 we reprove Williams' classification Theorem 2.11 and examine carefully

the structure of the elementary conjugacies. This allows us to show that every
automorphism can be written as the composition of two basic types of finite order
automorphisms 2.12.

In § 3 we characterize the finite subgroups of Aut XM.
In § 4 we examine the finite subgroups of the automorphism group of irreducible

one-sided subshifts of finite type.
In § 5 we go into a little of the algebraic structure of the automorphism groups

of the full shifts. v

In § 6 we make a few remarks about homeomorphisms that commute with more
general expanding maps. *

We have included an Appendix that contains some things we need about finite
groups. ^

We would like to thank Jack Wagoner for many useful comments particularly
concerning Theorem 2.12, to thank Bob Gilman for his help on group theory, to
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tjkank Curt McMullen and John Smillie for early discussions about these problems
ahd to especially thank Don Coppersmith for discussions throughout the course of
tflis work.

2. Decomposition of automorphisms
Given a matrix A with a repeated column we may form an elementary amalgamation,
Ae, of A as follows. Suppose A has its rows and columns indexed by { 1 , . . . , « } and
ft jth column equal to its fcth column. Let the rows and columns of Ae be indexed
by the numbers 1 through n, except j and k, together with {j, k}. Then define Ae by

a) Ae{i,n=Ad,n
(ii) Ae(i,{j,k}) = A(i,j) A(i,k) I

(iii) Ae(U,k},i) = A(ji) + A(ki) [ ( * '
(iv) Ae({j,k},{j,k}) _

An alternative formulation of this is to let R be an nx(n-l) matrix with rows
indexed by 1 through n and columns indexed by 1 through n, minus j and k, together
with {j, k}. Let the /th column of R be equal to the ith column of A and the {j, k}th
column of R be equal to the 7th column of A. Then let S be an (« - 1 ) x n matrix
with the rows and columns indexed in the obvious way: let the ith column, i ̂ j or
k be all zeros except for a 1 in the ith entry, and the /'th and feth columns be all
zeros except for a 1 in the {j, k}th place. Finally, observe that

A = RS and SR = Ae. (2.2)

A third and simpler way to arrive at Ae is to add the j th row to the fcth row and
then delete the jth row and column. Then index the new rows and columns in the
natural way.

A matrix such as the S just described is called a subdivision matrix. That is, a
zero-one matrix with no rows all zero and exactly one 1 in each column.

In this terminology, given A, an n x(n — 1) matrix R, and an(n — l ) x n subdivision
matrix S with A = RS, we say that SR = Ae is an elementary amalgamation of A.

A one-step amalgamation, B, of A is defined by finding an nx(n — k) matrix R,
Osfc<n, an (n — k)x n subdivision matrix S with A = RS and letting SR = B. Notice
that B can be obtained from A by a sequence of k elementary amalgamations.

A matrix that can be obtained from A by a sequence of elementary (or one-step)
amalgamations is called an amalgamation of A.

•We define the total one-step amalgamation, A,, of A as follows. Suppose there
are n-k, 0 < k < n, distinct columns in A. Let R be an n x (n - k) matrix made up
of the (n — k) distinct columns of A. Notice that R is unique up to right multiplication
by a permutation matrix. Any other one is RP for some (n — k) permutation matrix
P, i.e. we are allowed to rearrange the columns. Once R is fixed there is a unique
(n - k) x n subdivision matrix S so that A = RS. Then Ax = SR. If we change R by
rearranging the columns, taking RP instead, then we must rearrange the rows of S
appropriately, taking P~*S. So A, = P~*SRP. We could have proceeded the other
way around, by first choosing an (n-k)xn subdivision matrix, S, whose ith and
jth columns agree if and only if the ith and jth columns of A agree. We are free up
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to a rearrangement of the rows of S, any other one is PS for a permutation matrix
P. Once S is fixed R is determined, and Ax = SR. We have proved the following
lemma.

LEMMA 2.3. Given a square nonnegative integer matrix A, the total one-step amalgama-
tion, Ai, of A is uniquely determined up to conjugation by a permutation matrix.

It now makes sense to speak of the total one-step amalgamations of a matrix. It
is also clear that if we relabel the rows and columns of A we still have the same
total one-step amalgamations, (PAP~1)l = Ax when P is a permutation matrix. This
leads to the following observation.

LEMMA 2.4. (Williams [W].) Given A, R, S so that A, = SR is a total one-step
amalgamation of A and Rx, S, so that SXRX is a one-step amalgamation of A there
is a unique subdivision matrix S2 so that S2SX = S. And then

A = RS = R1Sl, SlRl = R2S2, S2R2 = SR = Al

where R2 is a uniquely determined matrix containing columns ofSxRx.

Proof. Notice that both 5, and S have full rank so that both have right inverses.
Also, if {1,. . . ,«} indexes the vertices of A, then S, and S both define partitions
of { 1 , . . . , n} and the partition defined by S, is a refinement of the one defined by
S. Let S2 be a matrix with rows indexed by the elements of the partition defined by
S, columns indexed by the elements of the partition defined by Sx, and put a one
in the yth entry if the 7th element of S,'s partition is contained in the ith element
of the one defined by S. Clearly, S2 is a subdivision matrix and 5 = S2St. Now
because S, has a right inverse we see that A = RS = RS2St = RtSj implies that
Rt = RS2. Let R2 = SXR so that S,i?, = S,/?S2 =/?2S2 and S2R2 = S2SXR = SR = Au

•
LEMMA 2.5 (Williams [W].) If B and C are amalgamations of a common matrix A,
then they have a common amalgamation D.
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Proof. If we have the diagram

A

/ \
B' C

\

where each arrow represents a one-step amalgamation we can use Lemma 2.4 to
complete it.

A

B' C

s \ y \
B2 D' C2

/ \ y \ / \
D2 D 3

/ \ / X
B * c (2.6)
V /

\ /
D

Each new arrow represents a new one-step amalgamation and each D' is the total
one-step amalgamation of the matrix directly above it. For example D1 is the total
one-step amalgamation of A. Each D' is well-defined up to conjugation by a
permutation matrix (2.3). •

Given a matrix A we can define, A,, a total amalgamation of A to be a matrix
that we arrive at by performing amalgamations until we cannot perform any more.
We know that two matrices that differ by conjugation by a permutation matrix have
the same total one-step amalgamation, up to permutation. This, together with Lemma
2.5 yields the following lemma.

LEMMA 2.7. (Williams [W].) Given a matrix A the total amalgamation is well-defined
up to conjugation by a permutation matrix.

A square nonnegative integral matrix determines a directed graph and vice versa.
For a matrix A let GA denote the directed graph, VA denote the vertices of GA, EA

denote the edges of GA, and EA(i,j) the edges from the vertex i to the vertex /
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Construction 2.8. Let A be an irreducible nonnegative integral matrix and B a
one-step amalgamation of A. This means that we have two matrices R and S, with
S a subdivision matrix so that A = RS and B = SR. We want to use these equations
to define a graph homomorphism from GA onto GB, that defines a conjugacy from
XA to XB with a two block inverse. S does two things for us, it defines an equivalence
relation on the vertices of GA, and defines a bijection between the equivalence
classes and the vertices of GB. For i,je VA we say i~j if the ith andjth columns
of S are the same. The equivalence class [/] corresponds to ke VB if S(k, i) = 1. We
may think of the vertices of GB as being labelled by the equivalence classes. In this
notation B([i], [/]) = 1A(i',j), where the sum is over all i'e[i]. The graph
homomorphism will be <p. We start by defining it on VA with <p(i) = [i]. Let EA(i, [j])
be the union of all EA(i,j') for / e [j], and EA([i], [j]) be the obvious set of edges.
For each pair of vertices i,je VA, number the edges in EA(i,j) from 1 to A(i,j).
Define an equivalence relation on EA by saying that two edges are related if they
lie in the same EA(i, [j]) and have the same number. Since A(iJ') is the same for
each / e [_/], the number of the edges in the equivalence class is the cardinality of
[j}. Because we know that B([i],[j~\)-2,A(i',j) where the sum is over all i"e[i],
the number of equivalence classes in EA([i],[j]) is B([i],[j]). This allows us to
define a bijection between the equivalence classes in EA([i], [j]) and the edges in
£B([ ' ]» [./])• This defines an onto graph homomorphism <p:GA-* GB in the natural
way.

We need to see that this defines the desired map from XA to XB. An edge
[e,] e EB([j], [k]) has cardinality of [fe] inverse images. All begin at the same/e [7]
and exactly one ends at each element of [fc]. If we have an edge [e0] e EB([i], [j]),
its inverse images have the same properties so there will be exactly one element of
[e0] that can precede any (in fact all) of the elements of [e,] in GA. This shows
that <p is onto and tells us how to define a two block inverse from XB to XA. Let
<P~l(leo], Oi]) be the unique element of [e0] that can precede the elements of [e,].
Now, <p~l ° ip is the identity on XA.

We say that <p: XA -* XB or <p~': XB -* XA is a one-step conjugacy, <p: XA -* XB is
an amalgamation, and <p~': XB -» XA is a state splitting. We say that <p is compatible
with S, or with the one-step amalgamation A = RS, SR = B, for obvious reasons. If
the one-step amalgamation A = RS, SR = B is an elementary amalgamation we say
that the map <p is an elementary conjugacy, and so forth.

We can go the other way. If tp : XA -* XA- is a one-step amalgamation. We can get
a one-step amalgamation A = RS, SR = A' so that <p is compatible with this one-step
amalgamation. If B is an amalgamation of A obtained by a sequence of one-step
amalgamations, A = J^S,, SlRl = R2S2,..., StR, = B. We can define a conjugacy
tp: XA -* XB that is compatible with the amalgamation by cp = <p, ° • • • ° <pt where each
<Pi is compatible with 5,. Here <p is a one block map, but generally <p~l will be an
/+1 block map.

There are two kinds of arbitrary choices made in defining <p. The first is in the
numbering of the edges in each EA(i,j). This numbering determines the equivalence
relation on the edges. The second is in the correspondence between the equivalence
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classes in EA and the edges in EB. These two types of choices are reflected in the
next lemmas, in Theorem 2.11 and later in Lemma 3.2.

LEMMA 2.9. Suppose A = RS, SR = B is a one-step amalgamation of A, with <p and
ip': XA -* XB two one-step amalgamations compatible with S. Then tp = K ° <p' ° r where
K : XB -»XB and r: XA -» XA are automorphisms defined by graph automorphisms of
GB and GA, respectively, that fix the vertices.

Proof. There are two types of choices available in defining a graph homomorphism
compatible with S. The first is in the numbering of the edges in GA. There is one
numbering for <p and one for q>'. Define T to be the graph automorphism of GA

that fixes the vertices and takes the numbering for q> to the one for <p'. The second
choice available is in defining the correspondence between the equivalence classes
of edges in GA and the edges in GB. Define K to be the graph automorphism of GB

that fixes the vertices and changes the correspondence for <p'° T to the correspon-
dence for (p. •

LEMMA 2.10. Given A, R, S so that Ay = SR is a total one-step amalgamation of A,
/?, , S,, R2, S2 so that A = RS = RiSx, B = SXRX = R2S2 is a one-step amalgamation
of A, S2R2 = SR = Ax, S2SX = S, and <pl:XA~* XB compatible with Sx. There is a
<p2:XB^> XAl compatible with S2 so that <p2° <px is compatible with S. Moreover if we
are also given <p compatible with S we may choose <p2 so that <p = <p2° <px ° r where
T:XA-*XA is defined by a simple graph automorphism of GA.

Proof. We have the diagram of Lemma 2.4 and q>x compatible with 5 , . The matrices
S, Si, and S2 define equivalence relations on VA, VA and VB, respectively, which
we will denote by [ • ] , [*]i, [ # ] 2 - They also define correspondences between the
equivalence classes and the vertices of VAl, VB, and VAl, respectively. Notice that
[i] = U [/']] where the union is over all [i ' ] , in [ [ I ' L L - The map <p, comes from an
equivalence relation [ • ] , on £4(1, [j]i), defined by a numbering of each element
of EA(i,j'), and a correspondence between the equivalence classes of EA([i]t, [j],)
and the edges in £ B ( [ ' ] i . D']i)-

Label an edge [e], e EB by (n, /) where n is the number of each e'e [e], in GA

and i is the beginning vertex in GA of each e'e [ e ] , .
To define <p2 first define an equivalence relation [»] 2 on edges in GB. Say [e], is

related to [e'], if [c]i, [e']x are in the same EB([i]x, [[j]\]2) and they have the same
(«,»') label. Now make a one-to-one correspondence between [«] 2 classes in
£ B ( [ [ ' ] I L , [ L / ] I ] 2 ) and edges in

The map <p2 is now well-defined and is compatible with S2. The map <p2°<Pi
is defined by the numbering of edges in GA that defines <p, and is compatible
with S.

The second assertion follows from Lemma 2.9. If <p is compatible with S, <p =
K ° (p2° <p\° T. But K o <p2 is just another one-step amalgamation compatible with 52 .

•
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For XA we define the k block presentation, XAw by the graph Gl
A

 ]- It has for
vertices the allowable k blocks from XA, and the number of edges from [xlt...,xk]
to [ j i , . . . , yk] is A(xk,yk) if xi+l = yt for 1 < i < fc, and 0 otherwise.

THEOREM 2.11. (Williams [W].) Let A and B be square, irreducible, nonnegative
integral matrices that define one-sided subshifts of finite type XA and XB. Then XA

and XB are topologically conjugate if and only if A and B have the same total
amalgamations.

Proof. If A and B have the same total amalgamations they are topologically conjugate.
Let <p: XA -*• XB be a topological conjugacy, <p is a k block map for some k, and
<p~l is an / block map for some /. Define a matrix C to have states

{([xo , . . . ,x f c_ ,] , [yo,...,yi-i])}

where there exists xeXA, yeXB with <p(x) = y. Then [ x 0 , . . . ,xk_,] is a k block
from XA, [y0,• • •,yi-i\ is an / block from XB,

...,xk_l]) = yo and <p~l([y0,yi-i]) = x0.

The transitions are the obvious ones obtained by overlapping. That is,

can follow ( | > 0 , . . . , xfc_j], [y0,..., j>;_,]) when x\ = xi+1 forO< i < k-1 and yj = yI+1

for Os i < / - 1 . We need to see that A is an amalgamation of C. Let Aw be the k
block presentation of A and we know A is an amalgamation of Aw. Define AiKr),
0 < r < / to have vertices {([x0 , . . . , jck_i], [y0,... , }>r-i])} where there exists xeXA,
yeXB with <p(x) = y, so [ x 0 , . . . ,xfc_,] is a k block in XA, [y0,... ,yr-\\ is an r
block in XB, <p([x0,.. . . xfc_,]) = y0 and <p'\[y0, •••, yt-\]) - x0. Define the obvious
overlapping transitions for A(Kr). Notice A[k] = A(M>, AW)=C and A<fcr) is a
one-step amalgamation of A<kr+1) for \<r<l. This means A is an amalgamation
of C. Similarly, B is an amalgamation of C. Then by Lemmas 2.5 and 2.7, A and B
have the same total amalgamations. D

If (p is a graph automorphism we define the first return map on EA(i,j) in the
obvious way. If G is a group of graph automorphisms we may speak of the return
maps of G. We single out two special types of automorphisms. A graph automorphism
is a vertex automorphism if the first return map on EA(i,j) is the identity for each
pair of vertices / and / A vertex automorphism of XA is an automorphism defined
by a vertex automorphism of GA. A graph automorphism is simple if it fixes the
vertices. An automorphism <p of XA is simple if it is conjugate to an automorphism
<p' of XA where <p' is defined by a simple graph automorphism of GA [N]. This
idea is useful in understanding the action of automorphisms on the periodic points
in two sided shifts [N], [B]. Any graph automorphism can be decomposed into a
simple graph automorphism followed by a vertex graph automorphism.

THEOREM 2.12. The automorphism group of a one-sided subshift of finite type is
generated by simple automorphisms and automorphisms defined by vertex automorph-
isms of the total amalgamation.
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Proof. Let XA be the one-sided subshift of finite type, where A is totally amalgamated,
and <p be an automorphism. Define C = Ao as in the proof of Theorem 2.11. Complete
the diagram as in (2.6).

A"

A' A'

A2 D' A2

• D2 D3 •

A ' 'A (2.13)
\ /

\
A

We need to be slightly careful Examine a single one-step diamond.

We make sure that D6 is a total one-step amalgamation of Da, D" = RS, SR = Ds

and that SjS^ = S25, = S. This is possible by Lemma 2.4. We want this to be true
for all of the one-step diamonds in the diagram (2.13). The matrices down the lower
left and right sides of diagram (2.13) are all A since they are amalgamations of A
which is already a total amalgamation. We already have one-step conjugacies
<Pi: XA> -* XA'*' and ^,: XA- -* XA

i+l with the appropriate S's that are supplied by the
original <p so that

That is, if we go up the upper left hand side and down the upper right hand side
we get ip.

Starting at the top of the diagram and working down we will apply Lemma 2.10
in each one-step diamond to choose compatible one-step conjugacies.
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(2.14)

At each stage we have <p, and <p, defined and compatible with S, and S,, but q>2

and <p2 not yet defined. By Lemma 2.10 we can choose <p2 so that <p2 ° <Pi is compatible
with S25i = S2St. Then we can choose <p2 so that <p2 ° <f>\ is compatible with 52S,
and so that <p2 ° <P\ ° r = <p2 ° <Pi where x is an automorphism of XD- that comes from
a simple graph automorphism of D".

This gives the following diagram.

(2.15)

\

We have that

Let i/> be the conjugacy that goes from XD' to Xy and down the left side to XA.
Let ij/ be the conjugacy that goes from XD* to X >̂ and down the right side to XA.
Then

ip = ^ ° <p2

<P2

So is an automorphism of XA, and <p is equal to ' preceded by a
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simple automorphism of XA. We continue working down the diagram in this way
until we get <p equal to an automorphism £ preceded by a sequence of simple
automorphisms, and $ is the automorphism that is obtained by going down the
lower left side of the diagram and up the lower right hand side. At each stage £,
is compatible with a graph automorphism of GA, so £ is defined by a graph
automorphism of GA. We know any graph automorphism can be decomposed into
a vertex graph automorphism preceded by a simple graph automorphism. This
means q> is equal to a vertex automorphism of XA preceded by a sequence of simple
automorphisms. •

The methods used in this proof are an outgrowth of the methods developed by
R. F. Williams in [W]. In the two sided shift case things are much more complicated
because both column and row amalgamations must be used. This means that there
is no object equivalent to the total amalgamation. J. Wagoner in [Wai, Wa2, Wa3]
has developed a more general approach to use in the two sided setting.

COROLLARY 2.16. The automorphism group of a one-sided subshift of finite type is
generated by elements of finite order.

LEMMA 2.17. Let A be a square nonnegative integral matrix and B be an amalgamation
of A then the largest entry in A is less than or equal to the largest entry of B.

Proof. This follows immediately from equation (2.2) and the definition of amalgama-
tion. •

COROLLARY 2.18. Let XA be a one-sided subshift of finite type with A, = A a zero-one
matrix. Then the automorphism group of XA is isomorphic to the group of graph
automorphisms of GA.

Proof. This follows from Lemma 2.17 and Theorem 2.12 because in Diagram 2.13
all the matrices are zero-one so that there are no non-trivial simple automorphisms.

•
Example 2.19. Let

then Aut (XA) is isomorphic to S3.
For the Golden Mean,

A =

XA has a trivial automorphism group. This has been shown by C. Jacobson and by
W. Parry using different methods.

LEMMA 2.20. Let A^[n] be an irreducible matrix whose total amalgamation is [«],
then every entry of A is strictly less than n.

Proof. Any matrix arrived at by an elementary state splitting has this property and
then we apply Lemma 2.17. •

'0
1

1

1
0

1

ri
0
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THEOREM 2.21 (Hedlund [H, Theorem 6.9].) Aut (X[2{) consists of two elements, the
identity and the flip map.

Proof. Lemma 2.20 tells us that any matrix that has [2] as its total amalgamation is
either a zero-one matrix or [2]. This means the only simple automorphism of X[2]

is the flip map. This is also the only graph automorphism of G[2], other than the
identity. Theorem 2.12 tells us that these two maps generate Aut (X[2]). •

Later we will need the following lemma.

LEMMA 2.22. Suppose A is an irreducible matrix whose total one-step amalgamation
is [«], then A is an s x s, s < n matrix with constant positive rows and column sum n.
Moreover, A is nxn if and only if A is the matrix of all Vs.

Proof. Think of GA. Every vertex i precedes some vertex/ But any other vertex k
has A(i,j) = A(i, k). This says that the rows are constant and positive. Since the
column sum is n, there must be n or less vertices. The second statement is clear. •

We say an automorphism <p of XA fixes vertices if for any x e XA and i e N, (<p(x))j
and Xj have the same initial and terminal vertices.

LEMMA 2.23. Let A be totally amalgamated and <p e Aut (XA). Then <p is a composition
of simple automorphisms if and only if it fixes vertices.

Proof. We make the following observations.
(i) The composition of automorphisms that fix vertices also fixes vertices,
(ii) If y: XB -* XA is a conjugacy that is defined by a graph homomorphism from

GB to GA and T is an automorphism of XB that fixes vertices, then y n ^ y " '
is an automorphism of XA that fixes vertices. To see this, let yeXA, and
x = y~\y). The initial and terminal vertices of xt determine the initial and
terminal vertices of yt. Since r fixes vertices, y°T° y~l also fixes vertices.

Suppose <p is a simple automorphism of XA. Then (p = £ ° io ° f"', where £: XB -* XA

is a conjugacy and w is defined by a simple graph automorphism of XB. We want
to see that <p fixes vertices. We will use induction. Use the construction in the proof
of theorem 2.12 to display the conjugacy £" ' : XA -» XB and define the maps around
each one-step diamond. This means <p is obtained by going up the left side of the
diamond to XA» down the right side to XB, applying w and then going back the
same way to XA. The induction is on the number of one-step conjugacies from XA°
to XB. The map <p fixes vertices if the number of these one-step conjugacies is zero
because then XB = XA°, the map from XA° to XA is defined by a graph homomorph-
ism, and we can apply observation (ii). Assume the claim is true when there are n
of these one-step conjugacies. As in the proof of Theorem 2.12 we have

f"1 = $ o ,/T1 ° {{\l> ° <p2° q>\) ° T ° (ljf ° (f>2° (Pi)~X).

Let y = &° <P2° <Pi and fT' — <A° •A"'- Then y is compatible with the amalgamations
from A0 to A and so is defined by a graph homomorphism. We can apply observation
(ii) to conclude that y°r° y~] fixes vertices. We have that £"' = £7' ° (y ° f ° 7~1)-
If £, ° a) ° fi~' fixes vertices, then by observation (i), <p fixes vertices. By the same

https://doi.org/10.1017/S0143385700005678 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700005678


Automorphisms of one-sided subshifts of finite type 433

construction we can work our way down the left hand side, picking off the upper
left one-step diamonds, until we arrive at the following picture.

(2.24)

The maps are fn\x = i/> ° ip \ t/»: XA -» XA, and <p fixes vertices if £„+, ° u> ° £ n j , fixes
vertices. The map i/> is defined by a graph automorphism of GA, so we can apply
the observations to reduce to considering i^~' ° a> ° <j/. By the induction hypothesis,
this map fixes vertices, so <p fixes vertices. Conversely, suppose tp is an automorphism
that fixes vertices. Apply the proof of Theorem 2.12 to get <p = <pv° <ps where <pv is
defined by a vertex automorphism of GA and <ps is a composition of simple
automorphisms. Now <ps fixes vertices. So <pv = <P°<p7\ also fixes vertices, which
means it is the identity. . D

Let Sim (XA) denote the subgroup generated by the simple automorphisms of XA.
There are two graphs associated to a directed graph, GA, that will be useful. The

first is the vertex graph, GAv. It has the same vertices as GA, a single edge from
vertex i to vertex j when A(i,j)>0, and no edge from i to j when A(i,j) = O. The
weighted vertex graph GAw is the complete graph on the vertices of GA with the
weight A(i,j) on the edge EAw(i,j).

Let GA be a directed graph and GAw be its weighted vertex graph. Let H be the
group of graph automorphisms of GAw that preserve the weights on the edges. H
is isomorphic to the group of permutation matrices that commute with A. There is
an injective homomorphism of H into Aut (XA). To see this, for each pair of vertices
i and j in GA number the edges EA(i,j) from 1 to A(i,j). Then for p in H define
p an automorphism of GA that agrees with p on the vertices and preserves the edge
labelling in GA. So p defines an automorphism of XA and we let H be the image
of H in Aut (XA).

THEOREM 2.25. Sim (XA) is a normal subgroup of Aut (XA), Aut (X^ /S im (XA) is
a finite group isomorphic to the group of permutation matrices that commute with the
total amalgamation of A and Aut (XA) is a semi-direct product

Proof. Sim (XA) is a normal subgroup because its generators are defined to be a
conjugacy invariant set. All we need to see is that the subgroup H of Aut (XA) that
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we just discussed is complementary to Sim (XA). By Lemma 2.23 H n Sim (XA) = {e}
and by Theorem 2.12 any element of Aut(XA) is a composition of an element of
Sim (XA) and an element of H. •

Remark 2.26. From the proof of Lemma 2.23 we see that Sim (XA), for A totally
amalgamated, is generated by simple automorphisms of the form y° r° y'\ where
y: XB -* XA is a conjugacy defined by a graph homomorphism, and r is defined by
a simple graph automorphism of GB. This follows because in the proof we could
have continued until the map (p was decomposed into a composition of such maps.

Remark 2.27'. Ulf Fiebig has shown by example that a nontrivial element of H (H
as above with A totally amalgamated) can define a simple automorphism of the two
sided shift.

3. Finite subgroups of Aut (X[n])
We begin with two lemmas that apply to any XA.

LEMMA 3.1. Let G be a finite subgroup of Aut (XA). Then XA is conjugate to XB

where each element of G is defined by a graph automorphism of GB.

Proof. Let 9>A be the time zero partition of XA, consider 9' = \J g{9A), over all
g e G. It is a finite, open-closed partition of XA. Clearly, if P, e 9', then g(Pj) = Pj
for some/ For each xeXA, associate with it, its (&', a) name. That is, x'e(SP')N

where (x')n is the element of 9' that contains cr"(x). There is a conjugacy between
(X1, cr), where X' is the set of names that arise in this way, and (XA, a). Now go
to a higher block presentation of X' to get XB a one step subshift of finite type.
Each element of G induces an automorphism of XB that is defined by a graph
automorphism of GB. •

The next lemma is crucial to the discussion that follows. Intuitively, it says that
if G is a group of graph automorphisms with identity return maps, then it 'pushes
down' to a conjugate G action on the total one-step amalgamation.

LEMMA 3.2. Suppose G is a group of graph automorphisms of GA, and every return
map is the identity. Then there is an isomorphism t/>: G-» G', where G' is a group of
graph automorphisms of the total one-step amalgamation of A, and a graph
homomorphism cp:GA^GAi, compatible with the amalgamation. Furthermore, the
induced map, <p:XA^ XA[, conjugates the G and G' actions: <p ° g = t/»(g) ° <p, for all
geG.

Proof. As in Construction 2.8, for each pair of vertices i,j e VA we will number the
edges EA(i,j) from 1 to A(i,j). We want to do this so that the group G acting on
GA preserves the numbering of the edges. Observe that this is possible if and only
if every return map is the identity. That is the hypothesis. Now we proceed exactly
as in Construction 2.8 and define a graph homomorphism using this numbering.
The equivalence relation on the vertices is clearly preserved by G, and we define
G to act on VAi by g([j]) = [g(i)]-
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Now we consider the edges. Suppose e, e'e [e]. Then e e EA(i,j), e'e EA(i,j') for
some i a n d / e f j ] , also the two have the same numbers. For

g€G, g(e)eEA(g(i),g(j)), g(e')e EA(g(i), g(j')), g(f)e[g(j)],

and the numbers are unchanged. This means G preserves the equivalence relation
on EA. We define the action of G on the edges and so on GAl in the obvious way.
This gives the desired result. •

LEMMA 3.3. If G is a finite subgroup of Aut (X[n]) then either:
(i) the composition factors of G are all isomorphic to subgroups of Sn-X; or
(ii) G is isomorphic to a subgroup G' of Sn and has a composition factor that cannot

be embedded in Sn-t. In this case the action of G on X[n] is conjugate to the
action of G' defined by its permutation of the symbols.

Proof. Use Lemma 3.1 to get an XA conjugate to X[n] with G acting as a group of
graph automorphisms. Let

PA = {(i,j)eVAxVA: A(i,j)>0}.

For each {i,j)ePA number the edges in EA{i,j) from 1 to A(i,j). We know by
Lemma 2.20 that either all A(i,j)<n or we are done. We will think of EA as a
subset of {I,... ,n-l}x PA. Define a homomorphism vx: G-» SPA in the natural
way. Let G1 = i/1(G). Define another homomorphism e,: G-» S ^ ^ G , by
g(r, (i,j)) = (y(,j)(r), g(i,j)) where ye S^l, so that y(u)(r) agrees with g if r< A(i,j),
yaj)(r) = r if r> A(i,j), and g = vt(g). This is an embedding. The projection map
77-!: S^ , x i G ^ G , gives vx = 7r1°e1. Let K, = ker f, = ker TT, = (S£l, x{l})n ex(G).
Since K, is isomorphic to a subgroup of S ^ , by Lemma A. 10 it has all its
composition factors isomorphic to subgroups of 5n_]. Now, we have

1 - » X , ^ G ^ G , ^ 1 .

Next we see that G, can act on GA, by taking its action on PA and preserving the
edge numbering on GA. By Lemma 3.2, G, induces a conjugate G, action on the
total one-step amalgamation of GA. As before, define a homomorphism v2: G, -» SPA ,
take 02=^2(0,), and define the other homomorphisms e2: Gi-»Snll,xG2, and
TT2 : Snl', xi G2 -> G2. Define K2 = ker v2. Everything is done just as before. This gives

1->K2-*G,->G2->1,

where K2 = ker v2 has all of its composition groups isomorphic to subgroups of
Sn_,. Continue in this manner until reaching a matrix B whose total one-step
amalgamation is [n]. It is acted on by G, with identity return maps and we have

where each v-, is onto and each K{ has all of its composition factors isomorphic to
subgroups of Sn_,.

By Lemma 2.22 there are two cases:
(a) B is s x s for some s<n;
(b) B is the n x n matrix of all l's.

In case (a), G, is determined by its action on VB and is isomorphic to a subgroup
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of 5n_!. Then by observation A.3, G has all its composition factors isomorphic to
subgroups of Sn_!. In case (b), all the matrices from A down to B are zero-one
matrices. This means that Kj — {1}, for all i, and G — Gh But, Gt is determined by
its action on VB and so is isomorphic to a subgroup G' of Sn. Moreover, the action
of G has been conjugated to the action defined by G"s permutations of the symbols.

•
Definition 3.4. For convenience, we define the following groups: Z\ = Sn, and

as in discussion A.4.

Construction 3.5. Here we will describe a way of embedding certain finite groups
into Aut (X[n]). There are two ideas involved, one is the idea of a 'marker' and the
other is the idea of 'carrying to the left'. Both ideas will become clear in the course
of the discussion. Begin by numbering the symbols 0 through n - 1 . Consider Z\-x.
For (y, g), in this group, define an automorphism by

!

g(Xi) if x, 5*0 and x,+ 1=0
?(*,*,)(*.-) i fx , , x , + 1 #0 andx1 + 2 = 0
x, otherwise.

This embeds Z2
n_, into Aut (X[n]). In this case 0 is the marker and we carry once

to the left unless blocked by a 0. We think of the symbols 1 , . . . , n - 1 , that have
the possibility of being changed by (y, g), as 'digits'. It is not hard to see that we
can similarly embed the group Z\-x. Simply use 0 as a marker and carry to the left
twice unless blocked by a 0. A 0 stops the carry. We can keep this procedure up
and we will be able to embed any Z*_,.

For our purposes it simplifies things to see that the wreath products of Sn_, with
itself, the W*-i's of Definition A.7 can be embedded as a special case of this
construction. Consider Wl-, = Sn"Si>iSn-i. We will consider an (n- l ) - tuple of
elements of { 1 , . . . , n - 1 } with no repeats as an element of Sn_,. If ( x , , . . . , xn_,) e
{ 0 , . . . , « - 1 } " " 1 has no 0's and no repeats, we will say that it is an element of 5n_i.
For (y, g ) e WJU, we define an automorphism by

!

x,) if Xi,xi+i,...,xi+k*0 and xi+k+l=0 f o r 0 < f c < n - 2
r(x,+>,...,xi+n_,)(^) if (xi+i,..., **+„-,) e Sn_,, xi+n = 0, and x, * 0

otherwise.

This is clearly a special case of the previous construction. We use induction to
embed W*l\. Let (y, g )e W*^J = W*_lwrSn_l act by using 0 as a marker, having
g act as above on the n-\ symbols ( / , , . . . , in_,), preceding a 0, and y0 ,n ,, act
on the (H — 1)* +1 symbols preceding ( i , , . . . , in_,, 0) as it was defined to do above
(it thinks of ( / , , . . . , in-x, 0) as its marker). This allows us to embed all the W*_,'s
in Aut (X{n}).

COROLLARY 3.6. Wk
n s Z'n for some I.

Example 3.7. The simplest example of this kind of construction can be found in
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[H, p. 335]. For X[3] define <p0 by:

!

1 ifx, = 2 andx j + ,=0

2 ifx, = l andx, + 1 =0
x, otherwise.

We can also define <pi and q>2 in a similar manner but using 1 and 2 as markers,
respectively.
THEOREM 3.8. A finite group G is isomorphic to a subgroup of Aut (X[n]) if and only
if either:
(i) if is isomorphic to a subgroup G' of Sn that has a composition factor that cannot

be embedded in Sn_x. In this case its action on X[n] must be conjugate to the
action of G' defined by its permutation of the symbols; or

(ii) all its composition factors are isomorphic to subgroups of Sn-l.
Proof. The only if part of the statement is Lemma 3.3. The converse follows from
Construction 3.5 where we show how to embed Wk

n^^ into Aut (X[n]), for all k and
from the characterization of the subgroups of the w£_,'s in proposition A.ll. •
COROLLARY 3.9. If<p is an automorphism of the full n shift with finite order, and n is
not prime. Then it has order p*' • • • pe,' for primes pt<n and et e Z+. Moreover, all of
these orders occur.
COROLLARY 3.10. If <p is an automorphism of the full p shift with finite order, and p
is prime. Then it has order p\x • • • pe,< for primes p, < p and e, e Z+ or it has order p in
which case it is conjugate to a rotation. Moreover, all of these orders occur.

COROLLARY 3.11. A finite group is isomorphic to a subgroup of Aut (X[3]) if and only
if it is Z/3, S3, or the order of every element is a power of 2 (it is a 2-group).

An action of a group on a set is said to be primitive if there are no nontrivial
invariant partitions of the set.

PROPOSITION 3.12. Suppose G is a finite subgroup of Aut(X[n]) and Cs action on
the fixed points (under the shift) o/X[n] is primitive. Then G is isomorphic to a subgroup
G' ofSn and the action ofG is conjugate to the action ofG' defined by its permutation
of the symbols.

Proof. Consider the proof of Lemma 3.3. We have that Gt is acting on a matrix B
that is not [«] but whose total one-step amalgamation is. There are two cases, (a)
and (b). Suppose we are in case (a). Using B we can define a partition of the fixed
points of X[n]. Just partition the points according to the vertices of GB where their
loops occur. This partition is invariant under G,. It must therefore be invariant
under the entire action of G. This means that if G acts primitively on the fixed
points, we must be in case (b). •

4. Finite subgroups of Aut (XA)
In this section we generalize results of § 3 to arbitrary irreducible shifts of finite
type, XA. We let H denote the group of graph automorphisms of GAw that preserve
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the weights on edges. We say XA is a tower over the n shift if A is a cyclic permutation
matrix with one of the nonzero entries replaced by n. It is easy to verify for such
A that Aut (XA) = Aut (X[n]).

THEOREM 4.1. Suppose A is a totally amalgamated irreducible matrix and XA is not
a tower over the n shift. Let M be the maximum entry of A. Then a finite group embeds
into Sim (XA) if and only if all its composition factors are isomorphic to subgroups of
SM. Every finite subgroup of Aut (XA) is isomorphic to an extension of such a group
by a subgroup of H.

Proof. To see the necessity we use the same proof as for Lemma 3.3. We display
the group G as acting as a group of graph automorphisms and then start dividing
out normal subroups which have composition factors that are isomorphic to sub-
groups of 5 M . We do this until we arrive at

G -+ G, -> » G,,

where G/ is a group of graph automorphisms of the total amalgamation of A with
identity return maps, and the kernel of the map G-» G, is a subgroup of Sim (XA)
and has all its composition factors isomorphic to subgroups of SM. The group G,
is isomorphic to a subgroup of H.

The required embeddings of finite groups will be done by cases below. •

Theorem 4.1 does not determine all the finite subgroups of Aut (XA). Below, we
will determine the cyclic subgroups. We say an irreducible matrix A is atypical of
type (k, M, n) if A is k x k, n divides k, and after conjugation by some permutation
matrix A has the form

(0 if^V i + l modulo fc
M if j = i +1 modulo k and n divides i
1 if j = i +1 modulo k and n does not divide i.

For example, a matrix atypical of type (k, M, n) with k = n defines a tower over the
M shift. A matrix is typical if it is not atypical.

PROPOSITION 4.2. Suppose A is a typical totally amalgamated irreducible matrix with
maximum entry M. If a finite group G has all its composition factors isomorphic to
subgroups of SM, then G is isomorphic to a subgroup of Sim (XA), and H®G is
isomorphic to a subgroup of Aut (XA). The group Z/n embeds into Aut (XA) if and
only ifn = pq where p is the order of an element ofH and q=p\x • • • pV where px,... ,pr

are the primes less than or equal to M.

By Corollary 3.6 we may assume the group G is in Zk
M, for some k in N. G is a

group of permutations on the set { 1 , . . . , M}k; we write an element of this set as a
word w = w, • • • wk on symbols { 1 , . . . , M}. Given g in G and 1 s ^ < k, there is a
function gj:{1,..., M}k'J+l - » { 1 , . . . , M} such that for all w, (gw)j = gj(wj • • • wk).
We choose a numbering of the edges in GA and define H as in Theorem 2.25. We
let TTV denote the projection of GA onto its vertex graph GAv.

Case I. GAv is not cyclic.
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Choose j , j ' such that A{j,j') = M. Choose an edge a from j to j ' . If j ^j', then
choose a path U = t/, • • • £/,_, of minimal length from f to j (now at/ is a simple
cycle). If j=j', then below U is the empty word. Choose a word W beginning at
j ' , of minimal positive length n such that Un and Wn do not have the same terminal
vertex. Because GAv is not cyclic, W exists with 1 < n < I.

Now, given g e G, we define g: XA -> XA. Suppose xeXA, 1 <_/s /c and for some
i and r

x, • • • xl+r = o , l / ° V i t/0+1) • • • akU
(k)ak+l W, (4.3)

where the a, are symbols, the UU) are words of length / - I , W is a word whose
length equals that of W, and for some he H

(TTV O /,)(*, • • • xi+r) = nv{(aU)kaW).

Let 7){a) denote the numbering of an edge a. Then we define (gx), to be the unique
edge a whose initial and terminal vertices agree with x, and whose numbering is
r)(a) = gj(r)(aj) • • • r)(ak)). Otherwise (gx),=x,. Distinct words of the form (4.3)
can overlap in at most / symbols. Therefore the map g>-+g is a well-defined isomorph-
ism onto some subgroup G of Aut (XA). By Lemma 2.23, G s Sim (XA). By construc-
tion, the actions of H and G commute, so H® G £ Aut (XA). This proves sufficiency
of the condition for embedding Z/n into Aut (XA), and necessity follows from
Theorem 4.1.

Case II. GAv is cyclic.

Suppose GA has L vertices. Number these so that A(i,j) > 0 if and only if j = i +1
modulo L and also A(L, 1) = M. Because A is typical, there exists n with l^n<L
such that H — Z/n. Let L=nr, so A(i,j) = M if r divides i and./ = i + l modulo L.
Because A is typical, there exists / such that 1 < t < r and A{i, j) > 1 if r divides i -1
and j=i+l modulo L. We consider paths in GA of the special form

ayj)aJ+lV
ij+l) • • • akU, (4.4)

where 1 s j < k, each a, is a symbol whose initial vertex i is divisible by r, each V("
is a path of length r — \ all of whose edges are numbered 1, and U is a word of
length less than r with an edge which is not numbered 1. Words of the form (4.4)
replace the words (4.3) in Case I, and then the arguments of Case I (in a more
transparent form) go through. •

We now turn to the 'atypical' shifts. We will only outline the proofs for this rather
special but somewhat intricate case.

PROPOSITION 4.5. Suppose A = MP where M eN and P is a cyclic permutation matrix
of order k>l.
(1) If G is a finite group with all composition factors isomorphic to subgroups of SM,

then G is isomorphic to a subgroup of Sim (XA).
(2) Z/n embeds into Aut (XA) if and only if n has one of the following forms:

(i) n = rq, where q \ k and r = p,1 • • • pe/, p , , . . . , pr are the primes less than or
equal to M -1;
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(ii) n = rq, where q\k, q^k and r = p\l • • • p/, p, • • •, pr are the primes less
than or equal to M;

(iii) n = Mk.

Proof. Constructions for (1), (2i) and (2ii) are easy variations on Theorem 4.2. To
check necessity of the conditions on n in (2), consider a vertex automorphism R
of XA of order k. Verify Cent (R) = Aut (XM) © Z/ k, where Cent (R) is the centralizer
of R in Aut (XA). Reduce to the case M prime and k relatively prime to M\. Then
any element of order k in Aut (XA) is conjugate to R. Therefore a cyclic group with
order divisible by k is conjugate to one in Cent (/?), and a cyclic group of order
divisible by Mk has order equal to Mk since any finite subgroup of Aut (XM) of
order divisible by M is isomorphic to Z/M. •

PROPOSITION 4.6. Suppose A is atypical of type (k, M,n). Let P be a cyclic permutation
matrix of order k/n. Then Aut (XA) ~ Aut (XMP).

Proof. Exercise. •

5. More algebraic structure
PROPOSITION 5.1. Ifn>2, Aut (X[n]) is not finitely generated.

Proof. We will define a homomorphism from Aut (X[n]) onto a direct sum of k
copies of Z/2, for every k. This will mean that Aut (X[n]) must have at least k
generators and so is not finitely generated.

Number the symbols 0 through n — \. Each automorphism defines a permutation
on the points of X[n] fixed by the shift. Map the automorphism to the sign of this
permutation. This maps Aut (X[n]) onto Z/2. It is onto because the automorphism
that sends the symbol 0 to 1, 1 to 0, and fixes the other symbols, has sign one.

For the next step, send an automorphism to Z/2©Z/2 by sending it to the sign
of its permutation on the (shift) fixed points on the first coordinate, and to the sign
of its permutation of the (shift) orbits of period two on the second coordinate. To
see this is onto, observe that the automorphism previously described goes to (1, x)
for some x Now take the automorphism that uses 2 for a marker and interchanges
0 and 1 when they immediately precede a 2. Otherwise, it is the identity. This gets
sent to (0,1), so the map is onto.

At each successive stage do the same, working up in the periods of (shift)
periodic points. At the nth stage the map that uses n - 1 2's as a marker, per-
mutes 0 and 1 when they precede it, and is the identity otherwise, gets mapped
to (0, . . . ,0,1). •

LEMMA 5.2. If A^[«] , A, = [n] and G is a group of graph automorphisms of GA

containing a simple subgroup that cannot be embedded in 5n_,, then A is a zero-one
matrix.
Proof. Since G contains a simple subgroup that cannot be embedded in Sn_,, by
Corollary A.14 G cannot be embedded in any W*_,. Then we go back to the proof
of Lemma 3.3. It means that when we push down to the matrix B, we are in case
(b). So, B and A are zero-one matrices. •
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PROPOSITION 5.3. If <p is an automorphism of the one sided p shift, for p prime, that
commutes with a rotation then it is a power of that rotation.

Proof. Begin as in the proof of Theorem 2.12, building a matrix diamond that
displays <p.

A0

\

As in that proof we already have one-step conjugacies <p,: XA- -* XA>+* and <pt: XA< -*
X^i+i. By the definition of these, p defines a graph automorphism of each GA> and
GA> that commutes with each <p, and <p,. Since p generates a simple subgroup of Sp

Lemma 5.2 says that each A' and A' is either a zero-one matrix or [p]. If A0 is [p]
then A1, A\ and D ' are all [/»]. This means we can choose i/>: Gy-> GD' and
<A: Gy -* GD' so that >j/° <po= <j/° <p0. Then both i/» and î  will induce the same action
of p on GD'. We can summarize this by saying that the entire little diamond

commutes with p.
If A0 is zero-one then by Lemma 3.2 there is a map y: GA°^> GD' that induces a

p action on GD<. By Lemma 2.10 we may choose a map i/j:GA<-* GD< so that
y = il/°<p0. The map i/> will commute with p since both y and <p0 do. We may do
the same for GA> with & ° cp0 = <A ° <Po • This again results in a small diamond that
commutes with p.

We may work our way down the diagram defining the maps so that p acts on
every graph and commutes with every map. Each matrix that occurs in the diagram
is either a zero-one matrix or the matrix [/>]. Since there are no simple graph
automorphisms of graphs denned by zero-one matrices, we see from the proof of
Theorem 2.12 that <p is denned by a graph automorphism of G[p] that commutes
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with p, a rotation of this graph. The only permutations in Sp that commute with a
cyclic permutation of order p are powers of that rotation. •

Observation 5.4. For n not prime, the centralizer of a rotation is infinite in Aut (Xfn]).

Proof. Suppose n = kxl. Define t/», as follows:

Xj + k modulo n if x,-x,+1 =0 modulo k
Xj otherwise.

This commutes with the usual rotation. We can define \\i,, for t>\, similarly by
considering the sum x, + x,+, instead of the sum x,+x,+1. •

Next we will discuss some of the algebraic structure of Aut (X[3]). Some of the ideas
come from Hedlund's proof [H] that the only automorphisms of the one sided two
shift are the identity and the flip (Theorem 2.21).

For i = 0,1,2 let G, be the subgroup of Aut (X[3]) made up of the automorphisms
that always fix the symbol /'. That is, <p e G, when (<p(x)), = i if and only if x, = /,
for all t and x. If /#_/, GjnG, = {l}. By Theorem 2.12 the simple automorphisms
generate Aut (X[3]) and every simple automorphism is obtained from a simple graph
automorphism. <Go,G,,G2) contains the simple automorphisms obtained from
graph automorphisms of G[3]. The simple automorphisms obtained from any other
graph must lie completely inside one Gt. This follows because if we split [3] into
a two by two matrix we will have the following picture.

The two single edges will have the same label, say i. And, the sets of parallel edges
will each have the other two labels. Any simple automorphism obtained from a
graph automorphism of this graph will be an element of Gt. The same will be true
of any automorphism coming from a split of this graph. This means {GO,GU G2) =
Aut (X[3]). It is not a free product, but it is close. Let IT : Aut (X[3]) -»{permutations
of the fixed points} be the homomorphism defined by restriction. Let F = ker n, and
Fj = FnGi. So the Ft are isomorphic and Aut (X^) — FxS3. We want to prove
that F is the free product of the Ft.

We say that the coding length of an automorphism, tp, is the minimal number /
so that [x0,..., *;_,] determines (<p(x))0, for all x. Observe that an automorphism
is left permutive, which means that if <p is the automorphism of coding length / then

(<p([i, x , , . . . , *,_,]))<>= (<p([j, *i, • • •, */-i]))o if and only if i = /

Otherwise, <p could not be one-to-one. Let w = [w0,..., wn_,] be a word of length
n s /. We will denote by <p(w) the n-l + l block that is the image of w.
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LEMMA 5.5. If<peG0 and has coding length l>\, then for any word w of length I — 1
<p(wl) = <p(w2).

Proof. Let M={meN: m>l-l and 3 words w,, w2 of length m, with <p(lw>,) =
<pC2w2)}. M contains / - I because we know we can find a word w of length / - I
beginning with either a 1 or 2, and symbols a and b so that (p(wa)^ <p(wb), and
neither are 0. This is because <p is in Go, and (<p(w))o = 0 if and only if wo = 0.
Suppose wo= 1, then let w be the same word as w except beginning with a 2. Then
since <p is left permutive <p(wa) = <p(wb) and / - I is in M. Let M be the largest
element of M. This must exist or by compactness <p is not one-to-one. Let w, and
w2 be two words of length M so that ^( lw,) = <p(2w2). By the maximality of M,
(p(llw,)5* <p(22w2). Since cp(01w,) = <p(02w2), and (p is left permutive, (p(alw,) =
(p(a2w>2) for a = 0,1,2. By repeating this reasoning we see that for any word v of
length / - I , (p(plw,) = ^ ( I ^ H ^ ) . •

LEMMA 5.6. Let an- • • ax = a be a word on {0,1, 2} wiffc no symbol occurring next to
itself. For each t let <pa< be an element of Gai with coding length /, > 1. Then <pa =
<Pan °" " • ° <po, has coding length L = /, + £ " = 2 (/, - 1 ) (i.c the maximal possible).
Proof. We prove this by induction on n in the following proposition: there is a word
w of length L — 1 and symbols a, /3 such that an # ^(wa) # <p(w/3) ̂  an. For n = 1
this is immediate. Now we induct. Suppose the assertion is true for n — 1. Let
4> = v>o,,_, ° • • • ° <pa, • We have a word w of length L-1 and symbols a and /3 so that
<P(wa) = an, <I>(vf)8) = fc, an^b, and neither are an_,. By Lemma 5.5 we can also
choose a word v of length / n - l , such that <pan{van), (pani

v^) a r e distinct and not
an. Because <I> is left permutive we may choose a word u so that <fr(uwa)= van, and
<J>(uw/3)= ffc. This means (pan°${uwa), <pan °4>(MWJ8) are distinct symbols with
neither equal to an. •

The next proposition follows immediately from the previous lemma.

PROPOSITION 5.7. F is the free product of Fo, F , , and F2.

PROPOSITION 5.8. Aut (X[3]) is isomorphic to a subgroup of Aut (X[n]) for all n>2.

Proof. Recall the notation from the preceding discussion about Aut (X[3]) and the
G,-'s. There is one simple automorphism in G, that comes from the graph of [3]. It
has order two. Every other simple automorphism in G, comes from an automorphism
of a different graph and must have order two. Let <p e Fo be a simple automorphism.
It has order two and all such automorphisms generate Fo. Define n0: X[n]-» X(3] by:

Define <p:X[n]-*X[n] by:

fx, if x , * 1,2

U<p°7ro(x)), ifx, = l ,2 .
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This defines an order two automorphism of X[n] and we have the following commuta-
tive diagram:

Do this for every simple automorphism in Fo and let Fo be the group they generate
in Aut (X[nj). We have a set of generators for Fo, one for Fo, and a bijection between
them. It is easy to see that a word on these generators in Fo is the identity if and
only if the corresponding word is the identity in Fo. This means the two are
isomorphic.

Make the same construction to get F,, and F2. Observe that the products of the
F,'s is free by looking at the restriction of the automorphisms to the copy of X[3]

sitting in the natural way inside X[n].
Finally, embed S3 into Aut (X[n]) by letting it act on the symbols 0, 1, and 2 while

fixing the others. This gives the same relations with the F,'s in Aut (Xtn]) as it gives
with the F,'s in Aut (X[3]). Then Aut (X[3]) = (F0* F, * F3)»S3 is a subgroup of
Aut (X[n]). •

COROLLARY 5.9. Aut (X[n]) for n>2 contains free groups.

6. Expanding maps
Here we give a simple proof of a general constraint on the finite groups of homeo-
morphisms that commute with some expanding maps.

Observation 6.1. Suppose f\X-*X is a continuous expanding map of a compact
space to itself with cardinality f~\x)<d for some d and all x. Let G be a finite
group of homeomorphisms of X that commute with/ Suppose x e X is an /periodic
point whose inverse images are dense in X. Then there are reN points with the
same / period as x for some r, and G is isomorphic to an extension of K by L
where K is a subgroup of Wk

d for some k, and L is a subgroup of 5r.

Proof. Let / and x be as stated. Since / is expanding and X is compact there can
only be finitely many periodic points for / of any period. Let r be the number of
points with the same period as x. Since LC=o/""(*) l s dense in X, G acts faithfully
on Ul=o/~"(*) for s o m e l- Let

G1 = {geG:g(y) = y, VyeG(x)}.

Gx is normal in G = Go, the cardinality of G(x) is less than or equal to r, so G0/Gi
is isomorphic to a subgroup of Sr. Next let

G2 = {g€ G,: g(y) = y, Vy ef-\G(x))}.

Now GJG2 is isomorphic to a subgroup of Sf
d

 1(O<x)) since G, fixes all elements
of G{x) and the cardinality of f~\y) is less than or equal to d. We continue back
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on each level until we reach f~'(G(x)). This gives

G = G0=>G,=>. ••=>G,+1=>G,+2 = {1}.

Then by observation A.3 and Propositions A.5 and A.11, Gx = K is isomorphic to
a subgroup of Wk

d, for some fc, and the conclusion follows. •

COROLLARY 6.2. Suppose f: X -* X is a continuous expanding map of a compact space
to itself with cardinality /~ l (x)< d for some d and all x. Let <p be a homeomorphism
of X of finite order that commutes with f. Suppose xeX is an f periodic point whose
inverse images are dense in X. Then there are r&H points with the same f period as
x for some r, and <p has order sp*' • • • p"1, where s is the order of a permutation on r
symbols, primes p, < d, and e, e Z+.

Remark 6.3. There are some expanding maps where there are no restrictions on the
order of automorphisms that commute with the map. To see this let yin) be the
point in the 2 shift made up be repeating the word 01" forever. Let Y be the subshift
that is the closure of the orbits of all these points. The orbit of y(n) is an isolated
set of cardinality n + 1. There is an automorphism that is the shift on the orbit of
yin) and is the identity everywhere else.

Appendix: Group theory
We will review some things about group theory. The discussion will include composi-
tion series, extensions, wreath products, and some facts about wreath products of
permutation groups. The terminology and notation will follow that which is used
in Rotman, [R]. We would like to thank Bob Gilman for his help on this section
and, in particular, for supplying Lemmas A.9, A. 10, and Proposition A.11.

Let G be a finite group. A normal series is a chain

G = G^G,^- • o G , = {l}

where G,+, is normal in G,. Another normal series

G = H0=>H{=>- • -=>Hk = {l}

is a refinement if G o , . . . , G, is a sublist of Ho,..., Hk. The factor groups of a normal
series are the quotient groups

Go/G, , . . . , GI-I/GI.

Two normal series are equivalent if there is a one-to-one correspondence between
the factor groups so that the corresponding groups are isomorphic.

A composition series is a normal series where G,+x is a maximal normal subgroup
of Gj for each i. A normal series is a composition series if and only if each factor
group is a simple group. The factor groups of a composition series are called
composition factors of G.

THEOREM A.I. (Schreier, 1926.) Any two normal series of an arbitrary group have
refinements that are equivalent.

THEOREM A.2 (Jordan-Holder.) Any two composition series of a finite group are
equivalent.
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For groups G, K, and Q, we say that G is an extension of K by Q if there is a short
exact sequence

HK^GAQ^l.

The group G is a semi-direct product of X by Q, denoted K xi <?, if the sequence
splits. That is, there is a homomorphism £:Q->G so that TT ° £ is the identity on
Q. Another way to say this is that G contains copies of K and Q with K normal
in G, KQ=G, and Kr^Q = {1}.

Observation A.3. If G is an extension of K by Q then the composition factors of
G are the union of the composition factors for Q and the ones for K.

Proof. Let

and

<? = <?02---2<?* = {l}

be composition series for K and Q with

Then 7r~'(Q/+i) is normal in ir~l(Qi) for each i and

ir~'«?i+i)/"-•«?,) = Q,+,/<?i-

This means

G = TT-'CQO) 2 • • • 2 fl--'(Qk) = A: 0 2 *:, • • • 2 *:, = {1}

is a composition series for G with the desired properties. •

DISCUSSION A.4. Given two groups K and Q and a homomorphism 0: <? -» Aut (X)
we can define the semi-direct product of K by Q realizing 0 by G = KxQ where
the multiplication is given by: (k, q)(l, r) = (Or(k)I, qr). Given a group Q that acts
on a set A and another group L, there is a natural homomorphism 6: Q-» Aut (LA)
defined by (0q(y))a = yq(<,)- We will denote this by 0q(y) = y". Given Q acting on
A and L another group we can form the semi-direct product G = LA x Q of LA by
Q realizing this homomorphism. The group G is the set LAxQ with multiplication
(y, q)(8, r) = (yrS, qr). This construction will play an important role in §§ 3 and 4.
There is some conflict of terminology between this construction (using Q, A, and
L) and the special case of it that follows, see [Ha] versus [R].

Given two finite groups, L and Q, Q naturally acts on itself by left multiplication
Qr(q) = rq so we can form the special semi-direct product just described LwrQ =
LQ xi Q. This will be called the wreath product of L by Q.

THEOREM A.5. (Kaloujnine & Krasner, 1951.) If K and Q are finite groups then
KwrQ contains an isomorphic copy of every extension of K by Q.

THEOREM A.6. If p is a prime, then a Sylow p-subgroup of Sp- is the wreath product
of Tip with itself n times, where the product is Vl

p = Z/p and Vk
p

+X = Vk
p wrl/p.

Next we want to examine a special wreath product that we will make use of in §§ 3
and 4.
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Definition A.7. Let Wl
n = Sn and Wk+l = Wk wrSn.

LEMMA A.8. For n 5*4 the group Wk has all of its composition factors isomorphic to
either Z/2 or An. The group Wk has all its composition factors isomorphic to either
Z/2 or Z/3.

Proof. We prove this by induction on k. It is true when k = 1. The product (Wk)s"
has its composition factors as desired by Observation A.3. Again applying
Observation A.3 to (Wk)s"XSn we see that Wk+1 has its composition factors as
desired. •

For a group G and a subgroup H of G we let [G: H] denote the index of H in
G, that, is, the cardinality of G/H.

LEMMA A.9. If G is a subgroup ofSn and H is a normal subgroup of G so that G/H
is simple then G/H is isomorphic to a subgroup of Sn.

Proof. We prove this by induction on the order of G. Take the case {I}?* G, there
is a subgroup L s G s o that 1< [G: L] < n. This follows because for each i = 1,...,«,
if Gj = {ge G: g(i) = i}, [G: G,] is equal to the size of the orbit of i under G. There
must be an i so that this is not 1, take this G, to be L. Consider HL. If HL= G
then G/ H — L/(LnH) and we apply the induction hypothesis to L. Otherwise
HL?* G and we consider the action of H on the coset space G/HL. This maps G
into Sa/HL, where 1<[G: HL]< n. The map has kernel H since G/H is simple. It
embeds G/H into SG/HL. •

LEMMA A.10. If G has all its composition factors isomorphic to subgroups of Sn, so
does every subgroup of G.

Proof. Let H be a subgroup of G. Then intersect a composition series of G with H.

//0 = H n G 0 2 H 1 = / / n G 1 2 - • ^H, = HnG,.

Extend this to a composition series for H giving

There is a natural map HJHi+l -> HJK\, where H,/HI+, c Sn and H,/K\ is simple.
We can apply Lemma A.9. Similarly, K\/Hi+i £ Ht/Hi+1 and there is a natural map
K\///,+,-• K\/K'2. We are again in a position to apply Lemma A.9 and we can
continue. •

PROPOSITION A.I 1. A finite group G is a subgroup of Wk, for some k, if and only if
all its composition factors are isomorphic to subgroups of Sn.

Proof. If G is a subset of Wk Lemmas A.8 and A. 10 tell us that G satisfies the
required condition. Conversely, suppose G satisfies the condition and

is a composition series for G. Then G;_, is isomorphic to a subgroup of Sn. We
know that G(_2 is isomorphic to an extension of G,_, by G(_2/G/_1. By the theorem
of Kaloujnine & Krasner (A.5) we know that G,_2 is isomorphic to a subgroup of
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G,_] wr (G/_2/G,_1) which is a subgroup of Wl
n wrSn = W2

n. We continue until we
get G to be isomorphic to a subgroup of W'n. •

COROLLARY A.12. Every element of Wk has order p\* pe
2
2 • • • pe/ where px,... ,pr are

the primes less than or equal to n.

Proof. We induct on k. This is clear in Sn. Let (y, g)e Wk. This has powers
(y,g)' — (yg yg' •• •%?')• If ' is the order of g then y8 = y and (y,g)s' =
((yg'~' • • • y)\ l). Since (y8' ' • • • y) is in Wk

n~* it has order s with the right prime
decomposition. The order of (y, g) divides st. •

COROLLARY A.13. A finite group G is a subgroup of Wk for some k if and only if
every element has order 21 for some I (it is a 2-group).

Proof. If G c Wk then the condition on the orders is Corollary A.12. If G is finite
and every element has order 2' for some / then Cauchy's theorem says that G has
order 2r for some r. This means G is isomorphic to a subgroup of S2

r and is contained
in a Sylow 2-subgroup G. By the theorem describing the Sylow p-subgroups of S/
in terms of wreath products (A.6), we see that G — Vr

2— Wr
2. •

COROLLARY A.M. IfG is a finite group that contains a simple subgroup H that cannot
be embedded in Sn then G is not isomorphic to a subgroup of Wk for any k.

Proof. We see that
G 2 / / 2 { 1 }

is a normal series and by Schreier's Theorem (A.I) can be extended to a composition
series. This means H is a composition factor of G. By Proposition A. 11 G cannot
be a subgroup of Wk.

COROLLARY A. 15. The condition on orders of Corollary A.12 does not guarantee that
a finite group is a subgroup of Wk, for some k, in general. This is in contrast to
Corollary A.13 when n = 2.

Proof. The group A6 consists of elements of order 5, 2x2, 3, 2, and 1 but cannot
be embedded in S5 or by Corollary A. 14, in Wk for any k. •
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