Progressive Multifocal Leukoencephalopathy with Gray Matter Involvement

S. Ledoux, I. Libman, F. Robert and N. Just

ABSTRACT: An unusual case of Progressive Multifocal Leukoencephalopathy (PML) in a Haitian man with AIDS is reported. The lesions involving both white and gray matter are described radiologically and at post-mortem. The implications regarding neuroradiological differential diagnosis in AIDS as well as PML virulence in this type of patient are discussed.

RÉSUMÉ: Leuco-encéphalopathie multifocale progressive avec atteinte de la substance grise Nous rapportons un cas atypique de leuco-encéphalopathie progressive multifocale (LMP) survenue chez un patient haïtien victime du SIDA. Les lesions qui s’étendent à la fois au niveau des substances blanche et grise sont décrites. Nous commentons leurs aspects radiologiques et pathologiques ainsi que les implications d’une telle présentation concernant le diagnostic différentiel neuroradiologique et la virulence de l’agent causal de la LMP chez un tel type de patient.


Progressive multifocal leukoencephalopathy (PML), initially reported by Astrom et al in 1958,1 is an opportunistic infection caused by a DNA papovavirus that occurs in approximately 2% of the acquired immune deficiency syndrome (AIDS) population with neurological manifestations.2 We present the clinical, radiological and pathological features of an AIDS patient with PML. This patient illustrates unusually extensive gray matter involvement. The implications concerning radiological differential diagnosis in AIDS as well as JC Virus (JCV) virulence in a Human Immunodeficiency Virus (HIV) positive patient are discussed.

CASE SUMMARY

A 29-year-old Haitian male was admitted to hospital with a 3 week history of progressive right-sided weakness, gait disturbance and personality changes. On neurological examination, the patient was disoriented as to place, inattentive and echolalic. Cranial nerves were unremarkable. Motor examination revealed an intermittent right hemi-dystonic posture and a right arm drift. There was right-sided hyperreflexia but plantar responses were flexor bilaterally. Results of routine laboratory tests were unremarkable. The patient was anergic. Serology for toxoplasmosis, cytomegalovirus (CMV) IgM, Hbs Ag and VDRL were negative. Serology for HIV was positive. CSF studies were normal for cells and protein but IgGs were elevated (12.8 mg/dl) with positive oligoclonal banding. CT Scan with and without infusion revealed mild ventricular dilatation, a right nonenhancing hypodensity in the corona radiata and a portion of the superior thalamus, and equivocal hypodensities in the white matter of the centrum semiovale bilaterally (Figure 1a). Magnetic Resonance Imaging (MRI) performed two days later revealed multiple high-intensity signals located in the white matter but also in the gray matter, including the thalamus and the left globus pallidus (Figure 1b). A diagnosis of AIDS was made and the patient was treated empirically for central nervous system (CNS) toxoplasmosis. His neurological status deteriorated over subsequent weeks and the patient died of a sepsis, 12 weeks after the onset of his disease.

The gross examination of the brain at post-mortem showed multiple demyelinating lesions, mostly subcortical and confluent, accompanied by extensive white matter destruction, more marked in the left hemisphere than the right. There was also involvement of both thalami, globus pallidus and internal capsule on the left. At the level of light microscopy, lesions had a similar pattern of distribution and were represented by multiple foci of myelin pallor associated with oligodendrocytes with enlarged nuclei containing ill-defined intranuclear inclusions. These cells were also found at the periphery of much larger demyelinating lesions, with reactive astrocytes which were enlarged and resembling neoplastic cells (Figure 2a). Electron microscopy revealed intranuclear orderly crystalline arrays of virus particles in oligodendrocytes. These appeared as spheroids, measuring approximately 40 nm., characteristic for the polyoma group of papovavirus. No multinucleated cells or other inclusion bodies were present in the white matter.

DISCUSSION

Our case of PLM exhibits a few interesting and unusual features. Movement disorders in AIDS patients have been attributed to toxoplasmosis, viral encephalitis, vascular myelopathy and CNS Whipple’s disease.3 This patient had a right-sided intermittent dystonia as a result of a left basal ganglia lesion.4 The radiological presentation is also atypical. The usual CT hallmarks are the presence of low density lesions confined to the white matter, the lack of mass effect and the absence of contrast enhancement, distinguishing these lesions from tumours.
AIDS patients produces a more acute and severe brain infection, although this view has been challenged recently. MRI in PML appears in this case and in previous reports to be more sensitive and precise than CT in the detection and assessment of this disorder since it shows superior resolution between normal and abnormal white matter and gray matter. As a consequence, in AIDS patients presenting with focal neurological signs and whose CT scans show lesions located in gray and white matter without contrast enhancement or mass effect, PML should be considered in the differential diagnosis. MRI is superior to CT Scanning in localizing those lesions which are most accessible to biopsy to confirm the diagnosis of PML in the AIDS population.

REFERENCES
