We report an unusual case of an anaplastic oligodendroglioma with secondary intraventricular localization.

CASE DESCRIPTION

In 2004, a 24-year-old woman presented initially with seizures and she was diagnosed, in another centre, with a right frontal space occupying lesion.

She underwent a right frontal craniotomy and a subtotal resection of the lesion. The pathology demonstrated an anaplastic oligodendroglioma (combined allelic losses for 1p and 19q chromosomes, MGMT promoter methylated).

The tumour recurred in 2007 and the lesion was again subtotally resected and treated with chemotherapy and temozolomide.

In spite of the treatment, the lesion continued to increase in size (Figure 1) and the patient was referred to our institution.
where a third gross total resection of the tumour was done in 2009 (Figure 2). The pathological analysis confirmed the presence of an oligodendroglioma with moderate cellularity, mild nuclear pleomorphism. Immunohistochemistry for GFAP showed appearance typical for oligodendroglioma. A definite focus with high number of mitotic figures and anaplastic features was evident.

The follow-up MRI of the brain performed in February 2011 demonstrated a lobulated intraventricular mass arising from the floor of the right lateral ventricle (Figure 3A) and extending medially towards the septum pellucidum. Two other intraventricular lesions were noted, one in the floor of the third ventricle (Figure 3B), the other in the atrium of the right lateral ventricle (Figure 3C).

The larger intraventricular mass was resected in March 2011; the pathology report confirmed the lesion was a recurrent anaplastic oligodendroglioma.

DISCUSSION

Anaplastic oligodendrogliomas frequently arise in the subcortical white matter of the cerebral hemispheres. They are rarely localized within the ventricular system. Intraventricular oligodendroglioma remains a rare diagnosis, with high-grade/anaplastic intraventricular oligodendrogliomas being very uncommon.

We report the case of a patient presenting with an intraventricular localization of oligodendroglioma, focusing on the multiple pathogenetic mechanisms. Different phenomena have been advocated in the intraventricular localization of oligodendroglioma:

I) primary diffuse leptomeningeal gliomatosis or oligodendrogliosis;

II) haematogenous spreading;

III) intraventricular seeding from a primary oligodendroglioma, either due to a CSF dissemination or secondary to an invasive procedure such as surgery.

In our case, leptomeningeal gliomatosis can be easily ruled out by the absence of leptomeningeal thickening and enhancement.

Considering the second mechanism, namely spreading through the hematogenous way, the secondary localizations, in the floor of the third ventricle and the atrium of the lateral

Figure 3: A: Coronal T1-weighted Post Gadolinium (by 1.5 Tesla GE Sign Excite); B: Sagittal T1 FLAIR; C: Axial T2-weighted: images showing three intraventricular lobulated masses: the first arising from the floor (A) of the right lateral ventricle and the second one involving the atrium (C) of the same ventricle. The third one is seen in the anterior recess region of the third ventricle (B).

Figure 4: Axial T2-weighted (by 1.5 Tesla GE Sign Excite) demonstrating the ependymal discontinuity (black arrows).
ventricle, could have been assumed to be metastatic given the high vascularisation of these regions.8,10 However, in our patient, the lesion in the right lateral ventricle is unlikely related to haematogenous dissemination due to the scarce vascularity of this area.

Allowing for the relatively small amount of cerebrospinal fluid collected during surgery, no tumoral cells were noted.11

Finally, in our patient, the dissemination secondary to surgery is the most probable mechanism responsible for the intraventricular localization. In fact, the multiple craniotomies and surgical excisions could have played a role in facilitating the intraventricular dissemination. In particular, during the third surgery there was opening of the frontal horn, therefore breaching of the ependymal lining occurred, which could have led to intraventricular localization (Figure 4).8,10

ACKNOWLEDGEMENT

Dr. La Piana received a fellowship from the Montreal Neurological Institute.

REFERENCES