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ABSTRACT. In this paper an algorithm for ice/water classification of C- and L-band dual polarization syn-
thetic aperture radar data is presented. A comparison of the two different frequencies is made in order to
investigate the potential to improve classification results with multi-frequency data. The algorithm is
based on backscatter intensities in co- and cross-polarization and autocorrelation as a texture feature.
The mapping between image features and ice/water classification is made with a neural network.
Accurate ice/water maps for both frequencies are produced by the algorithm and the results of two fre-
quencies generally agree very well. Differences are found in the marginal ice zone, where the time dif-
ference between acquisitions causes motion of the ice pack. C-band reliably reproduces the outline of
the ice edge, while L-band has its strengths for thin ice/calm water areas within the icepack. The classi-
fication shows good agreement with ice/water maps derived frommet.no ice-charts and radiometer data
from AMSR-2. Variations are found in the marginal ice zone where the generalization of the ice charts
and lower accuracy of ice concentration from radiometer data introduce deviations. Usage of high-
resolution dual frequency data could be beneficial for improving ice cover information for navigation
and modelling.
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INTRODUCTION
The Arctic sea-ice cover and its changes in recent years are
one of the most visible signs of climate change. Sea-ice
extent has decreased dramatically in the last decades,
∼10.8% per decade for the minimum ice extent over the
period 1979–2015, and a thinning of the ice cover of ∼0.6
m per decade over the period 2000–12 has also been
observed (Lindsay and Schweiger, 2015; Serreze and
Stroeve, 2015; Comiso and others, 2017). For a better under-
standing of the ongoing changes and their relevance to the
local and global climate, a more detailed knowledge of the
sea-ice cover is necessary, especially to capture the effects
of small-scale features like leads (Marcq and Weiss, 2012;
Vihma, 2014). The retreating sea ice also attracts more ship
traffic to the polar ocean for exploration, exploitation,
research and tourism (Eguíluz and others, 2016). Safe naviga-
tion in ice-infested waters demands high resolution and
timely information of the actual sea-ice situation.

Fram Strait, located between Svalbard and Greenland, is
the main gateway to the Arctic Ocean and plays an important
role in the sea-ice mass balance of the Arctic. The majority of
the exported sea ice is transported through this strait by the
East Greenland Current while comparatively warm Atlantic
Water is brought into the Arctic basin by the West
Spitzbergen Current (Kwok and others, 2013; Carmack and
others, 2015; Smedsrud and others, 2017). The sea-ice
cover in this region is highly dynamic. In particular, the mar-
ginal ice zone (MIZ), i.e. the transition between the closed
pack ice and the open ocean, is exposed to rapid changes
induced by wind and currents due to lower ice concentration
(e.g. Shuchman and others, 1987). To cover these dynamic

sea-ice processes, observations with high spatial and tem-
poral resolution are necessary.

While passive microwave radiometry offers a long-term
and consistent record of sea-ice parameters, for example
concentration and extent, since 1978, its low resolution is
not suitable for studying small-scale features especially in
the MIZ (Meier and others, 2014). Optical sensors, on the
other hand, offer high spatial resolution but the imagery is
hampered by clouds and the polar night. Synthetic aperture
radar (SAR) combines a resolution of ∼100 m for wide
swath images with a coverage of the entire Arctic in a few
days. For some parts of the Arctic, for example Fram Strait
to Franz Josef Land, daily coverage is common. Operating
in the microwave region of the electromagnetic spectrum,
SAR images are almost unaffected by atmospheric conditions
and offer a day-and-night year-round imaging capability due
to the active nature of the sensor.

To date, operational ice charts are based on the manual
interpretation of available data sources, but efforts have
been made to automatize the retrieval of sea-ice parameters.
SAR imagery has been employed for instance for sea-ice clas-
sification (e.g. Zakhvatkina and others, 2012), ice concentra-
tion (e.g. Wang and others, 2017) and sea-ice drift estimation
(e.g. Korosov and Rampal, 2017; Lehtiranta and others,
2015). C-band (wavelength 3.75–7.5 cm) is the preferred fre-
quency used for operational monitoring of sea ice with SAR
as it offers good discrimination between ice types and ice
water contrast during summer (Carsey, 1992; Geldsetzer
and others, 2015). But studies have shown that other
frequencies, mainly X- (wavelength 2.5–3.75 cm) and
L-band (15– 30 cm), add complementary information that
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can aid interpretation of the images and retrieval of sea-ice
parameters (Johansson and others, 2017; Eriksson and
others, 2010). Dierking and Busche (2006) demonstrate the
usefulness of L-band data in identifying floe boundaries
and deformation features such as ridges, shear zones and
rubble fields, while a study by Casey and others (2016)
underlines the capabilities of L-band during the melt season.

The use of dual-polarization imagery eases the distinction
between ice and water (Scheuchl and others, 2004). While
for the co-polarization channel the backscatter of open
water highly depends on wind speed, wind direction and
incidence angle and can reach the values of sea ice, this
effect is largely reduced for the cross-polarization channel
and nearly independent from the incidence angle (Isoguchi
and Shimada, 2009; Horstmann and others, 2015).
Backscatter alone has proven not to be sufficient for reliable
and accurate image interpretation over a wide range of inci-
dence angles and changing ambient conditions (Karvonen,
2014). Texture measures are widely used as additional
image features as they do not only take the brightness into
account, but also its spatial variation (Shokr, 1991;
Haralick and others, 1973). Texture features derived from
grey-level co-occurrence matrices (GLCM) have been used
in a number of sea-ice classification algorithms (Soh and
Tsatsoulis, 1999; Clausi, 2002; Zakhvatkina and others,
2017). Autocorrelation is another texture feature which has
proven capabilities in ice-water discrimination and ice con-
centration estimation (Karvonen and others, 2005; Berg and
Eriksson, 2012; Karvonen, 2012).

In this paper, we present a comparison of sea ice/open
water maps of Fram Strait derived from spaceborne C- and
L-band SAR imagery. We use wide swath SAR data from
two currently operating satellite missions: Sentinel-1, a C-
band SAR operated by the European Space Agency (ESA)
within the scope of the Copernicus programme, and ALOS-
2 PALSAR-2, a L-band mission operated by the Japan
Aerospace Exploration Agency (JAXA). All images are dual-
polarization, i.e both horizontal transmit and receive (HH)
and horizontal transmit and vertical receive (HV) bands are
available. While C-band SAR imagery is widely used for
sea-ice analysis and currently provided by two missions
(Sentinel-1, Radarsat-2), ALOS-2 PALSAR-2 is the only
spaceborne L-band SAR currently in operation. To the best
of our knowledge, this is the first time that ALOS-2
PALSAR-2 ScanSAR data are evaluated for sea-ice monitor-
ing. Fully polarimetric, i.e transmission and reception of
both horizontal and vertical polarizations, ALOS-2
PALSAR-2 data with smaller spatial coverage (50 km swath
width) have been used for sea-ice studies (Johansson and
others, 2017, 2018).

The main objective of the work presented here is to study
the information differences between the two frequencies and
their consequences on the derived ice/water maps and the
potential benefits of combining the two frequencies to
obtain more accurate results.

The challenge for classification of wide swath imagery is
the variety of covered ice regimes within a scene, the vari-
ability of backscatter properties with ambient conditions
over ice and open water, and the incidence angle depend-
ence of the backscatter intensities. Machine learning techni-
ques are state-of-the-art for such image classification. Hence,
in our study, we use a feed-forward neural network to
achieve the mapping between image features, i.e brightness
information, texture features and incidence angle, and the

output classes. Neural networks have been successfully
used in a number of studies on the sea-ice classification,
(e.g. Berg and Eriksson, 2012; Karvonen, 2014; Ressel and
others, 2015). Once trained they can be applied to any
SAR image to obtain a classified image. Furthermore, new
features can be easily integrated into a network. It is a super-
vised learning method and hence for the training of the
network, a training dataset with correct classes is needed.
We used manually defined regions of ice and water for the
training process.

One network has been trained for each frequency separ-
ately to accommodate the different backscatter levels.

SATELLITE IMAGERY AND VALIDATION DATA

Satellite imagery
Figure 1 shows the geographical location of the study area in
Fram Strait between Greenland and Svalbard. The outlines of
the used images from the spaceborne SAR sensors ALOS-2
PALSAR-2 (L-band) and Sentinel-1 (C-band) are shown in
yellow and red, respectively. The goal of this study is the
evaluation of C- and L-band images for ice/water classifica-
tion. Therefore, a set of six near-coincidental image pairs is
included in the dataset. Acquisition times between the two
sensors for these pairs differ by 2–3 hours and different
orbit directions, i.e. on descending orbit for ALOS-2
PALSAR-2 and on ascending orbit for Sentinel-1. This
implies that near and far range is at different image locations
and features are seen from different viewing angles for the
two frequencies. The incidence angle dependence is

Fig. 1. Study area with PALSAR-2 images in yellow and Sentinel-1
images in red. Coastline from OpenStreetMap (http://
openstreetmapdata.com/data/coastlines). Bathymetry (0, 200,
1000, 2000, 3000, 4000 m) from naturalearthdata.com.
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especially pronounced over open water and hence, the back-
scatter over open ocean is differently affected at the two fre-
quencies. A detailed description of the utilized imagery and
validation data is given below.

Sentinel-1 C-band
Copernicus’ Sentinel-1 mission, a constellation of two C-
band SAR satellites with dual polarization capabilities,
offers a coverage of the entire Arctic within a few days and
an exact revisit time of 6 days. Images over Fram Strait are
usually acquired daily. The data are freely available from
the Copernicus Open Access Hub (https://scihub.copernicus.
eu/). Twenty-five images, acquired during the period from
October 2015 to March 2016 over Fram Strait, have been
used for algorithm development and verification. Data
before October 2015 have not been considered due to the
noise calibration not been working efficiently then. The
images are level-1 ground range detected (GRD) products,
i.e. detected, multi-looked and projected to the ground
range, in Extra Wide (EW) swath mode with medium reso-
lution and dual polarization (HH - horizontal transmit and
receive and HV - horizontal transmit and vertical receive).
The swath width is ∼400 km and the resolution is ∼90 m
with a pixel size of 40 m (see Table 1).

The data have been preprocessed with the Sentinel
Application Platform (SNAP) according to the following
processing chain: apply orbit file - thermal noise removal -
calibration - projection to UTM Zone 30N. The images
have been calibrated to γ0:

γ0 ¼ σ0

cos θinc
ð1Þ

with backscatter intensity σ0 and incidence angle θinc, to
account for variations of the backscatter intensity with inci-
dence angle. Hereafter γ0 is termed backscatter intensity.
To achieve a good spatial overlap with the L-band data at
some occasions, two Sentinel-1 images from the same orbit
have been sliced together. Apply orbit file and removal of
Boarder Noise was applied to the individual images and
the same processing chain as above was followed after the
slicing operation.

ALOS-2 PALSAR-2 L-band
L-band imagery from the ALOS-2 PALSAR-2 sensor was
acquired from the Japan Aerospace Exploitation Agency
(JAXA) in ScanSAR Wide Beam Dual (WBD) mode. The
images are level 1.5 data which are multi-looked and geo-
coded. The images have a swath width of 350 km and a reso-
lution of ∼90 m with a pixel size of 25 m (see Table 1). The
data are dual polarization data in HH and HV. ALOS-2
PALSAR-2 provides an exact revisit time of 14 days, but
data over the Arctic is more scarce and not available for
every date due to the acquisition plan. The images have

been calibrated to γ0 using the provided calibration factors
and formulas and the incidence angle which can be
derived from the product metadata (JAXA, 2017). The
images have been resized to 40 m pixel size and projected
to UTM Zone 30N to be comparable with the Sentinel-1 C-
band data. Twenty four images acquired between October
2014 and February 2016 were used for algorithm training
and evaluation.

Reference data
Validation and ground truth data for large swath and high-
resolution SAR imagery is difficult to obtain. Though refer-
ence data might be available from other sensors or in-situ
measurements, they seldom coincide in time with the SAR
imagery and spatial scales are varying. High-resolution data
from airborne campaigns with different instruments provide
information in the needed scale but are not generally avail-
able. Verification of SAR image derived sea-ice information
could be improved by the coordinated acquisition of relevant
reference data. The results in this study are compared with
manually derived sea-ice charts and ice concentration
maps from passive microwave radiometry.

Ice charts from MET Norway
Sea-ice concentrationmaps over the Arctic are freely available
from theNorwegianMeteorological Institute innetCDF-format.
They can be obtained from https://thredds.met.no/thredds/
catalog/myocean/siw-tac/siw-metno-svalbard/catalog.html.
The ice charts are issued on a daily basis with restriction to
Norwegianworking days. They are based onmanual interpret-
ation of satellite imagery from SAR sensors like Sentinel-1 and
Radarsat-2 and complemented by information from visual
and infrared data provided by the Meteorological
Operational Satellite Programme (MetOp), National Oceanic
and Atmospheric Administration (NOAA) and data from the
Moderate Resolution Imaging Spectrometer (MODIS).

The data are polygonized and classified into six concen-
tration classes according to standards of the World
Meteorological Organization: open water – 0-1/10, very
open drift ice – 1/10-3/10, open drift ice – 4/10-6/10, close
drift ice – 7/10-8/10, very close drift ice – 9/10-10/10 and
fast ice – 10/10. The sea-ice concentration data are re-
sampled to a grid of 1000 m x 1000 m. The ice chart re-
sembles the subjective interpretation of the ice analyst
which can vary significantly between different analysts/
groups (Karvonen and others, 2015). As Sentinel-1 images
are an input for the concentration estimation, the ice chart
is not independent from the C-band data.

AMSRE-2 radiometer data
The University of Bremen publishes daily sea-ice concen-
tration maps derived from satellite passive microwave
radiometry. The data are freely available for download in

Table 1. Parameters of the SAR sensors and operation modes used in this study

Sensor Frequency Wavelength Resolution Pixelsize Swath width Incidence NESZ*
azimuth/range angle

Sentinel-1 5.405 GHz 5.6 cm 93 m/87 m 40 m 400 km 19○–47○ −22 dB
ALOS-2 PALSAR-2 1.2 GHz 25 cm 95.1 m/77.7 m 25 m 350 km 26○– 50○ −26 dB

*Noise equivalent sigma zero.
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hdf-format (https://seaice.uni-bremen.de/data/amsr2/). The
ARTIST (Arctic Radiation and Turbulence Interaction
STudy) Sea Ice algorithm is applied to data from the
Advanced Microwave Scanning Radiometer 2 (AMSR2) to
retrieve ice concentration (Spreen and others, 2008). It uses
the polarization difference of the brightness temperatures of
the vertical and horizontal polarization in the 89 GHz
channel of the instrument. To account for the influence of
atmospheric cloud liquid water and water vapour a
weather filtering scheme is applied to the data. This is neces-
sary to avoid spurious ice concentration over open water. For
mid and high ice concentrations (above 65%) the error is
generally smaller than 10% but for low ice concentrations,
substantial deviations may occur. The data are available in
different resolutions. Here the regional map of Svalbard is
used with a resolution of 3.125 km.

METHOD
For classification, backscatter intensities γ0 in co- and cross-
polarization, the incidence angle and the autocorrelation of
an image block (11 pixel × 11 pixel) around a centre pixel
are used as an input to a neural network. Three classes are
distinguished by the algorithm: ice, open water and thin
ice/calm water. The third class is introduced to account for
low backscatter intensities due to reduced surface roughness
caused by low winds, surface films or new ice formation.
Hence no distinction between calm water and thin ice can
be made without taking the spatial context into relation.

The normalized discrete Autocorrelation A at lag (i; j),
where i; j denote a shift in pixel distance from the centre
pixel of the image block Iðx; yÞ, is defined as follows
(Gonzalez and Woods, 2007):

Aði; jÞ ¼ 1
n� 1

P
x;y ðIðx� i; y � jÞ � μÞðIðx; yÞ � μÞ

σ2 ð2Þ

where n is the number of pixels, μ the mean value and σ the
standard deviation of the image block. Over open water, the

autocorrelation is usually low due to fluctuations of the sea
surface caused by wind and waves whereas the autocorrel-
ation over sea ice is higher because of smoother variations
in backscatter values or small-scale structures within the
ice (Karvonen and others, 2005). The autocorrelation is cal-
culated for an 11 pixel×11 pixel image block in all directions
for ij j; jj j � 3 and weighted by the inverse distance of the lag.
The mean value is assigned as the autocorrelation at the
centre pixel of the image block and is computed for every
fifth pixel in an image to minimize computational load.
Thus the effective pixel size is increased by a factor of five,
to 200 m.

A feed-forward neural network with one hidden layer is
used for the mapping between the image features and the dif-
ferent classes (Jain and others, 1996). Artificial Neural
Networks (ANN) are machine learning algorithms that need
training data to obtain a network that can be applied to
unknown data of the same kind to perform, for example a
classification task. The architecture of the employed
network is depicted in Figure 2. The network consists of
three layers: the input layer, one hidden layer and an
output layer where each layer has a number of neurons or
nodes. The input layer has five neurons of pixel-wise image
features, namely backscatter in HH and HV polarization,
autocorrelation in HV polarization, incidence angle and
HV/HH polarization ratio. No significant improvement in
the classification was achieved by including HH autocorrel-
ation. The hidden layer consists of four neurons where each
neuron computes a weighted sum of the neurons of the input
layer and evaluates the result with an activation function. A
tangent sigmoid is used as the activation function in the
hidden layer. The number of neurons in the hidden layer is
determined such that good generalization is achieved
while the number of neurons is kept as small as possible.
We selected four hidden neurons as algorithm performance
does not significantly increase with more neurons. The
output layer consists of three neurons representing the tar-
geted classes: water, thin ice/calm water and ice.

Fig. 2. Schematic sketch of the utilized neural network.
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The classes are coded in a 1-of-3 coding scheme where
class k ∈ f1; 2; 3g is represented by a unit vector t with tk ¼
1 and tl=k ¼ 0 (Bishop, 2006). The activation function is a
softmax function

yk ¼ pðclass ¼ kjf Þ ¼ expðakÞP
j expðajÞ

; 3

where the ak are the weighted sums of the outputs of the
hidden layer and f the input feature vector. The output of
the softmax function is equivalent to the probability
pðclass ¼ kjf Þ of belonging to class k (Richard and
Lippmann, 1991).

Manually interpreted SAR images, where regions of inter-
est (ROIs) were assigned to different ice classes, are used as
targets for the training process. The classes have been identi-
fied by manual interpretation of backscatter characteristics,
texture and spatial context of the SAR image scenes. Sea
ice has a variety of backscatter intensities but usually
shows features such as ridges, floe outlines or leads. Open
water has much fewer features and the backscatter intensities
are distributed more evenly even though wind or current
induced patterns can be visible. Thin ice/calm water class
comprises areas with very low backscatter intensities due
to almost specular reflection and no textural features. From
SAR images alone, thin ice and calm water cannot be distin-
guished unambiguously. It should be noted that SAR signa-
tures of sea ice are very sensitive to small-scale properties
of the ice, e.g. surface roughness and size and volume frac-
tion of air bubbles within the ice. Thin ice could, therefore,
also be represented by the ice class if the surface roughness
is enhanced due to, for example rafting or frost flowers,
resulting in increased backscatter intensities especially at
C-band. A good overview of SAR signatures of open water
and sea ice can be found, for example in Carsey (1992)
and Jackson and others (2004).

The same number of training samples (4 000 000) has
been used for the classes water and ice, while all defined
samples of thin ice/calm water class have been considered
due to their significantly smaller number (∼60 000 samples
for PALSAR-2 and 400 000 for Sentinel-1). These numbers
also represent the relative occurrence of the classes within
the scenes. The network uses scaled conjugate gradient
backpropagation (Møller, 1993) with cross-entropy as per-
formance function for the training process. Ten networks
have been trained for each frequency separately and the
best performing one has been selected for deriving ice/
water maps from the SAR images.

Data division
In total 24 ALOS-2 PALSAR-2 and 25 Sentinel-1 images are
available for this study. Twelve images of each frequency
are used for training of the neural networks. For those
images, Regions of interest (ROIs) representing the three
classes have been selected to set the training samples. All
ROIs were selected by the same person to avoid biases in
the manual interpretation. This dataset will be referred to as
the training dataset.

The remaining images of the two sensors are used for the
evaluation of the algorithm performance against ice charts
and radiometer derived ice/water maps. This is termed as
the evaluation dataset. Included in this set are six pairs of

near-coincidental C- and L-band images, which are used to
compare the algorithm outputs of the two frequencies.

The datasets are comprised of winter images fromOctober
to April with one summer scene from June 2015 used in the
evaluation dataset. The division has been made such that
images from the different months are represented in the test
and evaluation dataset. For training, the same number of
ascending and descending orbit images have been used.

Confusion matrix
The performances of the classifier are assessed using a confu-
sion matrix, which compares the classification result to the
training data (Stehman, 1997). The confusion matrix
enables to identify the nature of error sources in the classifi-
cation process.

For the confusion matrices shown in this paper, we choose
a representation where the classification results are denoted
in the rows and the training samples in the columns. The
main diagonal elements represent the number of correctly
classified samples, highlighted in green, while off-diagonal
elements show misclassified pixels, highlighted in orange.
The last element of each column gives the accuracy, i.e.
the fraction of correctly classified pixels with regard to the
total number of pixels for this class in the training dataset.
That is, the probability that the pixel is correctly classified.
The last element of each row gives the reliability, i.e the frac-
tion of pixels correctly classified with regard to the total
number of pixels in this class. That is, the reliability gives
the probability that a pixel classified into a class is indeed
of this class. Reliability and accuracy are marked as grey in
Figures 3, 4 and 6. The overall accuracy is the number of cor-
rectly classified samples divided by the total number of
samples and is shown in blue.

Fig. 3. Confusion matrix for classification results against training
samples for C-band. Green and orange indicate correctly and
incorrectly classified samples, respectively. Blue gives overall
performance in percentage classified correctly (bold) and
incorrectly (italic), while grey summarizes the accuracy (row) and
reliability (column).
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RESULTS

Algorithm evaluation
Algorithm performance is first tested on all available training
samples derived from the ROIs of the training dataset, which
include the samples used for training of the network. Figures
3 and 4 present the confusion matrices between the classifi-
cation results in the rows and the target training samples in
the columns for C-band (Sentinel-1) and L-band (ALOS-2
PALSAR-2), respectively. For C-band an overall classification
accuracy, i.e. percentage of total correctly classified samples,
of 97% is achieved (Fig. 3), while for L-band the overall
accuracy is 88.8% (Fig. 4).

For C-band accuracy (last row, Fig. 3) and reliability (last
column) show values above 95% for ice and water classes
and significantly lower values for the thin ice/calm water
class. The smaller areas of thin ice/calm water class can be
a reason for the lower separability of this class.

For L-band the accuracy is comparable for all classes,
being slightly below 90% for ice and water and slightly
above 90% for thin ice/calm water (Fig. 4). The reliability
of the water class, that means whether a pixel classified as
water actually is water, is however strongly reduced,
mainly due to misclassification of ice into water. This indi-
cates that underestimation of ice might occur in the final clas-
sification result. One reason could be the non-existent
contrast between ice and water samples at cross-polariza-
tion. Figure 5 shows the distributions of cross-polarization
backscatter values for all three classes. The overlap of ice
and water samples reduces the separability between these
two classes, especially when autocorrelation fails to discrim-
inate these, for example where autocorrelation is low over
sea ice. The reduced contrast is in line with observations
over ice and water with ALOS PALSAR by Wakabayashi
and others (2013).

The generalization capabilities of the algorithm, i.e. the
ability of the networks to perform well on non-training
data, are evaluated by applying the neural networks to the
evaluation data-set and comparing the classification results
against ice charts and ice/water maps derived from radiom-
eter data. For this purpose the water and thin ice/calm
water class have been combined into one single class, as
no equivalent can be derived from the reference data. This
choice introduces errors within the ice pack but reduces
errors to a larger effect at calm water areas when compared
with the reference data. The C-band and L-band classifica-
tion results are resampled to the lower resolutions of the ref-
erence data to facilitate comparison. Ice/water maps from ice
charts and radiometer ice concentration have been derived
by setting a threshold of 15% ice concentration to distinguish
ice and water. Radiometer data and downsampled ice charts
show an agreement of 93.89% with a standard deviation of
2.48%. Largest differences occur at the ice edge. Ice charts
are characterized by a loss of details due to the manual pro-
cessing. Meanwhile, radiometer data are prone to larger
errors in ice concentration estimation for low concentrations
and thin ice (Spreen and others, 2008; Wiebe and others,
2009). Our method, which uses a concentration threshold
to distinguish the classes, is hence affected by those errors.
Ice drift seems to play a minor role for the deviations from
the low-resolution reference data compared with the two
aforementioned effects.

Ice charts are based on the latest available data, mainly
SAR imagery when the ice chart is produced. For Sentinel-
1, we can assume that the morning image has been consid-
ered. That implies a time difference of 7–15 hours to the
imagery used in our study. The radiometer ice concentration
maps use the latest available swath, which is recorded
around noon for our area of interest, thus resulting in a few
to 10 hours time difference. Ice drift in Fram Strait can
reach values of up to 0.4 m/s and can thus be significant
even in such time spans.

For C-band data, a mean accordance of 87.23% with a
standard deviation 6.16% could be achieved in comparison
with the ice charts and 89.33% with a standard deviation of
6.63% towards the AMSR2 radiometer data. At L-band a
mean agreement of 84.17% with standard deviation of
6.86% is obtained in comparison with the ice charts and of
86.25% with a standard deviation 6.85% compared with
the radiometer data. There is no significant preference of
the C-band data in terms of better classification results
when compared with the ice charts, which are mainly
based on C-band imagery. The better agreement of our clas-
sification results with ice/water maps derived from radiom-
eter data compared with the ice charts might be attributed
to the loss of details at a lower resolution.

The main deviations between SAR derived ice maps and
ice/water maps from ice charts and radiometer data occur
in the marginal ice zone and at the thin ice/open water fea-
tures within the ice pack. For ice charts, small features
might have been omitted in the process of creating the
chart when defining the outline of the polygons. The lower
resolution reduces the effect of ice drift in between the acqui-
sition of the data. Smaller features within the icepack are also
visible in the radiometer data by a reduced ice concentration
in those areas. But this reduction is not large enough to be
picked up by the 15% threshold between ice and open
water. This induces that some of the differences might not
be attributed to actual misclassification but to different

Fig. 4. Confusion matrix for classification results against training
samples for L-band. Green and orange indicate correctly and
incorrectly classified samples, respectively. Blue gives overall
performance in percentage classified correctly (bold) and
incorrectly (italic), while grey summarizes the accuracy (row) and
reliability (column).

117Aldenhoff and others: Comparison of ice/water classification in fram strait from C- and L-band SAR

https://doi.org/10.1017/aog.2018.7 Published online by Cambridge University Press

https://doi.org/10.1017/aog.2018.7


interpretations of the same situation in the datasets. A more
detailed description of these effects will be given later on.

For one C-band scene (02.02.2016, scene centre: 79:5○

N, 6:5○ W) a severe misclassification over open water
occurred, when high wind speeds (15 m/s) raised the cross-
polarization return above the noise floor of the sensor and
clear wind induced patterns could be seen. This situation
has probably not been well reflected in the training data
samples. One summer scene from 28.06.2015 was included
in the evaluation dataset. In C-band, a more pronounced mis-
classification of ice into the water class can be observed
within the pack ice while for L-band misclassification
mostly occurred at the ice edge. This indicates that the algo-
rithm needs to be tuned to accommodate the changing SAR
signatures during the melting season.

Comparison of C-band and L-band
Six near-coincidental image pairs are included in the evalu-
ation dataset. Figure 6 shows the confusion matrix between
C- and L-band classification results of all near co-incidental
image pairs. The diagonal matrix elements, highlighted in
green, indicate matching classes while non-diagonal ele-
ments, highlighted in orange, show deviating classification
results. The overall agreement, i.e. the class is the same in
both images, is 85.9%. Accuracy and reliability are above
90% and thus indicate that ice is mostly ice in both frequen-
cies. For water, the agreement between the two frequencies
is significantly lower at 78.6%, which is also reflected in a
lower reliability. The thin ice/open water class shows the
least agreement. One reason for pixels classified as thin ice
in L-band but as ice in C-band, is the lower separability of

newly formed thin ice and young ice. L-bands larger wave-
length on the one hand penetrates further into the ice and
specular reflection occurs at the ice/water interface and on
the other hand, is less sensitive to small-scale surface

Fig. 6. Confusion matrix between classification results of all near-
coincident C- and L-band image pairs. Green and orange indicate
correctly and incorrectly classified samples, respectively. Blue
gives overall performance in percentage classified correctly (bold)
and incorrectly (italic), while grey summarizes the accuracy (row)
and reliability (column).

Fig. 5. Histogramm of all cross-polarization (HV) training samples at L-band.
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roughness from, for example frost flowers. Generally, differ-
ences between the two frequencies are more pronounced
at the ice edge and these deviations are also reflected
when the classification results are compared with the refer-
ence ice/water maps from ice charts and radiometer data.

The classification differences between the two frequencies
are demonstrated in more detail on the basis of one example
image pair from the 12.10.2015 but are characteristic for all
the image pairs. The images were acquired 3 h apart, with
L-band preceding the C-band acquisition. The images were
taken on different orbital nodes, ascending for Sentinel-1
and descending for PALSAR-2. Wind speed was ∼7 m s−1

according to ERA-Interim reanalysis data.
In Figure 7, a Sentinel-1 C-band and a PALSAR-2 L-band

dual-polarization SAR scene from the 12.10.2015 are
shown alongside the ice-water classification result. The red
arrows indicate the flight direction and both satellites are
right looking. Figures 7a and b show the HH and the HV
backscatter intensity, respectively, in dB for Sentinel-1. In
co-polarization the strong dependency on the incidence
angle of the backscatter values over the open ocean can be
seen while this is not evident over ice areas. The intensity
decreases from near range on the left side of the image to
far range on the right. In cross-polarization over low back-
scatter areas a characteristic repetitive pattern within the
sub-swaths, additionally to the boundaries of the single
scans, is visible. These stem from the Terrain Observation
by Progressive Scans (TOPSAR) technique used for process-
ing of the data and are not removed by the provided noise
calibration (Miranda, 2015). Especially in the cross-

polarization channel the boundary between sea ice and
open water is clearly defined.

Figures 7d and e show the backscatter intensity in dB for
the PALSAR-2 HH and HV channel, respectively. Generally,
backscatter intensities are lower for L-band compared with
C-band by ≈4.4 dB due to the longer wavelength. The
open water at near range (right side of each image) shows
a high backscatter decreasing slightly with incidence
angle. The contrast between ice and water at cross-polariza-
tion is much lower compared with C-band. The quality for
some scenes of the cross-polarization channel is severely
degraded in low backscatter areas for the PALSAR-2 data
though this effect is not pronounced in the selected scene.
Striping and banding and a loss of resolution are observed
in some but not all images and in non-regular patterns
restricted to low backscatter areas. Compared with the
C-band scene the same image features, for example ice
edge and thin ice/open water areas in the pack ice can
be visually identified.

In Figures 7c and f the results of the classification algo-
rithm are presented, where ice is displayed white, open
water blue and thin ice/calm water as cyan. The algorithm
is able to pick up the features and complex outline of the
ice edge and distinguish generally well between ice and
open water areas for both frequencies. The yellow circle in
Figures 7e and f outlines an area, where the algorithm for
L-band shows less accuracy in classifying water and ice cor-
rectly. Smooth textures with relatively high backscatter are
usually characteristic for near range open water and might
be the reason for enhanced misclassification in this area.

a b c

d e f

Fig. 7. Example of SAR imagery and classification results from 12.10.2015. Upper panels from left to right show HH backscatter intensity, HV
backscatter intensity and the classification result for the C-band Sentinel-1 case (Contains Copernicus Sentinel data 2015). Lower panels from
left to right show the corresponding L-band data from ALOS-2 PALSAR-2 (copyright JAXA) and classification result. Red arrows indicate flight
direction and time difference between the two images is ∼3 h. The encircled area is discussed in the text.
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The differences between the two frequencies are high-
lighted in Figure 8, where the C-band classification result is
subtracted from the L-band result. For this plot the thin ice/
calm water class is combined with the water class, to only
distinguish two classes. Yellow shows water in L-band and
ice in C-band, red indicates ice in L-band and water in C-
band and blue depicts agreement. The area marked with a
yellow circle in Figure 7e is clearly visible with yellow signa-
ture in Figure 8. Differences are pronounced for small scale
features at the ice edge and in the ice pack. While ice drift
played a minor role for misclassification with the reference
data, it is not negligible for comparison of high resolution
SAR derived ice/water classification maps. White outlined
in Figure 8 are areas where ice drift has shifted features
enough to disagree spatially and possibly also in their form
and size. Indicative is the occurrence of both misclassifica-
tion types, marked as red and yellow in the figure, in close
proximity.

Figure 9 compares the ice charts and radiometer derived
ice/water maps with the classification results of the algo-
rithm. The black line in Figure 9a and the yellow line in
Figure 9d denote the 15% concentration line, that distin-
guishes ice and water in the ice chart and radiometer data,
respectively. For this comparison the thin ice/calm water
class is combined with the water class for the SAR derived
classification.

The largest deviations occur at the ice edge and small-
scale features within the ice pack. The latter is highlighted
in areas A and B in Figure 9. For these areas, a reduction of
ice concentration is clearly visible in the radiometer data,
while only area A shows lower ice concentration in the ice
chart. The 15% threshold used for ice/water separation
omit these features and they are, thus, visible as misclassifica-
tion in the difference maps. These areas indicate that the dif-
ferences between the SAR derived ice/water maps and ice
charts and radiometer data highlight areas where thin or
young ice is difficult to distinguish from open water. The
texture of these areas is usually smooth and the backscatter

intensities are lower than the surrounding ice, which are
more common characteristics of open water than of ice.

Deviations at the ice edge between the SAR classification
result and the ice charts mainly occur due to generalization
when drawing the polygons outlining the different ice con-
centrations. Area C highlights a part of the ice edge where
this effect is strongly pronounced (Fig. 9a–c). When compar-
ing with the radiometer data, the differences at the ice edge
can be attributed to the lower accuracy of ice concentration
estimation at low ice concentrations and for thin ice areas
affecting the accuracy of the selected 15% threshold
(Spreen and others, 2008; Wiebe and others, 2009). The
frequency differences in Figure 8, especially the area with
predominantly yellow can also be identified by comparing
Figures 9b with c and e with f, respectively.

CONCLUSIONS
The presented algorithm for ice/water classification of high
resolution SAR imagery is able to produce accurate results
for both C- and L-band compared with reference ice charts
and ice concentration from radiometer data. Compared
with ice/water classification results for Radarsat-2 C-band
data from Leigh and others (2014) and Zakhvatkina and
others (2017), our classification accuracy is slightly lower,
<90% compared with 96% and 91%, respectively. The dif-
ferent scales and sources of the used images and validation
data make a direct intercomparison difficult. Nevertheless,
our algorithm is able to produce ice water maps capable of
representing the complex outline of the ice-water edge as
well as fine structures within the pack ice. Furthermore, the
algorithm can be expanded by additional features to
improve the classification result. This paper is to the best of
our knowledge the first to investigate ice/water classification
of L-band data from a satellite SAR sensor, thus no compari-
son can be made.

The ice edge is clearly outlined in C-band derived ice/
water maps and a good separation between ice and open

Fig. 8. Difference of classification results between L- and C-band for the case 12.10.2015. Thin ice/calm water combined with water class for
display. White outlined areas are explained in the text.
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water is achieved. For one scene with high wind speeds, a
severe degradation in ice water distinction was observed.
Features within the pack ice, that most likely represent
young ice, are attributed to open water because of their
lower backscatter and smoother texture. At L-band, discrim-
ination between ice and water is impeded in the marginal ice
zone by reduced ice/water contrast at cross-polarization and
an additional smoother texture caused by sub-resolution ice
floes or pancake ice. Features within the icepack are mostly
classified as thin ice/calm water, which reflects the actual ice
situation. The differences between the two frequencies are in
line with the characteristics of their wavelength with regard
to the interaction with ice and open water.

Deviations between the two frequencies but also when
compared with ice/water maps derived from ice charts and
radiometer data occur mostly within the marginal ice zone
and for small-scale features within the ice pack attributed
to thin or young ice. While our algorithm preserves these fea-
tures by classifying those as thin ice/calm water or water, the
comparison ice maps omit those due to the threshold for
binary ice/water classification. Technically thin and young
ice should be classified as ice, but on the other hand, these
areas provide valuable information, for example to determine
the lead frequency or for navigation in ice-infested waters.
Time difference between acquisitions plays a role for the
direct comparison of ice/water from high-resolution SAR
imagery but are of minor influence for comparison with the
low-resolution reference data.

Though general features are well represented by our clas-
sification map, the algorithm leaves room for improvement
especially in the marginal ice zone. In this area sub-
resolution ice floes cause a smooth texture similar to water
areas. Algorithm performance could be improved, for
example by usage of additional texture features, i.e.

derived from grey-level co-occurrence matrices, or different
scales of texture features. The difference in interaction of
the two frequencies with sea ice and open water, could be
addressed by using different features in the training process
of the neural networks. Furthermore, wind induced patters
with high autocorrelation or increased backscatter intensities
in cross-polarization over open water seem to be a challenge
for the present algorithm. The inclusion of more training data
representing high wind conditions could account for this
issue. While Sentinel-1 data is freely available and a repre-
sentative dataset can be obtained, access to ALOS-2
PALSAR-2 data is much more limited.

The image quality of the original SAR data is also an issue.
The cross-polarization channel for Sentinel-1 is effected by its
high noise floor and artefacts at subswath boarders can be
visible in the classification result. ALOS-2 PALSAR-2 ScanSAR
(level 1.5) images show degradation of image quality at low
backscatter areas for some scenes in cross-polarization. The
effects for Sentinel-1 are the same for all the images, but the deg-
radation of the ALOS-2 PALSAR-2 is more random and not
always pronounced. Howell and others (2018) report problems
with the cross-polarization channel though they do not give
further details. Here it should be kept in mind that ALOS-2
PALSAR-2 is designed for land observations.

C-band shows a more robust ice/water classification and
is thus a better choice for this specific task. Nevertheless,
ice water classification can be achieved with L-band
data to increase temporal coverage. Furthermore, identifica-
tion of thin ice areas within the ice pack is enhanced in
L-band and thus could be of interest for applications in ship-
ping and navigation. A combination of these two frequencies
could possibly improve classification results. To date, the
direct utilization of the two frequencies is obstructed by the
time difference between acquisitions of different sensors.

a b c

d e f

Fig. 9. The upper panels show from left to right the ice chart and the difference to the classification result from Sentinel-1 and PALSAR-2 for
12.10.2015. The lower panels show from left to right the radiometer sea-ice concentration data and the difference to the classification results
from Sentinel-1 and PALSAR-2. The black and yellow line in (a) and (d), respectively, show the 15% threshold used for ice/water delineation.
Encircled areas A and B are discussed in the text.
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