assumption with regard to the distribution of \(L\).

We should not lose sight of the variability in years of life lost. It can be shown that the variance of the years lost, under the gamma model, is

\[
\sigma^2 + \frac{1}{r^2} - \frac{1}{r} \left(1 + \frac{\sigma^2}{L} \right)^{-2L^2/\sigma^2} - \frac{2L}{r} \left(1 + \frac{\sigma^2}{L} \right)^{-2L^2/\sigma^2}.
\]

For the example that Hutchinson gives with a life expectancy of 15 years, the standard deviation (the square root of the variance) of lifetime loss is 5.8 years. This is far larger than the expected lifetime loss of 2.5 years, due to the highly skewed distribution. Note that the standard deviation of lifetime loss (5.8) with the gamma model is ten times larger than the difference between our formula for the lifetime loss (2.5) and that of Hutchinson (1.9).

In the face of this variance of years lost under the gamma model, should we be focusing just on expected life lost? There are other criteria that might be more important. For instance, the patient might be more interested in living until the year 2000. In this case, comparing the probabilities of surviving 2.5 years might be a more meaningful basis for deciding whether to operate or not. This is quite easy to work out. Suppose \(P\) is the probability that the time to a natural death exceeds \(r\) years. Then if surgery is carried out, the probability of surviving \(r\) years is simply \(0.935P\). If surgery is not carried out, the probability is \((e^{-rt} + 0.27(1 - e^{-rt}))P\). For the gamma model, the probability of surviving to the year 2000 is 92.5% if surgery is carried out, and 95.4% if not. In this case, the patient might prefer not to have surgery, whereas working with expected lifetime loss, the patient might prefer surgery (15 \(\times\) 0.065 = 1 year lost) than not (1.8 years lost from [2]). In general, the decision to operate does not depend on \(P\) nor any model for the natural lifetime. It can be shown that if the patient wishes to maximize the chances of living more than \(r = 4.66\) years, that is beyond the spring of 2002, then surgery is preferable.

K.J. Worsley, Ph.D.
Department of Mathematics & Statistics and
Reichleblanc, M.D.
Department of Neurology & Neurosurgery
McGill University

To the Editor:

Early Seizures After Closed Head Injury

Lee et al. studied seizures within a week of closed head injury, but ignored the likely trigger for these fits, the vestibular labyrinth. They were unrelated to CT scans, Glasgow Coma Score and 6-month neurologic status: mortality was actually lower with seizures. This is decisive evidence against their cortical origin.

A recent study on concussive convulsions in rugby players is relevant. Again, there was no evidence of brain damage: outcome was excellent. Fits started within a second, too short for a vascular or reflex cephalic vascular ischemic mechanism. The authors proposed "transient functional debridement", analogous to convulsive syncope.

If this is the best explanation neurologists can produce, then it is surely time to review a simple otological explanation, only a part of the evidence for which can be quoted here. Sherrington was probably the first to suggest that boxing knockouts were of vestibular origin. The postconcussional syndrome, where otovestibular symptoms are prominent, is unrelated to brain damage, whereas there is much objective evidence for labyrinthine damage from closed head injury. Early seizures were commoner in pedestrians and after falls than in car accidents, suggesting that contact with hard unyielding surfaces was the relevant factor, causing deceleration overload on vestibular transducers.

Studies of "cortical blindness" in rugby players also indicate that a labyrinthine reflex is involved, not damage to the occipital cortices. Direct evidence of premonitory vestibular hyperexcitability was found in experimental syncope, EEGs in vertiginous patients clearly correlate with vertigo of peripheral not central origin. In fact it may be irritable or disinhibited vestibular function which generates abnormal EEGs, simulating or even causing "temporal lobe" epilepsy. The only objection to this theory (from Ojala et al.) was that different sensory information is not large enough to influence EEG recordings from the cortex. However, the large animal literature on audiogenic seizures clearly refutes this objection. Four quite different cochlear insults from congenital deafness, hypothyroidism, ototoxic drugs and acoustic trauma during a critical period all predispose to sound-induced convulsions. Irritative rather than destructive cochlear lesions seem to be necessary, and the abnormal activity is amplified at the inferior colliculus. Higher parts of the brain are not directly involved.

In summary, the labyrinth is implicated in all the curious phenomena after closed head injury not attributable to brain damage—unconsciousness, early fits, EEG spiking, transient blindness, post-concussional syndrome. Occam, for one, should approve this theory.

A.G. Gordon
London, UK.

Reply:

Dr. Gordon has long posited that labyrinthine dysfunction is the cause of many incompletely understood neurologic, neuropsychiatric, and neurophysiologic phenomena, including epilepsy. His suggestion that so-called "concussive convulsions" may be otovestibular in origin is certainly tenable. However, the latter events have been shown to occur invariably within 2 seconds of impact, and thus represent a nosologic entity different from the early post-traumatic seizures described by Lee et al., which did not occur until more than 24 hours after head injury in a majority (65%) of patients. Dr. Gordon misleadingly links the universal findings of no structural brain damage and excellent outcome after concussive convulsions to the lack of correlation between CT abnormalities, 6-month neurologic outcome and occurrence of early seizures in the study by Lee et al. as evidence against a cortical origin for early post-traumatic seizures. In fact 66% of patients with early seizures...