A Tentative Classification of Recessively Inherited Ataxias

ANDRÉ BARBEAU

INTRODUCTION

One of the hardest tasks facing the student of ataxic disorders is the problem of where to classify individual cases, seemingly always presenting with a slightly different picture to the previous one. This problem has haunted all neurologists and geneticists since the first attempts of Bell and Carmichael (1939) and has resulted in many proposals over the years, none of which have proved to be entirely satisfactory (Sjögren, 1943; Greenfield, 1954; Schwarz, 1952, 1956; Köngsmark and Weiner, 1970). Over the last 6 years we have been able to examine clinically more than 300 patients with inherited ataxic disorders, and have constantly faced this problem. Tentative classifications were elaborated, but soon dropped when a new group defined characterization. The difficulties were worse in ataxic families presenting with autosomal recessive inheritance. We therefore decided to study this problem and to try to elaborate a classification of recessively inherited ataxic disorders which could be used by any physician in his office asking only very simple questions and carrying out only a standard neurological examination. We present this classification only for discussion and suggestions, and not as a definitive work.

METHODOLOGY

The first questions to be asked are: Is this case hereditary or non hereditary? If hereditary, is the pattern sex-linked recessive, autosomal dominant or autosomal recessive? For the purposes of the present paper we will consider only the latter presentation, i.e. autosomal recessive inheritance. As seen in Table 1, three possibilities can then be faced: the ataxic disorder is non progressive, intermittent or progressive, facts which can easily be elicited from the history. In each category the next question is: what is the state of deep tendon reflexes? To standardize things, and because it is the most reproducible and best known reflex, we have chosen the knee jerk as our basic criterion. The knee jerk can be hyper or normo-active or it can be clearly hypoactive (or even inactive). This simple test already permits a delineation of most clinical syndromes encountered.

The next step in our classification process is to enquire from the patient, or preferably from the family, as to the actual age of onset of the very first abnormal symptom. Again three possibilities exist: early onset (from 0 to 2 years); onset in childhood or adolescence (from age 2 to 20) and adult onset (after age 21). These broad categories have been chosen to conform as much as possible with the classically defined lines between infants, children and adults. As seen in Table 1, this process defines 6 types of progressive recessively inherited ataxias, all easily classifiable by any clinician.

Unfortunately, patients do not present with pure clinical tableaux. The principal symptom guiding our selection was ataxia, i.e. incoordination of gait and limbs. The presence of some mental retardation is so common in many of the ataxic disorders, particularly at both ends of the age spectrum, that it cannot be used as a discriminating factor. However other symptoms can. As noted by Franceschetti et al. (1963), optic atrophy, retinal and eight nerve changes are frequently seen in the ataxias. This usually signals the presence of a more widespread disorder, or of a fairly advanced stage of the disease. It can equally be used to further discriminate between many of the entities previously delineated. We therefore decided to add
TABLE II

Classification of Recessively Inherited Ataxias

List of Identified Syndromes

A. **Non Progressive Recessively Inherited Ataxias**
 a) **Hyper-reflexic**
 1. congenital ataxic diplegia (Gustavson)\(^{39}\)
 2. congenital dysequilibrium syndrome (Sanner)\(^{41}\)
 b) **Hypo-reflexic**
 1. congenital, non-progressive, cerebellar ataxia (Batten-Lamy)\(^{5,29}\), (also called recessive infantile spastic diplegia).

B. **Intermittent Ataxias**
 a) **Hereditary hyperammonemias associated with ataxia**\(^{46}\)
 1. congenital hyperammonemia type II
 2. citrullinemia
 3. argininosuccinic aciduria
 4. hyperornithinemia
 b) Hyperalaninemic and hyperpyruvate states\(^ {9}\)
 1. intermittent cerebellar ataxia
 2. necrotizing encephalopathy (Leigh’s disease)
 c) Hartnup disease\(^ {3}\)
 d) Branched-chain Ketonuria\(^ {14}\)

C. **Progressive Recessively Inherited Ataxias**
 a) **Hyper or Normo-Reflexic**
 1. **Early onset (Type I)**
 Type Ia 1. Ataxia-Telangiectasia\(^ {31}\) (Louis-Bar Syndrome)
 2. Amyotrophic familial spastic paraplegia\(^ {17}\)
 3. Troyer Syndrome\(^ {13}\)
 4. Charlevoix-Saguenay Syndrome\(^ {10}\)
 5. Lesch-Nyhan Syndrome\(^ {10}\)
 Type Ib 1. Behr’s Disease\(^ {24}\)
 2. Sjögren-Larsson Syndrome\(^ {46}\)
 3. Congenital ataxia and aniridia\(^ {18}\) (Gillespie Syndrome)
 4. Marinesco-Sjögren Syndrome\(^ {33,45}\)
 5. Progressive ophthalmoplegia and ataxia\(^ {12}\)
 6. Ataxia, deafness and mental retardation (ADR syndrome)\(^ {7}\)
 2. **Childhood and adolescence onset (Type II)**
 Type IIa 1. Hereditary recessive spastic ataxia\(^ {8}\) (R-SCD or recessive spino-cerebellar degeneration)
 2. Early onset cerebellar ataxia with retained tendon reflexes\(^ {22}\)
 Type IIb 1. R-SCD with blindness and deafness (Hallgren’s syndrome)\(^ {31}\)
 2. R-SCD and slow eye movements\(^ {16}\)
 3. The Beauce R-SCD syndrome\(^ {2}\)
 4. Ataxia, deafness and oligophagia syndrome (Jeune)\(^ {26}\)
 5. Familial ataxia with peroneal muscular atrophy and optic atrophy\(^ {8}\)
 6. Nephronophthisis with progressive ataxia and retinal pigmentation\(^ {15}\)
 3. **Adult and late onset (Type III)**
 Type IIIa 1. Fickler-Winkler, recessive cerebellar atrophy of late onset\(^ {28}\)
 Type IIIb 1. Spastic paraplegia, oligophagia, ataxia, deafness and retinal degeneration (Kjellin Syndrome)\(^ {27}\)
 2. Cerebellar ataxia and hypogonadism (Richards and Rundle Syndrome)\(^ {28}\)
 b) **Hypo-Reflexic**
 (1) **Early onset (Type IV)**
 Type IVa 1. Hereditary sensory neuropathy with ataxia\(^ {23,25}\)
 Type IVb 1. HSN-Type 3, with dysautonomia (Riley-Day)\(^ {39}\)
 (2) **Childhood and adolescent onset (Type V)**
 Type Va 1. Friedreich’s ataxia\(^ {17}\)
 2. Friedreich’s ataxia (rapid progression) (Rimouski sub-type)\(^ {11}\)
 3. Friedreich’s ataxia - very slow progression (Acadian sub-type)\(^ {1}\)
 4. Friedreich’s ataxia with neurogenic muscular atrophy\(^ {48}\)
 5. Recessive HMSN (so-called recessive Roussy-Levy Syndrome)\(^ {43}\)
 Type Vb 1. Bassen-Kornzweig disease\(^ {4}\)
 2. Refsum’s heredopathia atactica polyneuritiformis\(^ {36}\)
 3. Polyneuropathy, oligophagia, premature menopause, and acromicria (Lundgren’s syndrome)\(^ {32}\)
 (3) **Adult and late onset (Type VI)**
 Type Vla 1. Gamma-glutamylcysteine Synthetase (GGCS) deficiency\(^ {18}\)
TABLE 1:
A Proposed Classification of Recessively Inherited Ataxias

<table>
<thead>
<tr>
<th>I. a. Hereditary</th>
<th>II. a. Autosomal dominant</th>
</tr>
</thead>
<tbody>
<tr>
<td>b. Non hereditary</td>
<td>b. Sex-linked recessive</td>
</tr>
<tr>
<td></td>
<td>c. Autosomal recessive</td>
</tr>
</tbody>
</table>

III. Recessively inherited ataxias

A. Non progressive ataxias
- a) hyper-reflexic
- b) hypo-reflexic

B. Intermittent ataxias
- a) Hyper and normo-reflexic
- Early onset (Type I)
 - Childhood & Adolescence (Type II)
 - Adult onset (Type III)

C. Progressive Ataxias
- b) Hypo-or areflexic
- Early onset (Type IV)
 - Childhood & Adolescence (Type V)
 - Adult onset (Type VI)

Definitions of sub-types:
a: Ataxia ± mental retardation
b: Ataxia ± mental retardation ± eye or ear signs

To further characterize the individual entities, names must sometimes be used. Until a definitive biochemical marker can be given to each disease, the use of eponymic identification must be tolerated because it is within our customs. Moreover, since many disorders tend to occur in high concentration in defined geographic isolates, we have found it convenient to use regional identification (ie Charlevoix-Saguenay syndrome; Acadian type of ataxia etc.) It should be emphasized, however, that these designations are only temporary, destined to be replaced by proper identification of the biochemical or enzymatic defect. For example Refsum's disease should be called "Phytanic acid storage disease".

Using these criteria, we searched the literature and examined our few hundred patients to elaborate the following classification, which we present as a working document without any further justification. We solicit comments and discussion from the eventual readers ... and users.

RESULTS
The classification is presented in detail in Table 2.

ACKNOWLEDGEMENTS
The studies on ataxia in the author's laboratory are supported by grants from: l'Asso- ciation Canadienne de l'Ataxie de Friedreich; the O. Mallette Foundation of the Hôtel-Dieu Hospital; the Fondation Yvon Deschamps and the Ministry of Health and Welfare (Ottawa). My thanks are extended to Mrs. Hélène L. Crête for typing the manuscript and to the various collaborators who have examined patients with me during our attempts at classification: Drs. M. Roy, L. Boyer, F. Déisle, R. Bouchard, J.P. Bouchard and E. Pourcher.

REFERENCES
7. Berman, W.; Haslam, R.H.A.; Koni-
gigmark, B.W.; Capute, A.I. and
Migeon, C.J. (1973) A new familial syn-
drome with ataxia, hearing loss, and mental
8. Bernabo-Brea, G.; Rathschuler, R.
and Raso-Requinto, A. (1966)
Familial ataxia with peroneal muscular
atrophy and optic atrophy. Riv. Oto-Neuro-
Oftal. 41: 273-290.
9. Blasi, J.P.; Avigan, J. and Uhlend-
decarboxylase in a child with intermittent
movement disorder. J. Clin. Invest. 49: 423-
432.
10. Bouchardeau, J.P.; Barbeau, A.; Bou-
chardeau, R. and Bouchardeau, R.W.
(1978) Autosomal recessive spastic ataxia of
5: 61-69.
11. Bouchardeau, J.P.; Barbeau, A.; Bou-
chardeau, R.; Paquet, M. and Bou-
chardeau, R.W. (1979) A cluster of Frei-
drich's ataxia in Rimouski, Quebec. Can. J.
12. Croft, P.B.; Cutting, J.C.; Jewes-
guges des yeux observee frequemment dans
la lenteur particuliere des mouvements con-
scences tapeto-retiniennes), Masson, Paris.
13. Cross, H.E. and McKusick, V.A.
(1967) The Troyer syndrome: a recessive form of
spastic paraplegia with distal muscle
14. Elsas, L.J.; Priest, J.H.; Wheeler,
F.B.; Danner, D.J. and Pask, B.A.
(1974) Maple Syrup Urine Disease: coen-
zyme function and prenatal monitoring.
Metabolism 23: 569-579.
15. Franceschetti, A.; Francois, J.; Babel,
J.; De Rouck, A.; Dieterle, P.; Forini,
S.; Klein, D.; Ricci, A. and Verriest,
G. (1963) Les heredo-dégéné-
rescences choroido-rétiniennes (Dégéné-
rences capillaires tapético-rétiniennes), Masson, Paris.
jugues des yeux observee fréquemment dans
les dégénérations cérébelleuses et spinocé-
17. Geoffroy, G.; Barbeau, A.; Bredon,
G.; Lemieux, B.; Aube, M.; Legre, C.
and Bouchardeau, J.P. (1976)
Clinical description and roentgenologic
evaluation of patients with Friedreicb's atax-
18. Gillespie, F.D. (1965) Aniridia, cerebel-
lar axia and oligophrenia in siblings. Arch.
Ophthal. 73: 338-341.
20. Gustavson, K.H.; Hagberg, B. and
Sanner, G. (1969) Identical syndromes of
cerebral palsy in the same family. Acta Paediat.
Scan. 58: 330-340.
21. Hallgren, B. (1959) Retinitis pigment-
tosa combined with congenital deafness,
vestibulo-cereellar ataxia and mental ab-
normality in a proportion of cases. Acta Psychiat.
Scand. Suppl. 34: 138.
ellar ataxia with retained tendon reflexes: a
clinical and genetic study of a disorder dis-
tinct from Friedreich's ataxia. J. Neurol.
23. Heller, I. and Robb, P. (1955) Here-
ditary sensory neuropathy. Neurology (Min-
n.) 5: 15-29.
24. Horoupian, D.; Zucker, S. and Mo-
she, O.K. (1979) Behr syndrome: a clinico-
Neuropathie radiculaire heréditaire avec
peres de sensibilite: étude d'une famille
canadienne-francaise. Laval Med. 38: 454-
459.
26. Jeune, M.; Tommasi, M.; Freycon,
F. and Nivelon, J. (1963) Syndrome
familial associant ataxie, surdite et
oligophrenie. Sclerose myocardique devolu-
rante chez l'un des enfants. Pediatrie
4: 32-42.
27. Koenigsmark, B.W. and Weiner, L.P.
(1970) The olivopontocerebellar atrophies: a
28. Konigsmark, B.W. and Weiner, L.P.
(1970) The olivopontocerebellar atrophies: a
29. Lamy, M.; Grasset, A.; Jammet, M.-
L. and Viard, F.R. (1963) L'ataxie
cérébelleuse héréditaire de l'enfance. Arch.
30. Lesch, M. and Nyhan, W.L. (1964)
A familial disorder of uric acid metabolism and
central nervous system function. Am. J.
Med. 36: 561-570.
progressif comprenant des télangerctasies
32. Lundberg, P.O. (1971) Hereditary poly-
33. Marinesco, G.; Dragnonesco, S.
and Yasilin, D. (1931) Nouvelle maladie
familiale caractérisée par une cataracte con-
gé nale et un arrét du développement somato-neuro-psychique. Encéphale 26: 97-
109.
34. Mathews, W.G. and Rundle, A.T.
(1964) Familial cerebellar ataxia and
35. Popovic-Rolovic, M.; Calic-
Pericisic, N. and Bunjevacki, G.
(1976) Juvenile nephropathies associated
with retinal pigmentary dystrophy, cerebel-
lar ataxia, and skeletal abnormalities. Arch.
polynuertiformis: a familial syndrome not
hitherto describes. A contribution to the
clinical study of the hereditary diseases of
Suppl. 38: 1-303.
37. Refsum, S. and Skillincorn, S.A.
38. Richards, F.; Cooper, M.R. and
spinocerebellar degeneration, hemolytic
anemia, and glutathione deficiency. Arch.
39. Riley, C.M.; Day, R.L.; Greeley,
D.M. and Langford, W.S. (1949)
Central autonomic dysfunction with defec-
40. Salam, M. (1975) Metabolic ataxias. in
Handbook of Clinical Neurology (Ed.
573-585.
41. Sanner, G. (1973) The disequilibrium
42. Schwarz, G.A. (1952) Hereditary
Psychiat. (Chic.) 68: 655-682.
(familial) spastic paraplegia. Further clinical
and pathologic observations. Arch. Neurol.
Psychiat. (Chic.) 75: 144-162.
44. Sjögren, T. (1943) Klinische und erbi-
ologische Untersuchungen über die heredo-
ataxien. Acta Psychiat. (Kbh), Suppl. 27:
1-197.
spinocerebellar ataxia accompanied by con-
genital cataract and oligophrenia. Convin.
Neurol. (Basel) 10: 293-308.
Oligophrenia in combination with congenital
Neurol. Scand. 32: suppl. 113: 1-112.
aspects of Charcot-Mari-Tooth's disease.
48. Van Bogaert, L. and Moreau, H.
(1939) Combinaison de l'amyotrophie de
Charcot-Mari-Tooth et de la maladie de
Friedreich chez plusieurs membres d'une
même famille. Encéphale 34: 312-320.