Migraine is a common disorder characterized by unilateral throbbing headache with autonomic symptoms such as nausea, vomiting and photophobia. Its pathogenesis is still obscure, but genetic tendency and environmental factors are known to be responsible for its etiology.1,2 The trigeminovascular system is activated at the onset of migraine attack and the release of substance P, neurokinin A and CGRP at the sensorial nerve endings result in vasodilatation and neurogenic inflammation of cranial blood vessels. The induced pain signals are transmitted to the thalamus and perceived as headache by the cerebral cortex.1 It has been demonstrated that CGRP levels increase in the blood obtained from the jugular vein during migraine attack and normalize after the cessation of the headache.5 The effect of nitric oxide which has an important role in migraine pathogenesis is also suggested to occur by means of CGRP release at the trigeminal nerve terminals.5 Calcitonin gene related peptide is one of the members of calcitonin family (calcitonin, amilin, adrenomedullin, alpha and beta CGRP) and is mainly released in

ABSTRACT: Objective: Calcitonin gene related peptide (CGRP), which has a vasodilator effect, is held responsible for neurogenic inflammation and vasodilation of the cranial vessels in migraine pathophysiology. In this study, we investigated the association between alpha CGRP gene polymorphism (CALCA T-692C) and migraine. Material and Methods: One hundred and thirty-four female migraineurs and 96 healthy female cases were enrolled in the study. The patient group was further subdivided into migraine with and without aura groups. The CALCA T-692C gene polymorphism was identified using polymerase chain reaction (PCR) technique and restriction fragment length polymorphism (RFLP). Results: The genotype and allele frequencies of CALCA T-692C gene polymorphism did not differ between the migraine and control groups. Between the migraine with and without aura subgroups, there was no difference. No association was seen between the CALCA T-692C gene polymorphisms and migraine attack severity and frequency. Conclusion: Our study did not show any association between CALCA T-692C gene polymorphism and migraine.

RÉSUMÉ: Polymorphisme du gène du peptide relié au gène de la calcitonine chez les patients souffrant de migraine. Objectif : Le peptide relié au gène de la calcitonine (PRGC), qui a un effet vasodilatateur, est tenu responsable de l’inflammation neurogène et de la vasodilatation des vaisseaux crâniens dans la pathophysiologie de la migraine. Nous avons étudié l’association entre le polymorphisme du gène du PRGC alpha (CALCA t-692C) et la migraine. Méthode : Cent trente-quatre femmes migraineuses et 96 femmes témoins ont été incluses dans l’étude. Le groupe de patientes a été subdivisé en deux groupes, selon que la migraine était accompagnée ou non d’une aura. Le polymorphisme CALCA T-692C a été identifié au moyen de la technique de réaction en chaîne de la polymérase (PCR) et polymorphisme de longueur des fragments de restriction. Résultats : Nous n’avons pas constaté de différence entre le gènotype et les fréquences alléliques du polymorphisme du gène CALCA T-692C dans le groupe de femmes migraineuses et le groupe témoin ainsi qu’entre les groupes de femmes migraineuses avec et sans aura. Il n’existait pas d’association entre les polymorphismes du gène CALCA T-692C et la sévérité et la fréquence des crises de migraine. Conclusion : Notre étude n’a pas mis en évidence d’association entre le polymorphisme CALCA T-692 et la migraine.

LE JOURNAL CANADIEN DES SCIENCES NEUROLOGIQUES

Volume 40, No. 5 – September 2013

723

The central nervous and cardiovascular system. It causes vasodilatation in blood vessels, regulates vascular tonus and angiogenesis, modulates pain sensation in the nervous system, and acts as a neurotropic factor. Alpha and beta CGRP are also known as CALCA and CALCB. The human CALCA gene is located on chromosome 1p15.2-p15.1 and codes for both calcitonin and alpha-CGRP. CALCA T-692C is one of the identified single nucleotide polymorphisms loci of the CALCA gene (http://www.ncbi.nlm.nih.gov/projects/SNP/).

The molecules of CGRP have to be properly synthesized to exhibit biologic activity. As the result of genetic polymorphisms, the molecular structure, function and reaction can be altered. The association of various genetic polymorphisms with migraine has been well researched. In this study, we investigated the frequency of alpha CGRP gene polymorphism (CALCA T-692C) in migraine patients and its relationship with migraine attack frequency and severity.

M A T E R I A L A N D M E T H O D S

One hundred and thirty-four female migraine patients and 96 healthy female control cases were enrolled in the study. All the migraineurs were examined by the neurologists and the diagnosis of migraine was established in accordance with the criteria of international classification of headache disorders II. Hemiplegic migraine was excluded. The control groups consisted of the healthy volunteers, health care personal and postpartum females who were hospitalized in the obstetric clinic. The frequency of migraine attacks was recorded as the number of attacks in a month. The severity of the headache was determined with the visual analog scale. The history of hypertension, diabetes mellitus, smoking habit and the existence of cardiovascular disease in the family of the migraineurs and controls were recorded.

DNA Isolation

DNA was isolated from peripheral blood, collected into tubes containing ethylenediamine-tetraacetic acid (EDTA) by high pure PCR template preparation kit (Roche USA). The CALCA T-692C gene polymorphism (rs 3781719) were identified using polymerase chain reaction (PCR) technique and restriction fragment length polymorphism (RFLP) assay. A total of 25 µL PCR mixture containing 1X Taq Buffer with (NH4)2SO4, 1.5 mM MgCl2, deoxynucleotide triphosphates (0.2 mM of each), 0.5 nmol of sense and anti-sense primers (sense: 5’-cgcactgtacctgcgaagt-3’, anti-sense: 5’-taaagtgagcgggaatttga-3’), 1.25 Unit of Taq DNA polymerase and 200 ng of DNA. All reagents for PCR amplification and gel electrophoresis were purchased from Roche (ELIPS, Istanbul, Turkey). All other chemicals were from Sigma and Merck (BO&GA, Istanbul, Turkey). DNA amplifications were performed with a Techne (TechGene) DNA Thermal Cycler by an initial melting step of 94°C for five minutes, 38 cycles of 94°C for 50 seconds, 57°C for 50 seconds and 72°C for one minute, and a final extension step of 72°C for ten minutes.

Polymerase chain reaction primers were generated to amplify the 636 base pair (bp) fragment encompassing the CALCA T-692C region. Figure 1 shows the sequencing of the region which contains CALCA T-692C gene polymorphism. The PCR products were electrophorized on 2% agarose gels, stained with ethidium bromide, and checked under UV light transillumination.

Figure 1: The sequencing of the region which contains CALCA T-692C gene polymorphism. Italic and bold letters were used for the primer sequences. The underlined and bold letters represent the restriction site for PshA I (GACNN↓I NGTC).

The study was approved by the local ethics committee and informed consent was obtained from the study cases.
Three µl of PCR product were digested with 0.5 µl of the Fast Digest restriction enzyme PshA I (BoxI); an enzyme that cuts DNA at specific recognition nucleotide sequences (5’...GACNN↓NNGTC…3’), in 1X Fast Digest green buffer for 1 hour at 37°C. The wild allele (thymine) produced a single 636 bp fragment, a mutant allele (cytosine) produced two fragments of 235 bp and 401 bp. The restriction digest products were visualized under UV light transillumination after electrophoresis on a 2% agarose gel and ethidium bromide staining (Figure 2).

Statistical analysis

The data were presented as mean±standard deviation or percentage frequency. Allele frequencies were calculated from the genotypes of all subjects. Hardy–Weinberg equilibrium was assessed by χ^2 analysis. Allele and genotype frequencies were compared by the standard contingency table analysis using chi-square and Fisher’s exact test probabilities. The association of genotype and allele groups with the clinical characteristics was tested with Pearson correlation test. $p<0.05$ was considered statistically significant. Statistical analyses were performed with the SPSS 19.0 software.

Results

The means of ages did not differ between the migraine and control groups (37.2±10.01 and 35.01±7.47, respectively.) A close rate of hypertension and diabetes mellitus were observed in both groups, but smoking and family history of vascular disease were significantly more frequent in the migraine group ($p<0.01$) (Table 1).

No difference was found between the genotypes and allele frequencies of the migraine and control groups. The percentage of the migraine with aura was 38.8% (52/134) of all migraineurs. The genotype and allele frequencies in the migraine with and without aura subgroups also showed no difference. No association was found between the genotype and allele frequencies and the severity and frequency of migraine attacks (Table 2 and 3).

Discussion

Calcitonin gene related peptide is accepted to effect the development of migraine headache. It can be hypothesized that the CALCA gene polymorphisms can modulate the CALCA level or function and, subsequently, migraine development. In the present study, it was found that the genotypic and allelic
distributions of CALCA T-692C gene polymorphism are not
different in the female migraine patients and are not associated
with migraine attack severity and frequency. Additionally, no
difference was observed among migraine with and without aura
subgroups. As far we could find in the PubMed search, there are
a few published reports investigating the association between the
CALCA gene polymorphism and migraine.\(^\text{14-15}\) However,
different types of CALCA gene polymorphisms were
investigated in our study and each of these studies. Menon et al\(^\text{15}\)
did not find any difference in CALCA 16 bp deletion among
Australian migraine with and without aura patients and control
cases. Lemos et al\(^\text{16}\) investigated the frequencies of CALCA
rs1553005 gene polymorphisms in a Portuguese population and
could not show a significant difference between migraineurs
with and without aura and controls. In the same study brain
natriuretic factor gene polymorphisms were additionally
investigated, and the coexistence of AT genotype with CALCA
GC-genotype was found to increase the risk of migraine to 1.8
cold. In our study, the distribution of a different type of CALCA
polymorphisms (CALCA T-692C) was for the first time
evaluated in migraine patients, and no difference was found from
the controls. Apart from the migraine headache, CALCA gene
polymorphisms have recently been studied in Parkinson’s
disease, schizophrenia, essential hypertension.\(^\text{16-17}\) While no
association was seen with Parkinson’s disease and schizophrenia,\(^\text{17}\) C allele was found to increase the risk of
essential hypertension.\(^\text{16}\)

The small number of study cases and the absence of male
cases are the limitations of the study. Although, to date, no
association between CALCA gene polymorphisms and migraine
could be shown, more studies with larger case numbers and with
different CALCA gene polymorphisms are needed. Gene
polymorphisms can also show distinct distributions in different
ethnic and racial populations.

REFERENCES

1. Ward TN. Migraine diagnosis and pathophysiology. Continuum
9:116.
3. Goadsby PJ, Lipton RB, Ferrari MD. Migraine-current
4. Lassen LH, Haderslev PA, Jacobsen VB, Iversen HK, Sperling B,
Olesen J. CGRP may play a causative role in migraine.
5. Tepper SJ, Stillman MJ. Clinical and preclinical rationale for
CGRP-receptor antagonists in the treatment of migraine.
6. Messlinger K, Lennerz JK, Eberhardt M, Fischer MJ. CGRP and
NO in the trigeminal system: mechanisms and role in headache
Blockade and reversal of spinal morphine tolerance by peptide
and non-peptide calcitonin gene-related peptide receptor
gene-related peptide promotes mechanical nociception by
potentiating release of substance P from the spinal dorsal horn in
9. Rossi SG, Dickerson IM, Rotundo RL. Localization of the
calcitonin gene-related peptide receptor complex at the
vertebrate neuromuscular junction and its role in regulating
acetylcholinesterase expression. J Biol Chem. 2003;278:24994-
25000.
10. Schürks M. Genetics of migraine in the age of genome-wide
12. Headache Classification Sub-Committee of the International
Headache Society International Classification of Headache
Calcitonin gene-related peptide and its role in migraine
gene-related polypeptide-alpha (CALCA) gene polymorphism
15. Lemos C, Mendonça D, Pereira-Monteiro J, et al. BDNF and CGRP
interaction: implications in migraine susceptibility. Cephalalgia.
2010;30:1375-82.
16. Luo XL, Yang TL, Chen XP, Li YJ. Association of CALCA genetic
2008;121:1407-10.
polymorphisms in the calcitonin/alpha-CGRP (CALCA) gene
and an investigation of their possible associations with
Parkinson disease, schizophrenia, and manic depression. Hum