study were indistinguishable by PFGE and were isolated from the same ward (one from a patient room and the other from the men’s toilet in the obstetrics and gynecology department). However, there were no reported hospital infections or outbreaks attributable to this microorganism in this ward in the 3 months before and the 3 months after the study period.

During the study, it was observed that some of the staff responsible for cleaning the units did not wash the containers during replenishment of the soap, and they refilled the containers before they were totally empty. Infrequent replenishment of soap in particular units was also observed. There were some containers with open or spoiled lids, especially in the toilets, that seemed to be another route for extrinsic contamination. The head doctor, the directors, the supervisors, and the staff were informed about the rate and risks of contamination in our hospital, and the staff were re-educated to prevent any hospital infection due to soap contamination.

ACKNOWLEDGMENTS

Potential conflicts of interest. All authors report no conflicts of interest relevant to this letter.

Elif Aktas, MD; Ebru Taspinar; Demet Alay; Esra Deniz Kucukcongarg Ogdedey, MD; Canan Kullah, MD; Fisun Comert, MD

From the Faculty of Medicine, Department of Medical Microbiology (E.A., E.D.K.O., C.K., F.C.), Zonguldak Karaelmas University (E.T., D.A.), Zonguldak, Turkey. (E.T. and D.A. are medical students.)

Address reprint requests to Elif Aktas, MD, Zonguldak Karaelmas University, Faculty of Medicine, Department of Medical Microbiology, 67100 Zonguldak, Turkey (drelifaktas@yahoo.com).

Infect Control Hosp Epidemiol 2010;31(11):1199-1201
© 2010 by The Society for Healthcare Epidemiology of America. All rights reserved. 0899-823X/2010/3111-0019$15.00. DOI: 10.1086/657077

REFERENCES


Hydrogen Peroxide Vapor Is Not the Same as Aerosolized Hydrogen Peroxide

To the Editor—We read with interest the letter by Po and Carling1 calling for additional investigation of room decontamination processes. In their critique of the study by Barbut et al,2 Po and Carling state that “the average residual [Clostridium] difficile contamination rate of 2.6% in 3 studies of hydrogen peroxide vapor (HPV) published to date is essentially identical to the 1.8% residual contamination found by Eckstein and colleagues.” They state that it is important to note that the study by Boyce et al3 was conducted using Bioquell hydrogen peroxide vapor (HPV), and the studies by Barbut and colleagues and by Shapey et al4 were conducted using the Sterinis aerosolized hydrogen peroxide (aHP) system. The Bioquell HPV system generates a vapor from 30% w/w hydrogen peroxide solution, which is sporicidal, active against a wide range of hospital pathogens, and an Environmental Protection Agency (EPA)—registered sterilant.3 The Bioquell process produces hydrogen peroxide vapor (gas) with a particle size of less than 1 micron in size. Therefore, HPV is considered a fumigant by the EPA.4 The vapor from this system is completely dispersed throughout the room, and at the end of the process, the HPV is broken down catalytically to water vapor and oxygen.7

In contrast, the Sterinis aHP system produces a fine mist by aerosolizing a solution containing 5% w/w hydrogen peroxide, less than 50 ppm silver ions, less than 50 ppm phosphoric acid, less than 1 ppm arabica gum, and 95% bi-osmotic water.2 Because the product is applied as an aerosol composed of charged particles ranging from 8 to 12 microns in diameter,4,8 it is likely that the EPA would consider this process to be a fogging application rather than a fumigation process (Timothy Dole, EPA; personal communication, January 6, 2009). After exposure, the aerosol is left to decompose spontaneously.9

Published literature indicates a substantial difference in the microbiological impact of the 2 systems. For example, a study by Andersen et al9 demonstrated that 13% of 146 Bacillus atrophaeus biological indicators remained viable after exposure to 3 Sterinis aHP cycles; all biological indicators grew if fewer than 3 cycles were used. In contrast, Geobacillus stearothermophilus biological indicators are completely inactivated by 1 Bioquell HPV cycle and are routinely used to verify cycle efficacy.9 In studies of in vitro efficacy against C. difficile spores, the Bioquell HPV system resulted in a more than 6-
log reduction, whereas the Sterinis aHP system resulted in an approximately 4-log reduction. Similarly, in the studies cited by Po and Carling, only the Bioquell HPV system resulted in complete inactivation of C. difficile from hospital surfaces. In the studies of the Sterinis aHP system by Shapey et al and Barbut et al, C. difficile was cultured from 2.9% of 383 surfaces, with 1 or more positive culture results from 32% of the 25 rooms studied. Therefore, because of the fundamental differences in the disinfecting solution, delivery method, and microbiological impact, we believe that it is inappropriate to group together data from the 2 systems or to refer to them both as "HPV." 

Po and Carling also state that "we also believe that the conclusion by Otter et al. that HPV technology should be considered for routine use to decontaminate patient rooms is premature," whereas our conclusion from the study cited was that the use of HPV decontamination for selected patient rooms after patient discharge is feasible in a busy hospital. Currently, 3 studies have provided evidence that the use of HPV for selected patient rooms is associated with superior microbial efficacy over conventional cleaning and that it reduced acquisition of hospital pathogens. HPV was found to be associated with a significant reduction in C. difficile infection by Boyce et al and with a significant reduction in the risk of acquiring vancomycin-resistant enterococci by Passaretti et al. Most recently, Manian et al reported statistically significant reductions in the year-on-year incidence of vancomycin-resistant enterococcal infection (a 50% reduction; *P* <.001) and *C. difficile* infection (a 42% reduction; *P* <.001) and large but not significant reductions in the incidence of methicillin-resistant *Staphylococcus aureus* infection (a 24% reduction; *P* = .059) and multidrug-resitant *Acinetobacter baumannii-calcoaceticus* infection (a 54% reduction; *P* = .2) associated with the implementation of HPV.

Therefore, we believe that the use of HPV decontamination for selected rooms should indeed be considered along with other innovative methods, such as other whole-room disinfection methods and methods to improve the conventional cleaning (eg, adeno triphosphate bioluminescence and the Dazo method devised by Dr Carling), to improve hospital cleaning and disinfection. We echo the conclusion of Po and Carling that additional investigation of room decontamination processes through well-designed—and, preferably, head-to-head—studies of microbiological and clinical impact is needed.

## Acknowledgments

### Potential conflicts of interest

J.A.O. is employed by Bioquell. J.M.B. is a consultant to Clorox Corporation and to Bioquell (since October 2008). N.L.H. has no potential conflicts of interest to declare.

Jonathan A. Otter, BSc; Nancy L. Havill, MT; John M. Boyce, MD

From Bioquell (UK), Andover, Hants, United Kingdom (J.A.O.); and Hospital of Saint Raphael (N.L.H., J.M.B.) and Yale University School of Medicine (J.M.B.), New Haven, Connecticut.

Address reprint requests to Jonathan A. Otter, BSc, Bioquell (UK) Limited, 52 Royce Close, West Portway, Andover, Hampshire, SP10 3TS, United Kingdom (jon.otter@bioquell.com).

Infect Control Hosp Epidemiol 2010;31(11):1201-1202

© 2010 by The Society for Healthcare Epidemiology of America. All rights reserved. 0899-823X/2010/3111-0020$15.00. DOI: 10.1086/657076

## References


High Clonal Diversity of *Staphylococcus aureus* Isolates in Nasal Swab Samples of Medical Students in Turkey

To the Editor—Hospital personnel who are colonized with...