presence or absence of reactivity is known to be poor.

Methods: Here we report the implementation of a clinical protocol formalizing the use of afferent stimuli – name-calling, clapping, nasal tickle, central painful stimuli and tracheal suction – administered during the routine EEG evaluation of behaviourally unresponsive patients in the critical care units at London Health Sciences Centre. EEGs were evaluated by qualified electroencephalographers.

Results: This retrospective observational study of consecutive patients describes the inter-rater reliability of detecting presence or absence of EEG reactivity since implementation of the clinical protocol. Moreover it evaluates the relationship between EEG reactivity and clinical outcome to determine its reliability as a prognostic tool.

Conclusions: The implementation of clinical protocols to standardize testing parameters may improve the ability to provide a reliable neurologic prognosis for critically ill patients in a comatose and behaviourally unresponsive state.

NEUROIMAGING

P.062

MR Venography predicts increased intracranial hypertension in children with hydrocephalus

AC Rohr (Vancouver)* F Knerlich-Lukoschus (Sankt Augustin) M Heran (Vancouver) J Shewchuk (Vancouver) N Margraf (Kiel) A van Baalen (Kiel) O Jansen (Kiel)

doi: 10.1017/cjn.2018.164

Background: We investigated whether the presence of dural sinus narrowing is a more reliable marker of intracranial hypertension / shunt failure in children than the imaging finding of hydrocephalus.

Methods: Cranial MRIs of n=12 children were included when being well and when there was definitive intracranial hypertension as per follow-up and intraoperative results (gold standard). Images were assessed for hydrocephalus on T2w images and narrowing of dural sinuses on MR venography (diameter of <50%).

Results: Dural sinuses narrowing was detected with a sensitivity of 0.67, a specificity of 1.0, PPV of 1.0 and NPV of 0.75 (Table 1). Hydrocephalus was detected with a sensitivity of 0.5, a specificity of 0.83, PPV of 0.75 and NPV of 0.63. Results differed between the test methods (p = 0.01, Cochrane Q test).

Conclusions: Dural sinus narrowing more reliably predicted intracranial hypertension, a sign which might significantly improve care in critically ill children.

Patient # | **Age at MRI** | **Shunt failure as per clinical follow-up** | **Hydrocephalus** | **Dural Sinus Narrowing** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1 = yes</td>
<td>1 = yes</td>
<td>1 = yes</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>0 = no</td>
<td>0 = no</td>
<td>0 = no</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1 = yes</td>
<td>1 = yes</td>
<td>1 = yes</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>1 = no</td>
<td>1 = no</td>
<td>1 = no</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
<td>1 = no</td>
<td>1 = no</td>
<td>1 = no</td>
</tr>
<tr>
<td>7</td>
<td>19</td>
<td>0 = no</td>
<td>0 = no</td>
<td>0 = no</td>
</tr>
</tbody>
</table>

P.063

Stereotactic targeting of hippocampal substructures using ultra-high field magnetic resonance imaging: Feasibility study in patients with epilepsy

doi: 10.1017/cjn.2018.165

Background: The hippocampus can be divided longitudinally into the head, body, and tail; and unfolded medial-to-laterally into the subiculum, cornu ammonis (CA) sectors, and the dentate gyrus. Ultra-high field (≥ 7 Tesla; 7T) magnetic resonance imaging (MRI) enables submillimetric visualization of these hippocampal substructures which could be valuable for surgical targeting. Here, we assess the feasibility of using 7T MRI in conjunction with a novel computational unfolding method for image-based stereotactic targeting of hippocampal substructures.

Methods: 53 patients with drug-resistant epilepsy were identified undergoing first-time implantation of the hippocampus. An image processing pipeline was created for computationally transforming post-operative electrode contact locations into our hippocampal coordinate system.

Results: Of 178 implanted hippocampal electrodes (88 left; 49.4%), 25 (14.0%) were predominantly in the subiculum, 85 (47.8%) were in CA1, 23 (12.9%) were...
in CA2, 18 (10.1%) were in CA3/CA4, and 27 (15.2%) were in dentate gyrus. Along the longitudinal axis, hippocampal electrodes were most commonly implanted in the body (92; 51.7%) followed by the head (86; 48.3%). Conclusions: 7T MRI enables high-resolution anatomical imaging on the submillimeter scale in in vivo subjects. Here, we demonstrate the utility of 7T imaging for identifying the relative location of SEEG electrode implantations within hippocampal substructures for the invasive investigation of epilepsy.

P.064
Preoperative mapping using fMRI and DTI: a multimodal approach to assessing language dominance
L. Gould (Saskatoon) M. Kelly (Saskatoon) C. Ekstrand (Saskatoon) T. Ellechuk (Saskatoon) R. Borowsky (Saskatoon)
doi: 10.1017/cjn.2018.166

Background: Language mapping is a key goal in neurosurgical planning. With the discontinuation of the Wada test in Canada, neurosurgeons often rely on fMRI and intraoperative techniques for determining language localization. Recent studies have also evaluated the utility of diffusion tensor imaging (DTI) for preoperative language localization, but further research is needed to confirm its efficacy. We report a patient with a left frontal AVM. fMRI and DTI was used to localize language and motor functioning. Methods: The tasks included word reading, picture naming, pseudohomophones (e.g., dawg) and semantic questions. All fMRI analyses were performed using BrainVoyager. Results: The fMRI results revealed consistent Broca’s and Wernicke’s areas, confirming left hemisphere dominance. There was also a region of activation in the precentral gyrus near the surgical resection. The results were loaded onto the neuronavigation system to help determine safe surgical margins. The DTI results revealed that the left arcuate and uncinate fasciculus had three times more tracts than the right hemisphere, further supporting left hemisphere dominance. Conclusions: This case highlights the value of a combined, multimodal approach for preoperative language localization, which will further enhance surgical safety by helping preserve regions for essential brain functions.

P.065
Cortical autonomic patterns in Neurogenic Orthostatic Hypotension
doi: 10.1017/cjn.2018.168

Background: Neurogenic orthostatic hypotension (NOH), defined as a drop in systolic blood pressure (SBP) ≥30mmHg on standing or head-up tilt, is associated with autonomic dysfunction. The cortical autonomic network (CAN) is a network of brain regions associated with autonomic function. Our aim was to investigate CAN activation patterns in NOH patients during autonomic testing. Methods: Fifteen controls (61±14 years) and 13 NOH patients (68±6 years; p=0.1) completed: 1) Deep Breathing (DB), 2) Valsalva maneuver (VM) and 3) Lower-body negative pressure (LBNP) during a functional MRI. Blood-oxygen level dependent (BOLD) contrasts were obtained and contrasted. Results: Compared to controls (C), patients (NOH) had significantly smaller heart rate (HR) responses to DB (C:15.3±9.6 vs. NOH:6.0±2.2) and VR’s (C:2.1±0.47 vs. NOH:1.2±0.1; p=0.001). Patients had larger SBP drops during LBNP (C: -22.3±6 vs. NOH: -61±22) with significantly smaller compensatory tachycardias (19±8.5 vs. 7.6±4.3; p<0.001). BOLD response: During VM, controls had greater activation in the right (R) hippocampus (T-value:7.34), left (L) posterior cingulate (T-value:7.22) bilateral mid-cingulate (TR-value:5.76; TL-value:6.84) and bilateral thalamus (TR-value:7.23, TL-value:8.16) (pFWE<0.001). Following subtraction analysis, brain activation patterns showed no significant differences in the regions of interest in response to DB and LBNP. Conclusions: During tests of autonomic function, NOH patient had different cortical activation patterns during VM only. Cortical activation pattern during DB and LBNP showed similar patterns to that of controls.

P.066
Phosphoserine aminotransferase (PSAT) deficiency: Imaging findings in a child with congenital microcephaly
G. Shapiro Zaltsberg (Ottawa) H. McMillan (Ottawa) E. Miller (Ottawa)
doi: 10.1017/cjn.2018.169

Background: Serine deficiency disorders can result from deficiency in one of three enzymes. Deficiency of the second enzyme in the serine biosynthesis pathway, 3-phosphoserine aminotransferase (PSAT), has been reported in two siblings when the eldest was investigated for acquired microcephaly, progressive spasticity and intractable epilepsy. Methods: Our patient had neurological symptoms apparent at birth. Fetal magnetic resonance imaging (MRI) at 35 weeks gestation demonstrated microcephaly and simplification of the gyration (anterior>posterior) which was confirmed upon subsequent post-natal MRI. Congenital microcephaly was apparent at birth. Results: PSAT deficiency was confirmed when exome sequencing identified biallelic mutations in PSAT1; c.44C>T, p.Ala15Val and; c.432delA, p.Pro144fs and biochemical testing noted low plasma serine 22 mcml/L (normal 83-212 mcml/L) and low CSF serine 10 mcml/L (normal 22-61 mcml/L). Despite oral serine and glycine supplementation at 4 months old the patient showed little neurodevelopmental progress and developed epileptic spasms at 10 months old. Serological testing for TORCH infections was negative. Conclusions: PSAT deficiency should be considered for patients with congenital microcephaly. Although further characterization of MRI findings in other patients is required, microencephaly with simplified gyral pattern could provide imaging clues for this rare metabolic disorder.

P.067
Hippocampal volume may predict early non-response to surgery in Trigeminal Neuralgia
H. Danyluk (Edmonton) C. Elliott (Edmonton) M. Wheatley (Edmonton) R. Broad (Edmonton) T. Sankar (Edmonton)
doi: 10.1017/cjn.2018.170

Background: Surgical treatment of trigeminal neuralgia (TN) can be highly effective, but durability of pain relief varies and factors influencing surgical failure are poorly understood. We hypothesized that structural brain differences—assessed using magnetic resonance imaging on the submillimeter scale in patients—may predict early non-response to surgery in TN.

Suppl. 2 – S33