minimally invasive ICH evacuation were included retrospectively if follow-up computed tomography (CT) scans were available for analysis. Hematoma cavity volumes were calculated from the immediate post-procedural and three-month follow-up CT scans using the Analyze Pro software. Results: Twenty patients had follow-up CT scans at a mean time of 93 days from hematoma evacuation. The average cavity size at follow-up was 11938.12 mm³ (SD: 6996.49). The change in cavity size compared to the prior CT was 6396.74 mm³ (median 2542; range: -1030-27543; SD: 8472.45). This represented mean growth in cavity volume of 54%. Conclusions: This study provides preliminary data describing increase in cavity size after endoscopic minimally invasive evacuation of ICH. Comparison to atrophy in conservatively-managed patients is a further planned avenue of research.

P.105

Missed vertebral artery dissection: a case series

* A Persad (Saskatoon)* B Stewart (Edmonton)

doi: 10.1017/cjn.2018.207

Background: Vertebral artery dissections are the second most common cause of posterior circulation stroke. Particularly in young people, they must be considered as causes of acute infarction, especially with a history of cervical trauma. Here, we present three cases of vertebral artery dissection that were initially not diagnosed as such. All were caused by uncommon mechanisms; one by self-inflicted neck manipulation, and one as a sequel of falling from a trampoline, and one from minor trauma to the head while standing.

Methods: This is a series of three cases seen by the authors of posterior circulation stroke secondary to vertebral artery dissection caused by uncommon mechanisms.

Results: N/A

Conclusions: Vertebral artery dissection should be considered as a differential diagnosis in patients presenting with acute head and/or neck pain and any neurological findings in relation to acute neck trauma.

P.106

Functional approach using intraoperative brain mapping and neurophysiological monitoring for surgery of arteriovenous malformations in eloquent areas

doi: 10.1017/cjn.2018.208

Background: Surgical resection of arteriovenous malformations (AVMs) in eloquent areas is significantly associated with greater surgical morbidity. We describe a functional approach for surgical treatment of these lesions. **Methods:** A total of 20 patients with AVMs in eloquent areas were surgically treated and retrospectively analyzed. Individualized functional approach, using brain mapping and/or neurophysiological monitoring was performed in each case according to every case specific features and location. Seventeen patients underwent surgery under assleep conditions and 3 patients underwent awake intraoperative mapping. **Results:** There was no mortality. Four patients had hemorrhagic complications (20%). Ten (50%) presented neurological immediate postoperative worsening. Eight of them achieved complete recovery in follow up and 2 showed a permanent deficit. At 6 months follow up all the patients (100%) had good clinical outcome (mRS less than 2). There were no intraoperative seizures but 5 patients (26.3%) developed postoperative seizures. Fifteen patients (75%) had total AVM resection. Language and/or motor function were identified in all but one patient (95%). Each case required changes in surgical strategy to preserve the motor and/or language functions during surgery. **Conclusions:** Intraoperative monitoring and brain mapping are valuable and safe for the treatment of eloquent AVMs by indentifying and protecting motor and language function during resection.