REFERENCES

Is There a Relationship Between Monthly Rainfall and the Isolation of Legionella in Potable Water Systems in Spanish Healthcare Facilities?

To the Editor—A study that explored reported cases of legionellosis in relation to environmental factors in the Philadelphia metropolitan area identified seasonality (summer time) and wet and/or humid weather as predictors of legionellosis. A weak but significant increase in the risk of legionellosis associated with an increase in monthly precipitation was shown in the univariate model, but not when other meteorological exposures were controlled. In a different study, in which our group analyzed Legionella isolation in potable water systems of Spanish healthcare facilities, seasonality was also shown to be a predictor, mainly in Legionella pneumophila serotypes 2–14.

The aim of the present study was to explore the relationship between rainfall and the isolation of Legionella species from faucets in 21 healthcare facilities, located throughout Spain, from January 2005 through June 2007. A total of 1,412 samples collected from faucets without filters were analyzed. After each valve was opened, a sample of water (100 mL) was collected, and a sterile swab was inserted into the faucet and then placed in a sterile vessel. At this point, the vessel was filled to the 1-liter mark with water. Water samples were concentrated 100-fold immediately on arrival at the laboratory. Three 1-mL aliquots were used: 1 untreated, 1 heat-treated (at 50°C for 30 minutes), and 1 acid-treated (in 9 mL of HCl-KCl acid buffer at pH 2.2 for 5 minutes). Then, 0.1 mL of each aliquot was plated onto BCYE (glycine, vancomycin, polymixin B, and cyclohexamide) selective agar medium (Oxoid). Plates were incubated at 36°C for 10 days and examined for growth every 48 hours. Colonies morphologically consistent with Legionella species were plated onto buffered charcoal yeast extract (BCYE) agar (Oxoid) and blood agar (Oxoid) and incubated for 48 hours. Colonies that grew on BCYE agar but not on blood agar were definitively identified as Legionella by means of a commercially available latex agglutination test (DR0800; Oxoid) that distinguishes Legionella pneumophila serogroup 1, L. pneumophila serogroups 2–14, and other Legionella species (including L. longbeachae, L. bozemanni, L. dumoffii, L. gormanii, L. jordanis, L. micdadei, and L. anisa).

The correlation between the amount of monthly precipitation (as recorded by Agencia Estatal de Meteorología) and the isolation rate was determined by the Spearman correlation test. Figure 1 shows the percentage of all samples that were identified as L. pneumophila serogroup 1, L. pneumophila serogroups 2–14, and other Legionella species per month. In 19 of the 30 months studied, the highest isolation rate corresponded to L. pneumophila serogroups 2–14.

Figure 2 shows the relation between the percentage of all samples that were positive for Legionella and the amount of precipitation during the study period. A significant correlation (r = -0.409; P = .025) was found between the amount of precipitation and the proportion of the total rate of Legionella species isolation that was due to L. pneumophila (r = -0.459; P = .011). In an analysis of the correlations by serogroup, the correlation was significant for serogroups 2–14 (r = -0.367, P = .046) but not for serogroup 1 (r = -0.309; P = .096).

Hospital water supplies can be tested for primary prevention purposes in institutions without documented cases, because nosocomial legionellosis occurs if susceptible hosts aspirate drinking water or inhale aerosols. The risk of nosocomial legionellosis is related to the proportion of distal sites that are positive for Legionella because only a small proportion of exposed patients is susceptible to low levels of contamination (their susceptibility is due to immunosuppression), the number of disseminating points is more important than the infective dose.

In the previous study by our group, the rate of isolation of Legionella species in hospital potable water systems (central water tanks together with distal sites) was associated with seasonality. In the present study, which focused on faucets as distal sites and explored the relationship of the rate of isolation of Legionella to the rate of rainfall, the proportion of distal sites that were positive for Legionella species was inversely related to the rate of precipitation (Figure 2). The fact that this correlation with precipitation and its seasonality was due to L. pneumophila serogroups 2–14 and not to L. pneumophila serogroups 2–14.
FIGURE 1. Graphs of the distribution of *Legionella* species recovered each month. Dotted line, percentage of samples positive for *L. pneumophila* serogroup 1; continuous line with squares, percentage of samples positive for *L. pneumophila* serogroups 2–14; and continuous line with triangles, percentage of samples positive for other *Legionella* species.
rogroup 1 is noticeable and may have clinical translation. In this sense, it has been reported that, among immunocompromised hospitalized patients, at least 20% of Legionella infections are caused by strains other than L. pneumophila serogroup 1, but this may be an underestimation, because etiological assignment depends on the Legionella urinary antigen test that is specific only for serogroup 1.

In conclusion, in the present study, which was carried out in a country with low precipitation rates (Spain), there was an inverse relationship between the rate of precipitation and the rate of Legionella isolation. Further studies are needed to explore the translation of these facts to the clinical epidemiology of nosocomial legionellosis and the importance of its prevention by disinfection, mainly through hyperchlorination, of potable water systems of healthcare facilities.

ACKNOWLEDGMENTS

Potential conflicts of interest. All authors report no conflicts of interest relevant to this article.

Jose-Maria Rivera, MD, PhD; Juan-Jose Granizo, MD, PhD; Lorenzo Aguilar, MD, PhD; Maria-Jose Gimenez, BPharm, PhD; Jose-Maria Aguiar, MD; Jose Prieto, MD, PhD

From the Preventive Medicine Department (J.-M.R.) and the Microbiology Department (J.-M.R., J.-G., J.P.), the School of Medicine, Universidad Complutense, and the Bioseguridad Ambiental SL (J.-M.R.), and the Control Microbiológico SL (J.-M.A.), Madrid, and the Grupo de Datos SL, Pozuelo de Alarcón (J.-G.), Spain.

Address reprint requests to Lorenzo Aguilar, MD, PhD, Microbiology Department, School of Medicine, Universidad Complutense, Avda, Complutense s/n, 28040 Madrid, Spain (aguilar@med.ucm.es).

Infect Control Hosp Epidemiol 2009; 30:306-308

© 2009 by The Society for Healthcare Epidemiology of America. All rights reserved. 0899-823X/2009/3003-0021$15.00. DOI: 10.1086/595981

REFERENCES

Doctors’ Compliance With Hand Hygiene Guidelines in the Surgical Ward

TO THE EDITOR—We read with great interest the study by Duggan et al. suggesting an inverse correlation between healthcare workers’ level of professional education and their rate of compliance with hand hygiene guidelines. To inves-