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Abstract We show that if # 2524 1s a bounded-to-1 factor map from an
irreducible shift of finite type X5 with period pg to a shift of finite type Xy with
period py, then there 1s a factor map 7 Xs—>2p that 1s (pg/py)-to-1 almost
everywhere Moreover, if 7 1s right closing, then 77 may be taken to be rnight closing
also

1 Introduction
We prove the following result

THEOREM 11 If 7 25 -3 1s a bounded-to-1 factor map from an wrreducible shift
of fimite type 3 with period pg to a shift of finmite type 3 with period py, then there
1s a factor map # 25— 3y that is (pg/pr)-to-1 almost everywhere Moreover, if
1s night closing, then 7 may be taken to be rnight closing also

In particular, if 2 1s aperiodic, then # 25> 2y 1s 1-to-1 almost everywhere It
1s easy to show that ps;/py 1s the smallest possible degree of a factor map from a
shift of period pg to a shift of period py

This result generalizes a result in [AGW] where the range shift 1s the full n-shift

As was pointed out to me by Bruce Kitchens and Brian Marcus, this result
simplifies the proof of the main theorem in [AM] that topological entropy and
period are a complete set of invariants for almost topological conjugacy

2 Background

We assume some famiharity with shifts of finite type § 3 of [AM] and § 2 of [BMT]

are good introductions We make some definitions here 1n order to establish notation
Given a strongly connected directed graph G with a finite set of states & and at

most one edge from any state to any other, we define the shift of finite type 2 by

Sc={se¥%* ss.,1sanedgein G for1eZ}

This defimtion follows [AM] rather than [BMT] In [BMT] the defining graph G
may have many parallel edges from one state to another, and the symbols 1n the
shift £ are the edges of G, not the states of G The defimtions are equivalent up
to conjugacy
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The set 2 1s topologized by the product of the discrete topologies on its coordinate

spaces
The shift map o 25 -2 defined by

(Ux)l = X+t
1s a homeomorphism

The period of 3.5 1s the greatest common divisor of all cycle lengths 1n the graph G
Given a finite path of states s,s, s, 1n the graph G, we denote

nl 5152 Silpik={x€2s Xpp=s,1=1=k}

Thus set called a k-block of 2

Given y € 35, we denote the finite path y,y, ., y, m G by (),

A k-block map m 35> 2y 1s a shift-commuting map such that there 1s some !
for which

(my)o=(my)o 1f 1_ki(¥)1= 1=ks(¥'
In the 1-block case we require merely for notational convenience that /=0 In the
1-block case we have
(my)o=(my")o 1f yo=ys

Thus 7 1s defined by a map from single states of G to single states of H that we
again call 7 In this case we say that a path of states s,s, se 1n G 1s m-labelled
by m(s))7(s;) w(si) = 7(5,5; 5i)

A bounded-to-1 factor map w Z;->24 1s a k-block map such that the set of
positive integers {#= '(y) ye€ Xy} 1s bounded from above

A 1-block map 7 35— 2y 1s night-closing 1if 1t never 1dentifies two distinct left
asymptotic points 1If s, s'’e3s; have an e Z such that s,=s; for all /=1, and
7w(s)=m(s’) then s=s'

A 1-block map m 25— 24 1s nght-resoluing if for every path t,1, of length 2 in
H, and for every state s; of G with 7 (s,)=1t,, there 1s a unique state s, such that
5,5, 1s an edge of G and #(s,)=1,

3 Resolving blocks

If # 25~ 24 1s bounded-to-1, then the mmimum d of {#= '(y) ye H} 1s the
generic degree of = except for a set of measure zero 1in 25 (with respect to the
measure of maximal entropy) = 1s a d-to-1 map [KMT] We call d the degree of
7 after [B]

The degree of a 1-block factor map = X;-> X, 1s the smallest integer d such
that there 1s a path m;m, my; 1n the graph H, an teger [, 1=I1=<k, and a set
{r',r*, , r'} of d states in the graph G such that every path s,s, s, in G with
w(s,s; -s)=mm,-- mhas se{r',r’, ,r’}[KMT] The path mym, m,
1s a resolving block for the map = We use the following construction from [KMT]
to reduce to a convenient special case of Theorem 11

Given a shift of fimte type 2, define the k-block presentation of Xy to be the
shift of finite type =4 whose symbols are the paths of length k in H, with a transition
from symbol s, s, s, to symbol 1,1, 4 ff 5,58, Sc=ht, t._; The k-block
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map ¢, 2, -3} defined by mapping the path s;5, s, 1n H to the symbol
5,8, si 1n 25715 a conjugacy

Given a 1-block map 7 25— 2, and integers k and [ with 1=<1[=<k, define the
shuft of finite type Z%'as follows The symbols to =& are the equivalence classes of
paths of length k in G where path s;s, 5, 1s equivalent to sis3 siff

(1) (8,5, 5) = (8185 k)
and
(1) 5 =]

There 15 a transition 1n 2’ from equivalence class s to equivalence class ¢ 1ff there
1s a path s, s, SiSk+1 1n G such that s, s, s € s and s,5; si+1 €t The k-block
map @y 26— = ¢ taking a path of length k 1n G to the equivalence class containing
1t 1s a conjugacy

Define the 1-block map 34! > 30 by taking a symbol of 2&' (which 1s an
equivalence class of paths of length k in G) to the common 7-label of 1ts elements

THEOREM 3 1 ([KMT]) The diagram

Pr k!
2g — ¢

¥
Sy —— =i
commutes Moreover, if m,m, my 1s a path in H that 1s a resolving block for i,
and I, 1=<1=<Kk, 1s as in the defimtion of a resolving block, then m,m, m is a
resolving symbol for

We also use the following lemma essentially contained in [KMT] regarding
bounded-to-1 factor maps

PERMUTATION LEMMA 32 Let m X;-> Xy be a degree d 1-block map with resolving
symbol m Let m',m*,  , m“ be the states in G with w(m')=m, 1<1=d For each
path of the form mum in H, there are paths u', w*, ,u®in G and a permutation 7,
of {1,2, ,d} such that the paths of G m-labelled by mum are exactly m'u'm™",
1=1=d

4 Proof of the main theorem
In case the entropy of 2. s zero, 25 and T4 each consist of a single finite orbat
and Theorem 1 1 holds trivially The rest of this section treats the positive entropy
case

We first reduce to a special case Suppose the given map 7 25— 2, 1s a k-block
map

As composition (on either side) with conjugacies preserves both degree and the
property of being right-closing, we can reduce to the case where # 25->Xy 1s a
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1-block map by replacing = with ¢ o 7+ where
2 2[c,;(]_>zc

1s the 1-block conjugacy mapping the word s,s, 5, 1n X to the symbol s,
Using Theorem 3 1, we further reduce to the case that # ;>3 1s a 1-block
map with a resolving symbol m We may assume, by increasing k 1n Theorem 3 1
if necessary, that the resolving symbol m in H has at least two incoming edges and
at least two outgoing edges in H The motive here will not become apparent until later
Assuming = ;- X4 has degree exceeding ps/pn, we will construct a bounded-
to-1 factor map @ Xs—> Xy that has lower degree than = Moreover 7 will be
right-closing 1f 7 1s Since any factor map from 25 to 2 has degree at least ps/pu,
this will prove that there 1s a factor map from % to 2, with degree exactly ps/puy
First we construct 7 and then show that 1t has the desired properties
If the graph G has period pg, then the states of G are partitioned into pg

equivalence classes 6, €;, , €,,-1, where a state s 1s equivalent to a state ¢ 1iff
there 15 a path sut in G with |ut| a multiple of pg
Let m', m?, , m“ be the symbols in G with #(m')=m, 1=1=d Since T has

penod py, any cycle based at m has length a multiple of p; So we may assume
that all the symbols m', m>, , m“ occur in the equivalence classes

<60’ (ng’ (gZPH’ ’ (g(pG/PH_l)PH

Thus d objects are placed 1n ps/py pigeon holes If we assume d > ps/py, then
two of m', m?>, , m“ lie in the same equivalence class We may assume these two
are m' and m? and that m', m*e 6,

Fix Ny> 0 such that for any 0=, < pg, any state s in 6, and any state t in €,
there 1s a path of length (y—1)+ Nyps from state s to state ¢

Let e,e; ¢; be a (possible empty) path in H such that me,e, e; 1s a simple
cycle in H Denote m = e; Recall that m has at least two incoming and at least two
outgoing edges Choose states f and h in H so that mf and hm are edges of H not
occurring on the cycle e, e, e

Choose an integer p such that pL+1=p;+ Nyps+1

By the Permutation Lemma 3 2 there 1s a path c,c;, Cpr+1850=Cso 1n G with
¢;=m' and with m-label (e,e, e, )’e,f Again by the permutation Lemma 3 2,
there 1s a state sy of G such that sym' 1s an edge of G and #(sy)=h Similarly,
there 1s a state 5y of G such that 5xm” 1s an edge of G and #(5y)=h

Now so€ 6,41 and sn,5v€ %, (indices are modps) Fix I, with
Iy=—1—(pL+1)mod ps and 0=<1I,<ps; Set N=1I,+ Nyps We may choose a
path sos; - Sy-iSy from state s, to state sy and a path 5,5, S§n_15n from state
o to state 55 Denote so=35, By the choice of p, we have

pL+1=ps+ Nops+1= I+ Nypg+2=N+2,

an mequality we will use 1n the proof of Lemma 4 1 below
Denote M =pL+1+ N +2 and

t=nt thv = (¢ Cpr+1)(S08) sn)ym'
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and
. - . - 2
t=nt v = (10, Cpr+1)(505; §N)m

Denote 7(s,s, Snoq) =g, (5,5, Sn—1)=4g,and (e e, e;)’e, = e Note that
(1) = efghm and = (7)=efghm Thus g# g by Lemma 3 2
The paths ¢ and 7 in G were chosen 1n part to make the following lemma true

LEMMA 4 1 The two paths w(t) = mvm = efghm and w(¥) = mom = efghm in H non-
tnivally overlap each other or themselves only at theiwr end symbols, m

Proof Say path u encroaches upon path w by n 1if u=u's, w=sw’ and |[s|=n Since
the edge hm does not occur in the path e = (e, e, e;)’m, neither efghm nor efghm
can encroach upon itself or the other by any n with 2<=n=<pL+1 If pL+2=n<
M —1, and one of efghm or efghm encroached upon the other by n, then the edge
mf would occur n the path e for the following reason Since |ghm|=|ghm|=N+1,
the edge mf would occur ending at position n—(N +1) 1n the encroached-upon
path But

2=(pL+2)—-(N+1)=n—(N+1)=(M—-1)—-(N+1)=pL+1,

which puts the edge mf 1n the path e Thus neither efghm nor efghm can encroach
upon 1tself or the other by any n with 2=n=M -1 Now efghm # efghm, so
netther can encroach upon the other by M Since |efghm|= M, this proves the
lemma O
We define # S5->2, as follows Let xeXg
If the block ¢t occurs 1n X, say ,_p4(x), = ¢, then

-me(7F(x)), = 7(F) = mdm,
if the block 7 occurs 1n x, say ,_p4,(x), =i, then
-m(7(x)), = 7 (1) = mom,
and for any coordinate x; of x not occurring 1n a block ¢ or f, set
(7(x)), = 7(x,)

By Lemma 4 1, the strings mvm and mim 1n H nontrivially overlap themselves or
each other only at their end symbols Thus the strings ¢ and f can overlap each
other or themselves 1n at most that many ways (in fact fewer ways), so 7 1s
well-defined as a (2M —1)-block map 7 ;>34

Define functions f and f with domain and range {1,2, ,d} by

() fr#1,
f(l)_{2 ifi=1,
and
= 7)) afr#d,
f(l)_{l ifi1=1

Note that 7,(1) =1, so 1 1s not tn the range of f Similarly, 7.(1) =2, so 2 1s not 1n
the range of f
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Let m'v'm™”, 1= 1=d, be the paths in G given by Lemma 3 2 that are 7-labelled
by mvm Similarly, let m'c'm™") be the paths in G that are =-labelled by mom
We may denote

m'{j:mf(x)__.{mvlmr"(') if1#1,

f=m't'm* 1f1=1,
and
m'EmI® = {m'ﬁ’m’°"’ if11,
t=m'v'm' 1f1=1
For a string w, denote o[ w] = o[ W]

LEMMA 42
d
77 lmom]) = U o[m's'm’ ]
1=1

and

d ,
77 [ mom]) = U oLm'8'm7 "]
=1
Proof The 2d paths m'v'm™ and m'#'m™"" 1= 1= d in the graph G are m-labelled
by mvm or mom, so by Lemma 4 1 each of these paths non-trivially overlaps another
or 1tself at most by one symbol (some m') In particular, each non-trivially overlaps
t and 7 by at most one symbol Thus, for 2=<:1=4,

#olm'v'm™ ")) € w(o[m'v'm™"]) = o[ mvm],

and
([ m'5' m?]) < J[mvm]
s0
d
U o[m'd'm" ] %7 (o[ mom])
1=1
On the other hand, 1f o( #(X))|mymi—1 = mvm then either o(X)jpm -1 = =m's'm’ or
o{X){momi—1 OVerlaps ¢ and f by at most one symbol, 1n which case 7 agrees with 7
on o X)imom|~1, gIvINg that o(x)|mem—1 = m'v'm™'", where 2=<1=<d This shows
d
7 (o[mom]) = U o[m'd'm’"]
1=1
The barred version 1s proved similarly O

Lemma 4 2 1s the base case for an induction used to prove Lemma 4 3 below
Let w be any path in the graph H beginning and ending with the strings mvm
or mbm We can express

w=m{(w,m)(w,m) (w,m)om,
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where
(1) o=vorid=1p,
(2) each wym begins with vm or om,
(3) the strings mvm and mdm do not occur 1n any wm, 1<y=<k.
Note that k =0 if w=mvm or mim There 1s a umque decomposition satisfying (1),
(2), and (3) because mvm and mom non-trivially overlap each other and themselves
only 1n a single symbol (m)
LEMMA 43 Let w be any path in H beginning and ending with mvm or mtm Let
w=m(w,m)(w,m)- (wam)dm
be the decomposition defined above Then for 1<1<d,
olm'1n 77 [w]
___O[mv(wllmf,(l))(wémfff,(l)) . (chmf"u °f1('))g’mh°fk° °f|(l)],
where w), 1=j=<k, and ¢’ are paths in G and
f ifwm=ovm
)5 if wm = om
A= T.°f ifwm=vmum
.o f 1fwm=omum
and
b= {f o=y,
f yo=10
Proof The proof 1s by induction on k. If k=0, then w = mvm or w= mom and this

case follows from the equality

# " (mom)) = U ofm'5'm "]

=1
or
d .
77 ([mom) = U o[ m'§'m )
1=1
given by Lemma 4 2 Now suppose the lemma 1s true for all 0=< k<! and that
w=m(w,m)(w,m) (wm)om
Suppose that wym begins with vm (The argument for om 1s similar ) Set
u=m(w,m)(w,m) (w,_ym)vm
Then u satisfies the inductive hypothesis, so
dm' 1o A7 ul=om' mE O m ),
where g=f_,° o f; There are two cases to consider
(1) wm=ovm,
(2) wym = vmum, where neither mvm nor mim occurs 1n mum
In case (1),

olm']ln ‘ﬁflo[W] =ofm']n 7)7\’_10[“] N U*lulﬂﬁ_lo['m;m]
=olm'  m ] [T B m ],
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s0 fi=f 1n this case In case (2),

olm']ln 7"‘\'_lo[w]

=o[m'  mEFum ), Ao MM A T momumim ]
° 3 ofo -~ hor ofo
— o[ml mg(l)vlmf 1;(!)]|u|_1 A Iul_lmvml[mg(r)vlmf 2 i m ™S 8 5ty homof g(t)]’
so fi =7, °f 1n this case O

COROLLARY 44 The map ## 252y Is onto

Proof By Lemma 4 3, each path of the form (mvm)u(mvm) mm H 1s the image by
7 of a path (m'v'm”)u'(m#“v"m”*#) 1n G Thus, by the irreducibility of H, any
fimte path 1n H 1s the image by 7 of some path in G It follows that the
mmage of 7 1n £, 1s dense, and by the compactness of 3, that the image of 7 1s all
of Xy O

COROLLARY 45 The map # X - Xy is bounded-to-1

Proof As m ;- 2y 1s bounded-to-1, 35 and 2, have the same entropy [CP] It
follows from this, Corollary 4 4, and [CP] that 7 1s bounded-to-1 O

COROLLARY 4 6 If 7 1s nght-closing, then so 1s 7+

Proof Let x, x'€ 25 be left asymptotic points with 7(x)=#(x’) We must show
x =x' We may assume x, = x| for 1=0 We may also assume (by replacing _,.(x),
by some other past and shifting 1if necessary) that _j,umi+1(7(x))o= mom If words
from {mvm, mom} occur infinmtely often 1n o(7(x)), then x=x' b an induction
and Lemma 43 If words from {mvm, mbm} occur a finite number of times in
o{(7(X) )05 1€t ¢ |mom+1(7(x)), be the final occurrence Then x,= x| for i<k by
Lemma 43 Now (7(x))o=(7(x))x by the defimtion of 7 off the blocks ¢ and
f Similarly, , (7(x)a=1(7(x))n S0 1 (7(x))e =1 (7(X)), 50 x = x" because 7 15
night-closing O

COROLLARY 47 The map # X~ 2y has lower degree than m has

Proof Because the map 7 1s not a 1-block map, we cannot apply verbatim the
characterization of degree we gave 1n terms of the pre-image of a resolving block
in H However, we may choose an integer g so that |(mv)?m|>2M and observe that

d

ﬁ'lo[mv(mv)‘lm] = U o[m'v'mf"’ mj«’+|(')]

=1

4 ~|muvf (1) ra*n)
cUo™™[m m’ 1,

1=1

the last set being a disjoint union of at most d —1 |(mv)?m|-blocks Thus we may
apply the criterion directly to the 1-block map

7oy TGM > 2,
to conclude that the degree of 7 1s at most d —1 O

From the assumption that the bounded-to-1 factor map 7 X5 -2, has degree
exceeding ps/pu, we have constructed a bounded-to-1 factor map # 35> X, with
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degree less than the degree of = Since the smallest possible degree of a factor map
7' =352y 1S pg/pu, this shows that one could iterate the construction to get a
factor map degree exactly ps/pn, proving Theorem 1 1

5 The sofic case
A sofic system 1s a symbolic system that 1s a factor of a shift of finite type In fact
any sofic system 1s a factor by a 1-to-1 almost everywhere map of a shift of finite
type [F]

Theorem 1 1 can be generalized to the case of sofic domain and range

THEOREM 51 If m S— T i1s a bounded-to-1 factor map from an wrreducible sofic
system S with period ps to an irreducible sofic system T with period pr, then there 1s a
Jactor map 7 S- T that is ( ps/pr)-to-1 almost everywhere Moreover, if w 1s night
closing, then 7 may be taken to be nght closing also

Here, the period of a sofic system 1s the period of any 1-to-1 almost everywhere
finite type extension

The proof of Theorem 5 1 1s largely the same as the proof of Theorem 11 The
only real change is that we replace resolving blocks by their appropriate generali-
zation 1n the sofic setting markov magic words [B]

We follow [B] 1n the following two definitions

Given a sofic system T, a markov word for T 1s an allowable word w such that
if uw and wo are allowable words 1n T, then so 1s uwv

Given a bounded-to-1 1-block factor map = S—- T from an irreducible sofic

system S to an irreducible sofic system T, define % to be the set of allowable words
win T for which
(1) w1s a markov word for T,
() 7' [wlcs U, [w'), where k=j and w', w?, , w are markov words for S
In [B] it 1s shown that % 1s non-empty Any we W for which d 1n (1) 1s minimal
1s called a markov magic word for # S—> T The mimimal d 1s the degree of the
factor map = S— T [B]

We may use [B, Proposition 1 4] and a construction similar to that of § 3 above
(from [KMT]) to reduce to the case where # S - T has a markov magic symbol m
Then [B, Proposition 14] gives the following generalization of the permutation
Lemma 2 2

LEMMA 52 Let # S— T be a degree d 1-block map with markov magic symbol m
Letm',m’, , m“bethe symbolsin Swith 7' [m]=\J?. o[m'] Foreachallowable
word of the form mum in T, there are d words u',u*, ,u? in S and a permutation
r,of {1,2, ,d} such that
d
o mum] = J[m'u'm™"]

As 1n the shift of finite type case, we may assume that the symbol m in T has at
least two predecessors and two successors
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The period of T 1s
ged{|mum|—1 mum s a word in T}
and the period of S 1s
ged{{m'um'|—1 m'um'is a word in S}

The construction of # S$- T using Lemma 5 2 follows much the same lines as the
shift of finite type case

6 The Markov chain case
If the irreducible shift of finite type (25, o) 1s given a Markov measure ug defined
by a stochastic matrix P=0 via

e lolst]) = Popc(ols]),
then (25, o, ug) 15 called a Markov chain
Following [PS], define the weight of a cycle sgs, Sp-1 1n the graph G as
Wc(sosl sp—l) = Psoslpslsz Ps,,,,soa

and the multiplicative subgroup Ag of R* by

Wa(s) }
Ag= , 8 1 G with [s| =|s’
G {Wc(s’) s, s" are cycles 1n G with |s|=|s’|

In [PS] 1t 1s shown that 1if

7 (26,0, u6) > (Zp, 0, uy)
1s measure-preserving, then A5 < A, , moreover, 1If 7 1s 1-to-1 almost everywhere,
then A=Ay,
As was pointed out to me by Brian Marcus, the construction of # used 1n the
proof of Theorem 1 1 can be adapted to work 1n the category of Markov measure-
preserving block maps to give a partial converse to the [PS] result

THEOREM 61 If m (25, 0, ug)> (2 y, 0, uy) 1s a measure-preserving factor map
from the Markov chain 25 with period p; to a Markov chain 3., with equal period
Pu=Ps, and f Ag=Ay,, then there i1s a measure-preserving factor map
7 (26, 0, us) > Ey, 0, uy) that 1s 1-to-1 almost everywhere

Sketch of proof In the proof of Theorem 1 1, we construct paths ¢ and 7 1n the graph
G such that their images #(t) = mvm and 7 (7) = mdm 1n the graph H overlap by
at most one symbol The map # ;- Xy 1s defined by “switching the 1mages™ of
tand 7

Now vm and om are both cycles in the graph H If wy(vm)= wy(m) then 7,
hike =, will be measure-preserving Otherwise the ratio

m
WH(zj )=p€AH_AG
wy (Om)
1s equal to a ratio
W (F
G(r)—peA01
we(r)
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where r = syr,r, r. and 7= s,F\ 7, 7, are cycles in the graph G based at the
state s, of G defined 1n the proof of Theorem 11

Now interpolate the cycle 7 into the path 7 at state s,, and interpolate the cycle
r into the path ¢ at state sy, and extend the common prefix ¢,c, ¢,1+ of t and
f (by choosing a larger L if necessary) to ensure that the two modified paths ¢’ and
', like t and 7, non-trivially overlap themselves or each other only by one symbol
Denote #w(t')=mv'm and #(f')=mi'm

Now

wy (m(r)) = ws(r)
and

wy (m(F)) = wg(7),
s0

wy (v'm) _ wy (vm)wg(r) _
wy(d'm)  wy(dm)wg(F)

by the choice of the cycles r and F Hence if we define 7 £5-> %, by ‘switch-
ing the images’ of ¢’ and ' (which we can do since ¢’ and ' non-trivially overlap
each other or themselves by at most one symbol), then #, hke 7, will be

A

measure-preserving As 1n the proof of Theorem 11, 7 will have lower degree
than = O
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