ABSTRACT: Background: Quadriplegic myopathy (QM) and its variants generally are described in critically ill patients who are exposed to steroids and nondepolarizing muscle blocking agents (NDMBAs). Methods: A patient with sepsis who was not exposed to steroids or an NDMBA infusion developed QM and was studied using serial quantitative electromyography. Results: Clinical and electrophysiological studies identified evidence of a severe myopathy and muscle biopsy showed necrosis, calcifications and selective loss of myosin filaments in non-necrotic fibers. Her clinical recovery paralleled rises in motor unit action potential (MUAP) amplitudes studied by serial automatic decomposition electromyography (ADEMG). Conclusions: QM can develop with sepsis and without significant exposure to steroids and NDMBAs. ADEMG can be a useful tool in electrophysiological evaluation of critically ill patients with weakness.
recovering, but still intubated, she was noted to be quadriparietic. The exact onset of her weakness was unclear because of prior sedation. On examination, she had significant limb edema. She was intubated, but fully oriented. There was mild bilateral facial weakness but no other cranial nerve abnormalities. She had mild diffuse wasting and moderate to severe quadriparesis (1/5 - 2/5 proximally and 3/5 - 4/5 distally on the MRC scale). She had reduced reflexes in both biceps brachii and triceps, and absent reflexes in her brachioradialis, quadriceps femoris and triceps surae. The sensory examination was normal. The first set of electrophysiological studies were done the same day and she had a muscle biopsy done the next day. Within a month she started to recover and was fully recovered by four months. Repeat electrophysiological studies were done three weeks and four months after the initial recognition of her weakness.

METHODS

Electrophysiological recordings were done using standard techniques and were supervised by a single electromyographer (D.W.Z.). Needle electromyography was done using concentric needles and quantitative MUAP assessment was done with the automatic decomposition electromyography (ADEMG) protocol using a Viking IV machine (Nicolet Biomedical Inc., Madison, WI). Muscle biopsy of the left deltoid was prepared using standard methods and staining procedures for frozen section, paraffin and epoxy resin analysis, the latter also including electron microscopy study.

RESULTS

Standard nerve conduction studies showed normal conduction velocities for median, ulnar, peroneal, and tibial nerves. However, during the initial evaluation all motor nerves showed marked reduction in amplitudes which recovered over time. Conduction velocities were normal. Days in parentheses denote the days after she was noted to be quadriparietic. (Amp: M potential amplitude, CV: conduction velocity)

Three separate nerve conduction studies were done. On the initial evaluation all motor nerves showed marked reduction in amplitudes which recovered over time. Conduction velocities were normal. Days in parentheses denote the days after she was noted to be quadriparietic. The exact onset of her weakness was unclear because of prior sedation. On examination, she had significant limb edema. She was intubated, but fully oriented. There was mild bilateral facial weakness but no other cranial nerve abnormalities. She had mild diffuse wasting and moderate to severe quadriparesis (1/5 - 2/5 proximally and 3/5 - 4/5 distally on the MRC scale). She had reduced reflexes in both biceps brachii and triceps, and absent reflexes in her brachioradialis, quadriceps femoris and triceps surae. The sensory examination was normal. The first set of electrophysiological studies were done the same day and she had a muscle biopsy done the next day. Within a month she started to recover and was fully recovered by four months. Repeat electrophysiological studies were done three weeks and four months after the initial recognition of her weakness.

METHODS

Electrophysiological recordings were done using standard techniques and were supervised by a single electromyographer (D.W.Z.). Needle electromyography was done using concentric needles and quantitative MUAP assessment was done with the automatic decomposition electromyography (ADEMG) protocol using a Viking IV machine (Nicolet Biomedical Inc., Madison, WI). Muscle biopsy of the left deltoid was prepared using standard methods and staining procedures for frozen section, paraffin and epoxy resin analysis, the latter also including electron microscopy study.

RESULTS

Standard nerve conduction studies showed normal conduction velocities for median, ulnar, peroneal, and tibial nerves. However, during the initial evaluation all motor nerves showed marked reduction in amplitudes which recovered over time. Conduction velocities were normal. Days in parentheses denote the days after she was noted to be quadriparietic. The exact onset of her weakness was unclear because of prior sedation. On examination, she had significant limb edema. She was intubated, but fully oriented. There was mild bilateral facial weakness but no other cranial nerve abnormalities. She had mild diffuse wasting and moderate to severe quadriparesis (1/5 - 2/5 proximally and 3/5 - 4/5 distally on the MRC scale). She had reduced reflexes in both biceps brachii and triceps, and absent reflexes in her brachioradialis, quadriceps femoris and triceps surae. The sensory examination was normal. The first set of electrophysiological studies were done the same day and she had a muscle biopsy done the next day. Within a month she started to recover and was fully recovered by four months. Repeat electrophysiological studies were done three weeks and four months after the initial recognition of her weakness.

METHODS

Electrophysiological recordings were done using standard techniques and were supervised by a single electromyographer (D.W.Z.). Needle electromyography was done using concentric needles and quantitative MUAP assessment was done with the automatic decomposition electromyography (ADEMG) protocol using a Viking IV machine (Nicolet Biomedical Inc., Madison, WI). Muscle biopsy of the left deltoid was prepared using standard methods and staining procedures for frozen section, paraffin and epoxy resin analysis, the latter also including electron microscopy study.

RESULTS

Standard nerve conduction studies showed normal conduction velocities for median, ulnar, peroneal, and tibial nerves. However, during the initial evaluation all motor nerves showed marked reduction in amplitudes which recovered over time. Conduction velocities were normal. Days in parentheses denote the days after she was noted to be quadriparietic. The exact onset of her weakness was unclear because of prior sedation. On examination, she had significant limb edema. She was intubated, but fully oriented. There was mild bilateral facial weakness but no other cranial nerve abnormalities. She had mild diffuse wasting and moderate to severe quadriparesis (1/5 - 2/5 proximally and 3/5 - 4/5 distally on the MRC scale). She had reduced reflexes in both biceps brachii and triceps, and absent reflexes in her brachioradialis, quadriceps femoris and triceps surae. The sensory examination was normal. The first set of electrophysiological studies were done the same day and she had a muscle biopsy done the next day. Within a month she started to recover and was fully recovered by four months. Repeat electrophysiological studies were done three weeks and four months after the initial recognition of her weakness.

METHODS

Electrophysiological recordings were done using standard techniques and were supervised by a single electromyographer (D.W.Z.). Needle electromyography was done using concentric needles and quantitative MUAP assessment was done with the automatic decomposition electromyography (ADEMG) protocol using a Viking IV machine (Nicolet Biomedical Inc., Madison, WI). Muscle biopsy of the left deltoid was prepared using standard methods and staining procedures for frozen section, paraffin and epoxy resin analysis, the latter also including electron microscopy study.

RESULTS

Standard nerve conduction studies showed normal conduction velocities for median, ulnar, peroneal, and tibial nerves. However, during the initial evaluation all motor nerves showed marked reduction in amplitudes which recovered over time. Conduction velocities were normal. Days in parentheses denote the days after she was noted to be quadriparietic. The exact onset of her weakness was unclear because of prior sedation. On examination, she had significant limb edema. She was intubated, but fully oriented. There was mild bilateral facial weakness but no other cranial nerve abnormalities. She had mild diffuse wasting and moderate to severe quadriparesis (1/5 - 2/5 proximally and 3/5 - 4/5 distally on the MRC scale). She had reduced reflexes in both biceps brachii and triceps, and absent reflexes in her brachioradialis, quadriceps femoris and triceps surae. The sensory examination was normal. The first set of electrophysiological studies were done the same day and she had a muscle biopsy done the next day. Within a month she started to recover and was fully recovered by four months. Repeat electrophysiological studies were done three weeks and four months after the initial recognition of her weakness.

METHODS

Electrophysiological recordings were done using standard techniques and were supervised by a single electromyographer (D.W.Z.). Needle electromyography was done using concentric needles and quantitative MUAP assessment was done with the automatic decomposition electromyography (ADEMG) protocol using a Viking IV machine (Nicolet Biomedical Inc., Madison, WI). Muscle biopsy of the left deltoid was prepared using standard methods and staining procedures for frozen section, paraffin and epoxy resin analysis, the latter also including electron microscopy study.

RESULTS

Standard nerve conduction studies showed normal conduction velocities for median, ulnar, peroneal, and tibial nerves. However, during the initial evaluation all motor nerves showed marked reduction in amplitudes which recovered over time. Conduction velocities were normal. Days in parentheses denote the days after she was noted to be quadriparietic. The exact onset of her weakness was unclear because of prior sedation. On examination, she had significant limb edema. She was intubated, but fully oriented. There was mild bilateral facial weakness but no other cranial nerve abnormalities. She had mild diffuse wasting and moderate to severe quadriparesis (1/5 - 2/5 proximally and 3/5 - 4/5 distally on the MRC scale). She had reduced reflexes in both biceps brachii and triceps, and absent reflexes in her brachioradialis, quadriceps femoris and triceps surae. The sensory examination was normal. The first set of electrophysiological studies were done the same day and she had a muscle biopsy done the next day. Within a month she started to recover and was fully recovered by four months. Repeat electrophysiological studies were done three weeks and four months after the initial recognition of her weakness.

METHODS

Electrophysiological recordings were done using standard techniques and were supervised by a single electromyographer (D.W.Z.). Needle electromyography was done using concentric needles and quantitative MUAP assessment was done with the automatic decomposition electromyography (ADEMG) protocol using a Viking IV machine (Nicolet Biomedical Inc., Madison, WI). Muscle biopsy of the left deltoid was prepared using standard methods and staining procedures for frozen section, paraffin and epoxy resin analysis, the latter also including electron microscopy study.

RESULTS

Standard nerve conduction studies showed normal conduction velocities for median, ulnar, peroneal, and tibial nerves. However, during the initial evaluation all motor nerves showed marked reduction in amplitudes which recovered over time. Conduction velocities were normal. Days in parentheses denote the days after she was noted to be quadriparietic. The exact onset of her weakness was unclear because of prior sedation. On examination, she had significant limb edema. She was intubated, but fully oriented. There was mild bilateral facial weakness but no other cranial nerve abnormalities. She had mild diffuse wasting and moderate to severe quadriparesis (1/5 - 2/5 proximally and 3/5 - 4/5 distally on the MRC scale). She had reduced reflexes in both biceps brachii and triceps, and absent reflexes in her brachioradialis, quadriceps femoris and triceps surae. The sensory examination was normal. The first set of electrophysiological studies were done the same day and she had a muscle biopsy done the next day. Within a month she started to recover and was fully recovered by four months. Repeat electrophysiological studies were done three weeks and four months after the initial recognition of her weakness.

METHODS

Electrophysiological recordings were done using standard techniques and were supervised by a single electromyographer (D.W.Z.). Needle electromyography was done using concentric needles and quantitative MUAP assessment was done with the automatic decomposition electromyography (ADEMG) protocol using a Viking IV machine (Nicolet Biomedical Inc., Madison, WI). Muscle biopsy of the left deltoid was prepared using standard methods and staining procedures for frozen section, paraffin and epoxy resin analysis, the latter also including electron microscopy study.

RESULTS

Standard nerve conduction studies showed normal conduction velocities for median, ulnar, peroneal, and tibial nerves. However, during the initial evaluation all motor nerves showed marked reduction in amplitudes which recovered over time. Conduction velocities were normal. Days in parentheses denote the days after she was noted to be quadriparietic. The exact onset of her weakness was unclear because of prior sedation. On examination, she had significant limb edema. She was intubated, but fully oriented. There was mild bilateral facial weakness but no other cranial nerve abnormalities. She had mild diffuse wasting and moderate to severe quadriparesis (1/5 - 2/5 proximally and 3/5 - 4/5 distally on the MRC scale). She had reduced reflexes in both biceps brachii and triceps, and absent reflexes in her brachioradialis, quadriceps femoris and triceps surae. The sensory examination was normal. The first set of electrophysiological studies were done the same day and she had a muscle biopsy done the next day. Within a month she started to recover and was fully recovered by four months. Repeat electrophysiological studies were done three weeks and four months after the initial recognition of her weakness.
amplitude and duration indicating evidence of a severe myopathic process. ADEMG analysis of the left tibialis anterior muscle verified these findings, demonstrating reductions in the amplitudes of MUAPs compared to age-matched controls (Figure 1A). Repeat examination four months later, identified recovery in MUAP amplitudes by standard needle electromyography and ADEMG criteria but MUAPs were still reduced compared to age-matched controls (Figure 1B).

The muscle biopsy showed marked structural changes in up to 25% of fibers in some fascicles. Most pronounced was evidence of active regeneration with basophilia and vesicular nuclei, but also present was fiber necrosis with macrophage infiltration and foci of calcification within myotubes (Figure 2B). ATPase reactions demonstrated a predominance of type 1 fibers without grouping. Some fibers showed lack of staining suggestive of loss of myofibrillar network (Figure 2A). Electron microscopy showed areas of muscle with preserved Z-bands (Figure 2C).

DISCUSSION

Causes of muscle weakness in critically ill patients are varied but include a significant number of patients with neuromuscular diseases. Among these neuromuscular diseases, QM is often unrecognized and underdiagnosed. Numerous synonyms have been used in the literature. These include myopathy with thick filament loss, acute hydrocortisone myopathy, necrotizing myopathy of intensive care, acute relaxant-steroid myopathy and blocking agent-corticosteroid myopathy. In recent years, some of the relative risk factors have been identified, and these include exposure to high doses of corticosteroids and prolonged use of NDMBAs; however, not all patients had exposure to both. Some of the cases in the literature only had exposure to high doses of corticosteroids and some only had prolonged uses of NDMBAs. Our patient suggests that critically ill patients may develop a similar myopathy without significant exposure to either of these risk factors.

Since QM is a relatively new clinical entity, there is a confusion over the definition and, therefore, the diagnosis of this

Table 2: Sensory Conduction Studies

<table>
<thead>
<tr>
<th>Dates</th>
<th>Median Amp (µV) CV (m/s)</th>
<th>Ulnar Amp (µV) CV (m/s)</th>
<th>Radial Amp (µV) CV (m/s)</th>
<th>Sural Amp (µV) CV (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-op day #30 (2)</td>
<td>18 61</td>
<td>17 52</td>
<td>13 58</td>
<td>1.6 48</td>
</tr>
<tr>
<td>Post-op day #48 (20)</td>
<td>34 46</td>
<td>39 50</td>
<td>ND ND</td>
<td>8.3 33</td>
</tr>
<tr>
<td>Post-op day #157 (129)</td>
<td>37 57</td>
<td>45 56</td>
<td>ND ND</td>
<td>5.1 46</td>
</tr>
</tbody>
</table>

Normals: Median: Amp >20 µV, CV >49 m/s
Ulnar: Amp >17 µV, CV >49 m/s
Radial: Amp >15 µV, CV >49 m/s
Sural: Amp >6 µV, CV >39 m/s

Sensory nerve conduction studies were done using antidromic technique. On the initial evaluation all sensory nerves showed borderline abnormalities in amplitudes which recovered over time. These borderline abnormalities were felt to be due to limb edema. Conduction velocities were normal. Days in parentheses denote the days after the patient was noted to be quadriparetic. (Amp: SNAP amplitude, CV: conduction velocity)
illness. Often these patients are very ill and the clinical assessment is clouded by sedation and encephalopathy. Electrophysiological studies are invaluable in arriving at the correct diagnosis. In our patient, the features of myopathy were: (i) decreased M potentials with rapid recovery accompanying clinical improvement, (ii) preserved sensory conduction, (iii) lack of abnormal spontaneous activity, and (iv) motor unit potential configurations compatible with myopathy rather than denervation with reinervation. Lack of abnormal spontaneous activity in this myopathic condition may be in keeping with other reports which showed that the muscle is inexcitable when stimulated directly. In addition, unlike previous reports, we made serial quantitative motor unit potential analyses allowing comparison with age, muscle and degree of contraction-matched normals. ADEMG verified that the findings were diagnostic of myopathy, later confirmed by biopsy.

Evaluation of muscle biopsy is the gold standard in arriving at the correct diagnosis of QM. There may be confounding factors, however, in the proper interpretation, such as the presence of concomitant type II fiber atrophy from prolonged inactivity, and the variations in the pathological findings depending on timing of the biopsy. The findings that are relatively specific for this illness include atrophy of both fiber types with selective loss of myosin filaments on electron microscopy. However, these changes often are not present uniformly throughout the specimen and depend on when the biopsy is taken. Lacomis et al. found that the selective loss of myosin filaments were present in biopsies taken four weeks after the corticosteroid exposure but not in biopsies taken within the first two weeks of the corticosteroid infusion. In severe cases, muscle fiber necrosis may obscure the myosin loss. One other unique feature of our patient’s biopsy was the presence of extensive calcifications. Although a nonspecific feature of muscle injury, this finding has not been reported in QM before.

The pathogenesis of QM is unknown. Exposure to steroids in combination with physical or physiological denervation (e.g. prolonged neuromuscular blockade) has been proposed as a possible mechanism. This hypothesis is also supported by studies which showed diffuse and focal reduction in myosin staining in denervated muscles of rats exposed to high dose steroids. Our patient, however, did not have any exposure to exogenous steroids. It is possible that two single doses of pancuronium may have created a physiological denervation because of prolonged half-life due to renal insufficiency. This is unlikely because pancuronium is cleared by both hepatic and renal systems and even in complete renal insufficiency the half-life is only doubled to 2-5 hours after single injection. As an alternative mechanism of pathogenesis, loss of thick filaments have been linked to myosin degradation due to activation of the ATP-ubiquitin proteolytic process. The important feature of this patient was that the condition developed in conjunction with septic shock. Sepsis and the associated systemic inflammatory response have been associated with another common neuromuscular complication seen in critically ill patients – critical illness polyneuropathy. This condition differs from QM in three main aspects: (i) there is sensory involvement both clinically and electrophysiologically; (ii) dense fibrillations and positive sharp waves are seen in electromyography; and (iii) the muscle biopsy shows changes compatible with denervation. Effects of sepsis on muscle tissue varies from direct infection of the muscle (pyomyositis) to indirect ones, perhaps through cytokines, causing focal necrosis, muscle protein wastage and depletion of high energy phosphate reserves (for review see Bolton and Zochodne). It is possible that QM is part of a spectrum of changes that occur in muscle tissue under various conditions including: sepsis, multi-organ failure, exposure to steroids and/or NDMAs.

Addendum: Since the initial submission of this article we have become aware of two other studies in which patients developed acute quadriplegic myopathy without significant exposure to steroids or neuromuscular blocking agents.

ACKNOWLEDGEMENTS:
Anita Thiessen provided technical assistance with the electrophysiological studies. A.H. is a Clinical Research Fellow and D.W.Z. is a Medical Scholar of the Alberta Heritage Foundation for Medical Research.

REFERENCES:
16. Rich MM, Bird SJ, Raps EC, McCluskey LF, Teener JW. Direct...