The prevalence of intracranial aneurysm in humans is about 6%.\(^1\) Data from the United States show 200 million to 1 billion people worldwide with unruptured aneurysm\(^3\). Most aneurysm patients die of rupture of the aneurysms with subarachnoid hemorrhage (SAH) and following vasospasm. Therefore, the reasons behind cerebral aneurysm rupture is of the most important factors under investigation. Even though hemodynamics studies showed blood flow and intraluminal pressure change had major effect on the formation of aneurysms, which based on other evidences, such as the fact that cerebral aneurysms characteristically occur at the branch points of major cerebral arteries and, more commonly, at the internal carotid-posterior communicating artery junctions, more and more research reveals that inflammation reactions might be another important factor in the formation and rupture of cerebral aneurysms.

The prevalence of intracranial aneurysm in humans is about 6\%.\(^1\) Data from the United States show 200 million to 1 billion people worldwide with unruptured aneurysm\(^3\). Most aneurysm patients die of rupture of the aneurysms with subarachnoid hemorrhage (SAH) and following vasospasm. Therefore, the reasons behind cerebral aneurysm rupture is of the most important factors under investigation. Even though hemodynamics studies showed blood flow and intraluminal pressure change had major effect on the formation of aneurysms, which based on other evidences, such as the fact that cerebral aneurysms characteristically occur at the branch points of major cerebral arteries and, more commonly, at the internal carotid-posterior communicating artery and anterior cerebral-anterior communicating artery junctions, more and more research reveals that inflammation reactions might be another important factor in the formation and rupture of cerebral aneurysms.

As a natural response to injury, inflammation is generally beneficial, facilitating the initial repair of damaged tissue. When persistent, however, inflammation may have deleterious effects\(^4\). Histopathological studies on clipped human aneurysms have identified macrophages and lymphocytes in the aneurysm wall. These cell types are indicators of inflammation\(^5\).\(^6\).

From the Department of Neurosurgery (WJ, RW, JZ, DZ), Department of Pathology (XW), TianTan Hospital, School of Basic Medical Sciences, Capital Medical University; Department of Neurosurgery (XH), Beijing Tiantan Puhua Hospital, Beijing China; Washington University (IYL), School of Medicine, St. Louis, Missouri; Department of Neurosurgery (XH), University of Rochester Medical Center, New York, New York, USA.

Received June 23, 2010. Final revisions submitted May 16, 2011.

Correspondence to: Jizong Zhao, Department of Neurosurgery, TianTan Hospital, Capital Medical University, Beijing China, 100050.
Although the balance between pro-inflammatory and anti-inflammatory cytokines is likely to determine the level and persistence of inflammation, the contribution of these factors to aneurysm-related inflammation is not known. E-selectin is an important endothelia adhesion molecule which helps monocytes adhere to endothelial cells. These activated monocytes then infiltrate into the wall of the artery to become foam cells and cause injury to the artery by secreting metalloproteases. The role of inflammation in atherosclerosis and abdominal aortic aneurysms has been demonstrated. Therefore we sought to elucidate the role of inflammation during the formation and rupture of intracranial aneurysms. Even though recent studies showed that, following SAH, E-selectin increased in cerebrospinal fluid (CSF) and sera, there is no report about E-selectin expression in ruptured aneurysms tissues. This study is to investigate the protein expression of endothelial adhesion molecular E-selectin in cerebral aneurysm walls of human surgical samples.

Patients And Methods

Patients and surgical aneurysm samples: From October 2007 to December 2008, more than 200 patients with intracranial aneurysms were treated microsurgically at the Neurosurgery Department of Tiantan Hospital in Beijing, China. All the aneurysms were clipped. We collected nine aneurysm wall specimens after they were clipped. Five were from men and four were from women with a median age of 42 years (range 18–59 years). All of the specimens were from berry aneurysms smaller than 2.5 cm. All of the aneurysms were from the Circle of Willis, with one from the anterior communicating artery (AComA), two from the PComA, one from ACA and five from the MCA. Six tissue samples were stored in liquid nitrogen for molecular biology studies. The other three tissue samples were each divided in half, with one half of the tissue stored in liquid nitrogen and the other half stored in Bouin’s solution for immunohistochemistry studies.

The distal portion of the superficial temporal artery (STA) from five patients undergoing surgery for intracranial tumors was used as a control group. All the STA samples were obtained during frontal-temporal craniotomy with the patient’s informed consent. Two tissue samples were stored in liquid nitrogen for molecular biology studies. The other three tissue samples were each divided in half, with one half of the tissue stored in liquid nitrogen and the other half stored in Bouin’s solution for immunohistochemistry studies. All individuals included in the study were Chinese.

Histopathological Evaluation: Hematoxylin and Eosin (H&E) and immunohistochemistry (IHC) staining were performed for the tissue samples. Briefly, 5 μm thickness paraffin sections were deparaffinized and rehydrated in water, in addition to standard H&E staining. Sections for IHC were rinsed in phosphate buffered saline (PBS) and then placed into a microwave oven, with the 0.01M Citrate buffer of pH 6.0, in temperatures between 92-98°C for 15 minutes (min) for antigen retrieval, then cooled down for 20 min at room temperature, after a PBS rinse, and kept in 3% H2O2 at room temperature for 20-30 min to inactivate the activity of the peroxidase. After rinsing in PBS, sections were incubated in blocking solution (5% goat serum with 0.1% Triton X-100) for 60 min, then incubated overnight at 4°C with E-selectin rabbit polyclonal antibody (1:400, Abcam) diluted in 5% normal goat serum and 0.1% Triton X-100. The following day, sections were rinsed in PBS and placed in biotinylated goat anti-rabbit antibody (1:200, Vector Laboratories) for one hour at room temperature and then in 3% H2O2/PBS for ten minutes, followed by application of avidin-biotin complex (ABC) kit (Vector Laboratories) and visualized with diaminobenzidine (DAB) for quantification. Sections were counterstained with campeachy and mounting medium.

Western Blot Analysis: Control and aneurysm tissues were homogenized in ice-cold lysis’ buffer containing 0.5% Nonidet P-40 (vol/vol), 25 mmol/L N-2-hydroxyethylpipperazine-N'-2-ethanesulfonylic acid, pH 7.4, 150 mmol/L NaCl, 1 mmol/L ethylenediamine tetra-acetic acid, 1 mol/L sodium orthovanadate, and a cocktail of protease inhibitors. Homogenates were centrifugated at 13,000g in a microcentrifuge at 4°C, and the protein concentrations were determined from the supernatants using the Bio-Rad protein assay. Proteins (200 g) from control and aneurysm samples were separated on 12.5% SDS–PAGE with 5% SDS stacking gels prior to transfer onto nitrocellulose membrane (Amersham Biosciences, Piscataway, NJ). Unspecific antigen binding was blocked by incubation with 5% dry milk in TBS-Tween20 (0.05%, Sigma) for 60 min and then washed 3 x 5 min with TBS-Tween 20. The membranes were blocked for 1 hour in Tris-buffered saline with Tween 20 (20 mmol/L Tris HCl, pH 7.4, 0.9% NaCl, and 0.05% Tween 20) containing 5% nonfat dried milk, followed by incubation with primary antibodies against E-selectin (rabbit polyclonal antibody (1:1000, Abcam). After extensive washing, Peroxidase-conjugated AffiniPure goat anti-rabbit immunoglobulin G (IgG) (1:5,000; Jackson Immuno Research Labs, West Grove, PA) were used for secondary incubations for two hours at room temperature. Reactive bands were visualized using an enhanced chemiluminescence detection system (Molecular Imager Gel Doc XR + and ChemiDoc XRS+ system, Bio-Rad Laboratories, Hercules, CA). Immunoreactive bands indicating expression of E-selectin and protein levels were expressed as the optical density of the examined factor relative to β-actin within the same lane.

Statistical analysis: For comparing E-selectin expression positive cells and protein concentration in different groups, data are presented as means ± SD. Statistical analysis by one-way analysis of variance (ANOVA) followed by the Student’s t test. Probability (p) values < 0.05 are considered as significant.

Results

Histological changes in aneurysm when compared with control artery wall: By H&E staining, the three-layered structure of the aneurysm wall has been destroyed. Thrombosis can be found in most of the aneurysms’ cavity. Fibrous degeneration caused thickening of the aneurysm’s inner membranes. The continuity of endothelial cell liner in lumen destroyed but with cell proliferation, the proliferation cells are out of organization. The artery media is infiltrated with hyperplastic fiber components, monocytes, and accrementation.
nutrient vessel similar to granulation tissue (Figure 1A). The normal control tissue which comes from superficial temporal arteries is a muscular artery, consisting of an inner membrane, media, and outer membrane. The inner membrane is composed of a single layer of endothelial cells and a well-developed inner elastic layer. The media is composed of smooth muscle loops with longitudinal muscle fibers. The outer membrane is composed of connective tissue without an outer elastic membrane (Figure 1B).

Figure 1: A) Hematoxylin and Eosin (H&E) staining showed aneurysm wall pathology changes (A1 200x and A2 400x) when compared with normal superficial temporal artery (STA) wall (B1 200x and B2 400x). Aneurysm walls were disorganized with epithelial cell proliferation and artery media infiltrated with hyperplastic fiber components, monocytes, and accremention nutrient vessels similar to granulation tissue. B) Immunohistochemistry showed E-selectin protein (brown) can be found mainly in aneurysms (A1 200x, A2 400x) but less in normal control artery (STA) walls (B1 200x, B2 400x).

E-selectin can be detected in cerebral arteries but not control artery walls by immunohistochemistry and Western Blot: In this study, we found that E-selectin protein is located in the cell cytoplasm with small amounts in the nucleus in all aneurysm walls (mean grey 0.266±0.062). We found less E-selectin protein in control artery walls (mean grey 0.213±0.019) (Figure 2, P<0.05), which indicated that E-selectine is a specific factor in the aneurysm wall. By Western blot, the relative protein level was quantified and compared to β-actin. E-selectin protein increased significantly in cerebral aneurysm tissues (1.5437±0.0602) when compared to normal control artery tissue (0.4281±0.0634) (Figure 3A,B), with P<0.05.

Discussion

This is the first study to demonstrate the expression of endothelia adhesion molecule E-selectin (CD62E) protein expression in ruptured human aneurysm walls using surgical resection tissue samples obtained during clipping operations. We found that E-selectin protein expression increased significantly in ruptured aneurysm walls when compared with control STA walls using immunohistochemistry and Western blot methods. E-selectin was exclusively expressed on the endothelial cell membrane which is consistent with previous reports. As an

Table 1: Mean grey of positive E-selectin in aneurysm and normal artery wall by IHC.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Mean grey</th>
</tr>
</thead>
<tbody>
<tr>
<td>aneurysm</td>
<td>0.266±6.22E-02*</td>
</tr>
<tr>
<td>normal artery</td>
<td>0.213±1.86E-03</td>
</tr>
</tbody>
</table>

* Differences were considered statistically significant.
adhesion molecule, E-selectin protein expression which is increased in the aneurysm walls, might be related to inflammation reactions in the formation and rupture of cerebral aneurysms.

Even though inflammation has been inferred as a possible reason of formation of aneurysms for many years16,17, the role of the inflammation in aneurysm rupture processes is still unknown17-20. There has been increasing focus on inflammatory factors within aneurysms in recent years. Strong evidence is that when compared with controls, many adhesions molecules such as ICAM-1, VCAM-1, and L-selectin levels in the CSF of SAH patients were increased had been reported15. Immunohistochemistry and immunofluorescence, an increased activation of C3 and C9, increased deposition of IgG and IgM, increased expression of VCAM-1, as well as higher numbers of macrophages, monocytes, and T-lymphocytes in the tissues from the aneurysms had been found21,22. These findings suggest that an inflammatory process occurs in the walls of intracranial aneurysms.

The main process of inflammation is shown in Figure 4. The cascade reaction that results in leukocyte activation involves cell adhesion factors, including selectins, integrins, and immunoglobulins. Selectins can be divided into E-, P-, and L-selectin. E-selectin mediates inflammation early on in the process. It mediates the adhesion and transfer of leukocytes into the artery wall. E-selectin also appears in activated endothelial cells during the inflammatory reaction.

Soluble E-selectin was demonstrated to be rapidly shed from surfaces of endothelial cells on cellular activation and therefore could be detected in serum and CSF. Most research has been concentrated on aneurysms related to SAH and cerebral ischemia. For example, Frijns et al23 studied 106 SAH patients and found that serum E-selectin levels were significantly decreased in patients who suffered from cerebral ischemia within24 hours after their aneurysm was clipped. The E-selectin levels of the other patient did not change significantly. It was proposed that the serum levels of cell adhesion factors like E-selectin may not be used to evaluate the prognosis of aneurismal SAH patients. Nissen et al showed that serum E-selectin level in cerebral ischemia patients were decreased24. Therefore, even though it is easy to obtain blood serum values for aneurysm patients for E-selectin level evaluation, the results do not reflect the local cerebral aneurysm wall inflammation situation. On the other hand, CSF may be more reliable when tested together with serum E-selectin. Tanriverdi25 et al found that serum and CSF E-selectin levels were significantly increased in aneurismal SAH patients as compared with patients with hydrocephalus. Cerebrospinal fluid E-selectin levels in the aneurismal SAH patients who had vasospasm were higher than other patients. Because of the above contradictory results in cerebral aneurysm patients, the direct method for detecting the E-selectin levels should be by testing aneurysm wall tissues rather than serum and

Figure 3: Semi-qualification of E-selectin protein levels in aneurysm tissues and normal STA artery walls by Western Blots. The level of E-selectin (A, band 115kda) when compared to loading control protein β-actin (A, band 42kda) is increased significantly in aneurysm tissue (B) with p<0.01. A. B. * p<0.01 Differences were considered statistically significant.

Figure 4: Possible mechanism of E-selectin in the inflammation process of aneurysm formation.
CSF levels. Our patients all had SAH, which indicated aneurysm rupture history. We found a significant increase in E-selectin levels in the walls of aneurysms locally using Western blot and immunohistochemistry. This direct evidence suggests that E-selectin might have a role in the formation and rupture of human cerebral aneurysms. Further studies should be done in unruptured and ruptured aneurysms and serum and CSF levels compared in the same patients to reveal more details of E-selectin role in this process.

CONCLUSION

Increased E-selectin expression may have deleterious effects on cerebral arteries by promoting inflammation, which can weaken vessel walls and induce formation of cerebral aneurysms. Blocking E-selectin pathways may be effective in preventing the formation or rupture of cerebral aneurysms.

ACKNOWLEDGEMENTS

This study was supported by a foundation from Capital Medical University basic and clinic associate project.

REFERENCES