The High Incidence of Valproate Hepatotoxicity in Infants May Relate to Familial Metabolic Defects

ABSTRACT: The incidence of fatal hepatic failure associated with valproic acid (VPA) therapy is highest in children under the age of three years, particularly in those with developmental delay. The pathogenesis of VPA hepatotoxicity is unclear but may relate to the accumulation of a toxic metabolite of VPA which impairs fatty-acid oxidation. We describe two unrelated infants with developmental delay who developed hepatic failure while receiving VPA. Siblings of both children subsequently developed hepatic steatosis and intractable seizures without being exposed to VPA. This suggests that the two children who developed liver failure when receiving VPA may have had a familial metabolic disorder. Familial metabolic disorders may account partly for the higher incidence of fatal hepatotoxicity described in infants receiving VPA.

CASE REPORTS

Patient 1

This boy was born to non-consanguineous parents at term following an uneventful pregnancy. The delivery, birth weight and perinatal period were normal. The patient was well until nine months of age when, following a brief febrile illness, he developed acute infantile hemiplegia with hemiconvulsions. Seizure control was achieved with difficulty using phenobarbital, phenytoin, diazepam and paraldehyde. Investigations revealed the following abnormalities: aspartate aminotransferase (AST) 199 U/L, alanine aminotransferase (ALT) 60 U/L, fibrinogen 67 mg/dl (0.67 g/L), glucose 120 mg/dl (6.6 mmol/L) and...
prothonom time 11.8 seconds. The serum ammonia, lactate, electrolytes, protein, glucose and cell count in the cerebrospinal fluid, urinary VMA studies and computed tomography (CT) of the head were normal.

Myoclonic seizures were observed after three weeks and the child received VPA (35 mg/kg/day) for three days. The serum AST activity was 146 U/L when measured on the day after starting VPA. Myoclonus disappeared and the seizures persisted and VPA was discontinued. One week after discontinuing VPA, investigations revealed the following: AST 320 U/L, total bilirubin 8.5 mg/dl (144.5 umol/L) and prothrombin time 15.7 seconds. The liver failure worsened and he died three months after the onset of the seizures. Autopsy revealed diffuse necrosis, steatosis and fibrosis of the liver and an acute duodenal ulcer.

An older sister of Patient 1 had been born at term following a normal pregnancy. The birth weight and perinatal period were normal. This child was well until four months of age, when she failed to thrive following the introduction of cereals. No investigations were performed. At nine months of age the child developed an illness characterized by vomiting and lethargy. Ten hours after the onset of vomiting she was found dead in her crib. Autopsy revealed diffuse steatosis of the liver and an acute perforated duodenal ulcer.

A younger sister of Patient 1 was born following a normal pregnancy; the delivery, birth weight and perinatal period were normal. This child was well until three months of age, when she presented with feeding difficulties and failure to thrive. She was initially breast fed but feeding continued to be poor on changing to Prosoobee together with an addition of cereals and Caloreen. At six months of age hepatomegaly was observed. The serum AST and ALT activities were elevated at 113 U/L and 126 U/L, respectively. A needle biopsy of the liver revealed steatosis, minimal necrosis, no evidence of abnormal glycogen storage, no organelle pathology by electron microscopy. Electron microscopy was normal. Recurrent fasting hypoglycemia associated with dicarboxylic aciduria was noted but, despite intensive investigation (see below), an underlying cause was not demonstrated.

She was fed by nasogastric tube, gained 2.6 kg in weight and was discharged home at eight months of age. At nine months of age she developed focal motor and generalized seizures. The liver was enlarged and the serum AST and ALT activities were elevated at 333 U/L and 126 U/L, respectively. The blood glucose, serum ammonia and head CT were normal. The seizures were controlled temporarily using phenobarbitone, phenytoin, diazepam, thiopentone and lignocaine. The patient developed hepatic failure and she died one week after the onset of the seizures. Findings of a metabolic autopsy, performed within two hours after receiving VPA the patient was noted to be jaundiced and drowsy. All the anti-epileptic drugs, valproic acid, phenytoin, phenobarbitone and nitrazepam, were discontinued. The patient developed rapidly progressive liver failure and died two months later. Findings at autopsy were atrophy of the cerebral cortex and hepatic steatosis with minimal fibrosis, consistent with a diagnosis of progressive neuronal degeneration of childhood with liver disease.

Investigations in this patient revealed the following abnormal results: AST 233 U/L, ALT 11 U/L, total bilirubin 8.7 mg/dl (147.9 umol/L), conjugated bilirubin 2.5 mg/dl (43.1 umol/L), total protein 4.1 g/dl (41 g/L), albumin 2.0 g/dL (20 g/L), fibrinogen 66 mg/dl (0.66 g/L), prothrombin time 25.8 seconds and serum sodium 129 mEq/L (129 mmol/L). CT of the head, performed one month after the initial CT scan demonstrated prominent subarachnoid spaces and mild dilatation of the lateral ventricles. The following investigations gave normal or negative results: CBC, BUN, creatinine, serum potassium, plasma amino acids, alpha-1 antitrypsin, hepatitis B surface antigen and viral antibody studies (for hepatitis A, B, C, D and E), serum alpha-1 antitrypsin, hepatitis B surface antigen and viral studies (for hepatitis A, B, C, D and E). She did not receive VPA. She developed rapidly progressive liver failure, epilepsia partialis continua and died at 14 months of age.

Autopsy demonstrated microvesicular hepatic steatosis and necrosis together with cerebral cortical atrophy.

DISCUSSION

The incidence of fatal VPA hepatotoxicity in children under the age of three years on multiple antiepileptic drugs was one in 500 and one in 800 in two retrospective studies. Many of these children had unexplained severe neurological abnormalities prior to receiving VPA. Fourteen of the 16 children under three years of age had experienced a recent episode of status epilepticus. Hepatic failure usually occurred within six months.

<table>
<thead>
<tr>
<th>TIME (min)</th>
<th>0</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose (mg/dl)</td>
<td>81</td>
<td>81</td>
<td>67</td>
<td>63</td>
<td>56</td>
</tr>
<tr>
<td>Alanine (micromol.)</td>
<td>262</td>
<td>3266</td>
<td>3449</td>
<td>—</td>
<td>3603</td>
</tr>
<tr>
<td>Lactate (mammol.)</td>
<td>1.1</td>
<td>—</td>
<td>1.8</td>
<td>2.5</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Table 1: Alanine Tolerance Test
of the start of VPA therapy, was not related to dose or serum VPA concentration and progressed despite drug withdrawal. Histological findings in most patients revealed microvesicular hepatic steatosis usually accompanied by necrosis.1,5

Both of our patients had many of the characteristic features described in young children developing progressive liver failure after being exposed to VPA. Both were under the age of three years, had developmental delay, had recently been in status epilepticus and were receiving other antiepileptic drugs at the onset of the liver failure. In addition, autopsies in both demonstrated hepatic steatosis and necrosis. In view of the clinical course and autopsy findings, the cause of death in each patient was attributed initially to VPA induced hepatic failure. Although increased serum hepatic enzyme activity was observed in both patients prior to receiving VPA, this increase was mild and was attributed to the effects of status epilepticus6 or other antiepileptic drugs.7,8

Autopsies on the two siblings of patient 1 demonstrated hepatic atrophy. The older sibling was found dead in bed following a brief illness characterized by vomiting and lethargy. Patients with inherited disorders of fatty acid oxidation, including medium chain fatty acid coenzyme A deficiency, may present as sudden infant death,9-13 or with an illness resembling Reye syndrome.11,14,15 Extensive investigations including a metabolic autopsy demonstrated no underlying metabolic disease in the younger sibling. The dicarboxylic aciduria suggested the possibility of a defect in fatty acid beta-oxidation. This was also suggested by the presence of microvesicular hepatic steatosis in both older siblings. However, the measurement of long, medium and short chain acyl CoA dehydrogenases in cultured fibroblasts demonstrated activities within the normal range. A defect of gluconeogenesis was also considered in view of the fasting hypoglycemia and inability to convert alanine into glucose. The major demonstrable metabolic abnormality in this patient was an inability to sustain normal blood glucose levels for longer than approximately 4 hours. Infusion of fructose and glyceral both produced a sustained rise in blood glucose whereas infusion of alanine did not. We measured PEP carboxykinase (both cytosolic and mitochondrial) in fibroblasts from this child and obtained activities within the range found for controls. We were therefore unable to demonstrate a defect in gluconeogenic enzymes. Although we have not been able so far to demonstrate a specific enzyme deficiency in this sibling, an inborn error of metabolism was suggested by the hepatic findings and family history.

The autopsy findings of hepatic steatosis with fibrosis and diffuse atrophy of the cerebral cortex in patient 2, together with the history of developmental delay, sudden onset of intractable seizures with subsequent encephalopathy and rapidly progressive liver failure terminating in cirrhosis, suggested a diagnosis of progressive neuronal degeneration of childhood (PNDC) with liver disease.16-19 The clinical and neuropathological findings of PNDC are similar to those that were first identified by Alpers in 1931.20 Although liver disease was not described in the children reported by Alpers, subsequent authors have emphasized the association of PNDC with liver disease.16,18,19

Seven of 1018 and two of 1319 children described previously with PNDC had received VPA prior to death. There are similarities in the clinical presentation and liver pathology of both PNDC and VPA-induced hepatotoxicity. Patients with PNDC present usually between one and three years of age with developmental delay and intractable seizures, often beginning as status epilepticus.16,18,19 Similarly, fourteen of the sixteen patients under three years of age who developed VPA hepatic failure had experienced a recent episode of status epilepticus.1 Refractory myoclonic epilepsy is the seizure type most commonly described in both PNDC19 and in those children dying from VPA associated liver failure.1,21 The hepatic pathology in both VPA-associated hepatic failure and PNDC includes microvesicular steatosis and necrosis with or without cirrhosis.5,18 Finally, abnormalities in the structure and function of hepatic mitochondria have been observed both in VPA induced hepatotoxicity22 and PNDC. 23 Thus, a reduced mitochondrial content of cytochrome aa3, an enzyme system involved in the function of the respiratory chain of mitochondria, has been described in both rats treated with VPA22 and in two siblings with PNDC.23 PNDC has also been described in patients with pyruvate dehydrogenase complex deficiency in brain,24 decreased pyruvate carboxylase activity in liver,25 disturbed pyruvate oxidation in liver and muscle,26 and a defect in citric acid cycle activity in liver and fibroblasts.27 Thus, patients with PNDC have inborn errors of metabolism which may be exacerbated by treatment with VPA.

Hepatic steatosis was observed in two siblings of patient 1 and also in the sibling of patient 2 although they had not been exposed to VPA. In addition, the clinical presentations in the younger sibling of patient 1 and the sibling of patient 2 were similar to those of patients 1 and 2. This suggests that both of our patients may have had an underlying metabolic disorder. Inborn errors of metabolism present usually during the neonatal period or infancy. Thus, it is possible that the increased incidence of fatal VPA hepatotoxicity in children under three years of age may relate, at least in part, to the manifestation of familial metabolic defects in this age group. This is supported by the most recent review of valproic acid hepatic fatalities in the United States.2 Thus, siblings of three previously reported cases of fatal hepatotoxicity1 developed hepatic failure without ever being exposed to VPA.2 Similarly, although VPA was associated with fatal hepatotoxicity in siblings in two unrelated families, autopsy findings in these children were consistent with PNDC.5

The development of hepatic failure in some children with inborn errors of metabolism who were also receiving VPA may be more than coincidental. Glutathione peroxidase deficiency has been described in a child with PNDC.28 Glutathione has a major role in preventing toxic liver injury both by inhibiting covalent binding of macromolecules and also by protecting against oxidative stress.29 Thus, conditions associated with depletion of glutathione may predispose patients to VPA hepatotoxicity. Children with urea cycle disorders may also be predisposed to VPA toxicity. Fatal hepatotoxicity was associated with VPA therapy in a 3 year old girl whose two siblings had also died in early childhood.30 All three children had persistent vomiting and convulsions and alanine loading tests in the surviving family members suggested that the children probably had ornithine carbamyl transferase (OCT) deficiency.30 Markedly decreased OCT activity has also been demonstrated in a child of 3 years who died of liver failure after receiving VPA.31 Similarly, hyperammonemia was precipitated by VPA therapy in a patient with arginosuccinic aciduria.32 The toxic effect of VPA in children with urea cycle disorders may relate to inhibition of
carbamyl phosphate synthesis by VPA, possibly due to the formation of CoA esters of VPA resulting in a decrease of available free CoA.33,34

This report describes two unrelated families with probable inborn errors of metabolism where a child died of liver failure following the use of VPA. Inborn errors of metabolism probably contribute to the particularly high incidence of liver failure described in infants and young children receiving VPA polytherapy. Certain metabolic disorders may be exacerbated by VPA. We suggest that infants at high risk should be screened carefully for familial hepatic disease prior to treatment with VPA.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the assistance of Dr. S.J. Goodman (Denver, Colorado) for measurement of the long, medium and short chain acyl CoA dehydrogenases and Ms. Jenny Toone for measurement of PEP carboxykinase.

REFERENCES