Brain & Chiasmal Herniations into Sella after Medical Treatment of Prolactinoma

M.H. Bangash, D.B. Clarke, R.O. Holness

ABSTRACT: **Background:** Dopamine agonists are widely used in the treatment of pituitary prolactinomas. We report a case of inferior mesial frontal lobe (gyrus rectus) and chiasmal herniations into an enlarged sella following successful medical treatment of a pituitary macroadenoma. **Method:** A 71-year-old healthy man presented to medical attention with visual complaints. On examination, he was found to have bitemporal hemianopsia. Endocrine evaluation revealed an elevated prolactin level. He was treated medically with a dopamine agonist (bromocriptine). **Results:** Evaluation after one year of medical treatment revealed stabilization of the patient’s vision, with a significant bitemporal field loss. Serum prolactin levels normalized (5.16 ng/ml). The MRI of the sella showed almost complete disappearance of the tumor, resulting in right mesial frontal lobe herniation into an enlarged sella with associated chiasmal deformation. **Conclusions:** We report a case where successful medical treatment of a large pituitary prolactinoma has resulted in inferior frontal lobe and chiasmal herniations into an enlarged sella.

RéSUMÉ: Hernie du cerveau et du chiasma dans la selle turcique suite au traitement médical d’un prolactinome. **Contexte:** Les agonistes de la dopamine sont largement utilisés dans le traitement des prolactinomes pituitaires. Nous rapportons un cas d’hernie du lobe frontal mésial inférieur (gyrus rectus) et du chiasma dans une selle turcique agrandie suite à la régression d’un macroadénome pituitaire traité médicalement avec succès. **Méthode:** Un homme âgé de 71 ans, en bonne santé, a consulté pour des troubles visuels. À l’examen on a noté une hémiopsie bitemporale. L’évaluation endocrinienne a montré un niveau élevé de prolactine. Il a été traité médicalement par un agoniste de la dopamine, la bromocriptine. **Résultats:** Après un an de traitement, la vision du patient était stable, mais il accusait une perte importante au niveau des champs visuels temporaux. Le niveau sérique de prolactine était normal, soit de 5,16 ng/mL. À l’IRM de la selle turcique, la tumeur avait presque complètement disparu entraînant une hernie de la partie mésiale droite du lobe frontal vers le bas associée à une déformation du chiasma dans une selle turcique agrandie. **Conclusions:** Nous rapportons l’observation d’un patient porteur d’un gros prolactinome pituitaire traité médicalement avec succès entraînant une hernie du lobe frontal inférieur et du chiasma dans une selle turcique agrandie.
his bitemporal visual field defect within the first few months of treatment.

After one year of treatment, routine visual field testing revealed no further deterioration of his visual field defect. Neuroimaging was performed by CT scan which showed a mass in the pituitary fossa different in character from the original pituitary tumor (more hypodense). Subsequent MRI of the sella demonstrated that the original tumor had all but disappeared. The intrasellar mass seen on the follow-up CT scan was, in fact, the infero-medial portion of the right frontal lobe that had herniated inferiorly into the sella, enlarged and vacated by the treated tumor. There was associated chiasmal deformation into the sella as well.

The patient has continued to be treated medically. His vision has remained stable and his serum prolactin levels have normalized. He is not able to arrange transportation for regular imaging studies and, therefore, is followed clinically and by a combination of visual field testing and serum prolactin levels.

DISCUSSION

The pituitary gland is a bilobed structure weighing approximately 0.6 g and is found within the confines of the sella turcica (pituitary fossa). The anatomy of the sella and sellar region has been recently detailed by Rhoton et al. The normal dimensions of the sella are approximately 13 mm in depth, 14 mm in width and 17 mm in length. The sella is bounded anteriorly by the tubeculum sellae, posteriorly by the dorsum sellae and laterally by the carotid prominences and cavernous sinususes. The floor of the sella is formed by a thin piece of sphenoid bone which separates the sella from the underlying sphenoid sinus. The roof of the sella turcica is formed by a thin layer of dura, the diaphragma sellae, which covers the pituitary gland except for a small opening in its center that transmits the pituitary stalk.

Tumors of the anterior pituitary account for 10% to 15% of all primary brain tumors. Most patients with prolactinomas present having microadenomas, where high serum prolactin levels account for the clinical presentation of amenorrhea and/or galactorrhea in women, or decreased libido and impotence in men. Macroprolactinomas are less common and can cause symptoms related to extension superiorly involving the optic nerves and chiasm in the suprasellar region, and to extension laterally encroaching upon contents of the cavernous sinus. The sella itself is often expanded by macroadenomas and tumor may erode the floor of the sella to involve the sphenoid sinus.

Magnetic resonance imaging has become the imaging modality of choice for examination of the sella and the parasellar structures (reviewed by Tarr and Lewin). Short echo time/short relaxation time (T1-weighted) sequences are routinely used. The coronal plane is optimal for imaging the sella because it minimizes image-distorting partial volume effects from the

![Figure 1](https://example.com/fig1.png)

Figure 1: Post-treatment T1-weighted MRI. A. Mid-sagittal image demonstrates that the posterior aspect of the gyrus rectus (arrow) as well as the optic chiasm posteriorly (curved arrow) are seen within the sella. Residual tumor lines the margins of the expanded sella. B. Coronal view shows inferior displacement of frontal lobe (right gyrus rectus; arrow) into an enlarged sella.
carotid artery, sphenoid sinus and suprasellar cistern. The MRI examination in the sagittal plane is useful to assess midline structures. The ability to distinguish normal pituitary from pituitary lesions is enhanced by the intravenous administration of paramagnetic contrast material. An MRI can also be useful in detecting hemorrhage within the pituitary gland. Subacute hemorrhage is seen as increased intensity on uncontrasted T1 images due to the presence of methemoglobin. Acute hemorrhage, as seen in cases of pituitary apoplexy, is appreciated as hypointensity on T2-weighted spin-echo or gradient echo sequences due to the presence of deoxyhemoglobin.

Dopamine agonists are widely used in the treatment of pituitary prolactinomas (reviewed by Nomikos, Buchfelder and Fahlbusch) and act directly on D2 dopamine receptors of normal and tumorous prolactin secreting cells (recently reviewed by Ivan, et al.). Side effects of dopamine agonist treatment can include nausea and vomiting, orthostatic hypotension, nasal congestion, peripheral vascular changes, depression, and nightmares. Chiasmal herniation and even cerebrospinal fluid leakage into the sella vacated by a receding tumor have been reported previously. Furthermore, Gros and Cazaban in the pre-CT/MRI imaging era were the first to report the possibility of cerebral herniation into the intrasellar compartment, occurring after radiation treatment of acromegaly. The present case report is the first radiographic demonstration of herniation of the inferior mesial frontal lobe into the sella, resulting from successful dopamine agonist treatment of a macroprolactinoma.

Modern-day management of prolactinomas is primarily medical (reviewed by Nomikos, Buchfelder and Fahlbusch), although surgical treatment has a role in patients with acutely deteriorating vision and possibly in primary treatment of some microprolactinomas. In our case, there was no evidence of further visual deterioration, we have elected to continue to treat the patient medically.

The mechanism by which the inferior mesial frontal lobe herniates into the emptied sella is speculative and may be multifactorial. The size of the opening through the diaphragma varies between individuals and the dura of the diaphragma may be very thin. These conditions may be further exacerbated by expansion of a pituitary macroadenoma such that, following its reduction in size by treatment, the overlying neural structures are able to herniate into the sella. In addition, it has been postulated that the diaphragma sella may be more susceptible to erosion following radiation therapy. Although chiasmal herniation into the sella is well recognized, imaging showing herniation of the mesial frontal lobe has not been previously reported. In our case, we speculate that bone erosion of the planum sphenoidale by the expanding tumor, possibly in association with dural erosion, were important in allowing the frontal lobe’s gyrus rectus to herniate inferiorly into the sella.