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ABSTRACT

The objective of this paper is to make allowance for cost of claims in experience ra-
ting. We design here a bonus-malus system for the pure premium of insurance con-
tracts, from a rating based on their individual characteristics. Empirical results are
presented, that are drawn from a French data base of automobile insurance contracts.
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INTRODUCTION

Bayesian models lead to a posteriori ratemaking of insurance contracts (Biihlmann
(1967)). Suppose that the number of claims follows a Poisson distribution. A bonus-
malus system for the frequency of claims is obtained if we consider that the parameter
follows a gamma distribution (see Lemaire (1985, 1995)). This model may include a
ratemaking of policyholders on an individual basis, the parameter of the Poisson dis-
tribution depending then on rating factors (see Dionne et al. (1989, 1992)).

The allowance for severity of claims in experience rating can be achieved by consi-
dering the dichotomy between claims with material damage only, and claims including
bodily injury (see Lemaire (1995)). In this model, the number of claims that caused
bodily injury follows a binomial distribution, the parameter of which follows a beta
distribution.

In this paper, the severity of claims will be taken into account by using their cost.
The analysis of cost of claims makes clearly appear a positive correlation between the
average cost per claim and the frequency risk (see Renshaw (1994), Pinquet et al.
(1992)). An a priori ratemaking will therefore be influenced by the allowance for
costs. Concerning the third party liability guaranty, it can be noted that:
¢ The settlement of claims with material damage is performed partly through fixed

amount compensations from an insurance company to the third party.
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* The amount of compensations related to claims including bodily injury depends on
the social position of the victim.

Hence, it is difficult to explain the cost of these claims by the rating factors, and we
shall investigate the damage guaranty in the empirical part of the paper.

Allowing for cost of claims in bonus-malus systems can be achieved in the follo-
wing way: starting from a rating model based on the analysis of number and cost of
claims, two heterogeneity components are added. They represent unobserved factors,
that are relevant for the explanation of the severity variables. Later on, we shall refer
to any variable explained by a rating model (number, cost of claim, total cost of
claims, and so on) as a “severity variable”. These unobserved factors are, for instance,
annual mileage for number distributions, and speed (and the driver’s behaviour in
general) for number and cost distributions. A bonus-malus coefficient can be related to
the credibility estimation of a heterogeneity component.

In this paper, costs of claims are supposed to follow gamma or log-normal distribu-
tions. The rating factors, as well as the heterogeneity component, are included in the
scale parameter of the distribution. Considering that the heterogeneity component also
follows a gamma or log-normal distribution, a credibility expression is obtained,
which provides a predictor of the average cost per claim for the following period. For
instance, a cost-bonus will appear after the first claim if its cost is inferior to the esti-
mation made by the rating model.

Experience rating with a bayesian model is possible only if there is enough hetero-
geneity in the data. For instance, in the negative binomial model without covariates,
the estimated variance of the heterogeneity component is equal to zero if the variance
of the number of claims is inferior to their mean (see Pinquet et al. (1992)). In that
case, a priori and a posteriori tariff structures are the same, and the bayesian model
fails.

A sufficient condition for the existence of a bonus-malus system derived from a
bayesian model is provided in section 2.3. The existence is equivalent to an overdis-
persion of residuals related to the severity variable. This approach allows one to test
for the presence of a hidden information, that is relevant for the explanation of the
severity variables.

The heterogeneity on distributions for severity variables, that is not explained by
the rating factors, is revealed through experience on policyholders. The paper investi-
gates the rate of this revelation, which is found to be lower for average cost per claim
than for the frequency.

For the sample considered here, the unexplained heterogeneity related to costs is
stronger for gamma than for log-normal distributions. Besides, the latter family gives a
better fit to the data.

If the heterogeneity components on number and cost distributions are independent,
the bonus-malus coefficient for pure premium is the product of the coefficients related
to frequency and expected cost per claim. But one may think that the behavior of the
policyholder influences the two heterogeneity components in a similar way, and so
that they are positively correlated.

Lastly, this paper proposes a bonus-malus system for the pure premium of insu-
rance contracts, that admits a correlation between the two components. Although the
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likelihood of a model based on number and costs of claims is not analytically tractable
in the presence of such a correlation, consistent estimators for the parameters exist.
The correlation between the number and cost heterogeneity components appears to be
very low for the sample investigated here.

1. A PRIORI RATEMAKING

Let us suppose a sample of policyholders indexed by i, the policyholder i being obser-
ved during 7; periods. The analysis of the correlation between the number and cost
heterogeneity components shows the necessity of considering a non constant number
of periods for each policyholder. The working sample is presented in 1.3.

1.1 Frequency of claims
We write

N, ~ P(ﬂ.i,)t=1 ,,,,, I Ay, = exp(w,-, (X)

to represent the Poisson model where 7,,, the outcome of N, is the number of claims
reported by the policyholder i in period ¢. The parameter A, is a multiplicative function
of the explanatory variables, the line-vector w, represents their values, and ¢« is the
column-vector of the related parameters.

The frequency-premium (estimation of the expectation of N,) is denoted as

A

Ay = exp(wit &), and nres;, =n;, —A;, is the number-residual for the policyholder i
and period ¢. The maximum likelihood estimator of ¢ is the solution to the equation:

anesl, wy, =0,
it

which is an orthogonality relation between the explanatory variables and the residuals.
The rating factors have in general a finite number of levels, and the explanatory varia-
bles are then indicators of these levels. The preceding equation means that, for every
sub-sample associated to a given level, the sum of the frequency premiums is equal to
the total number of claims. This property means that the preceding model provides the
multiplicative tariff structure that does not mutualize the frequency-risk.

One may think of replacing n,, by c,, the total cost of claims (pure premium rate-
making) in the likelihood equation. When applied to the working sample, this non
probabilistic model shows that the elasticity of the pure premium risk with respect to
the frequency risk is greater than one (see section 1.4.1).

1.2 Models for average cost per claim and pure premium

1.2.1 Gamma distributions

Let ¢, be the cost of the j” claim reported by the policyholder i in period £ (1 <j< n,,
if n, > 1). We shall suppose in the paper that the costs are strictly positive. This as-
sumption gives another reason to discard the third party liability guaranty: owing to
fixed amount compensations, a policyholder involved in a claim caused by the third
party can make his insurance company earn money.
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Considering gamma distributions, we write
an ~v(d,b,).b, =exp(z,p),

or b,C, ~v(d). The coefficient b, is a scale parameter, a multiphcative

function of the covariates, that are represented by the line-vector z,,.
Let ¢,=d/b, =d/exp(z,B) be the estimation of the average cost for each claim

reported by the policyholder { in period ¢. If we suppose that the costs are independent,
the maximum likelihood estimator of f is the solution of the following equation:

z(ntt —(te, 1)z, = zcresn 2, =0.
1t 1t

The term n, —(tc, /¢,) is the sum, for the claims reported by the policyholder ¢ in
period ¢, of their cost residual 1-(c,, /¢,): it is written cres,. The likelihood equa-
tion in B can hence be interpreted as an orthogonality relation between the explanato-

ry variables and cost-residuals.
The average cost per claim increases with the frequency risk (see 1.4.2), which con-
firms the previous conclusions about the risks related to frequency and pure premium.

1.2.2 Log-normal distributions
The other distribution family considered in this paper is the normal distribution family
for the logarithms of costs

log Cltj ~ N(z,.B, 0-2) < log Clt] =z,0+ Epr €y ~ N, o’ ).
The likelihood equation giving [§ is
Z[Z (logc, —z,,B)] y = ZIcres,, 7, =0.
1,t J 1,t

This equation is also an orthogonality relation between explanatory variables and
residuals.

1.2.3 Pure premium model
The total cost of claims reported by the policyholder i in period ¢ may be written as:

Nll
TC, =Y C,.
J=1

It is a sum of N,, i.i.d. outcomes from a variable that we denote as C,,. The pure pre-
mium is: E(TC,)= E(N,)E(C,).
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1.3 Presentation of the working sample

The sample investigated in the paper is part of the automobile policyholders portfolio
of a French insurance company. It is composed of more than a hundred thousand poli-
cyholders. The damage guaranty being considered here, only the contracts with that
kind of guaranty were kept. Policyholders can be observed over two years, and each
anniversary date, changing of vehicle or coverage level entails a new period. Only
claims concerning the damage guaranty and closed at the date of obtention of the data
base were kept. Reserved costs were thus avoided. The rating factors retained for the
estimation of number and cost distributions are:

» The characteristics of the vehicle: group, class, age.

* The characteristics of the insurance contract: type of use, level of the deductible,

geographic zone.

Other rating factors are the policyholder’s occupation, as well as the year when the
period began (in order to allow for a generation effect). These eight rating factors have
a finite number of levels, the total number of which is 44. The explanatory variables
are binary, and indicate the levels for the policyholders: in order to avoid collinearity,
one level is suppressed for each rating factor, the intercept being kept anyway. There-
fore, we shall consider (44-8)+1=37 covariates. With the notations of the paper, we
obtain: o, B e R ;w,,z, €(0,1)".

The estimated coefficients derived from the rating model depend on the level sup-
pressed for each rating factor. Results that are independent from the suppressions are
obtained by dividing the coefficients by their mean in the multiplicative model. These
standardized coefficients can be compared with the relative severity of the levels.

The periods having not the same duration, the parameter of the Poisson distribution
must be proportional to the duration. The results given on the frequencies remain
unchanged if, d;, being the duration of period ¢ for the policyholder i, we write:

A, =d, exp(w, &), and A, =d, exp(w, Q).
The working sample includes 38772 policyholders and 71126 policyholders-

periods. These policyholders reported 3493 claims. The average duration of the
periods is nine months, and the annual frequency of the claims is 6.7%.

1.4 Empirical results

1.4.1 A priori rating for frequency and pure premium

When applied to the number of claims or their total cost, the Poisson models provide
standardized coefficients, that can be compared with the relative severity of the levels.
For almost each rating factor, the variance of the coefficients related to the levels is
inferior to the variance of the relative severit.. For instance, for the “type of use”
rating factor, one gets:

frequency relative severity standardized coefficient
professional use 1.623 1.278
standard use 0.982 0.992
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pure premium relative severity standardized coefficient
professional use 1.747 1.177
standard use 0.979 0.995

The distributions of the policyholders among the levels of the different rating fac-
tors are not independent from one another. Policyholders with a professional use have,
for the other rating factors, more risky levels than the other policyholders. The Poisson
model does not mutualize the risk: hence these policyholders have, with respect to
other rating factors, a level of relative severity equal to (1.747/1.177) - 1 = 48.4%
more than the average, in term of pure premium.

The elasticity of the pure premium with respect to the frequency risk is equal to
1.52 on the sample, and the difference from 1 is significant (the related Student statis-
tic is equal to 5.93). Hence, if the frequency risk is multiplied by two, the average cost
per claim increases by 2% — 1 = 43.5%, and the pure premium increases by 187%.

This positive correlation between the risks on frequency and average cost per claim
is observed on each rating factor, except for the geographical zone.

1.4.2 A priori rating for average cost per claim
On the sample of claims, the gamma model leads to the following resulits (rating fac-
tor: type of use):

average cost relative severity standardized coefficient
professional use 1.076 0.933
standard use 0.996 1.003

The estimated elasticity of the average cost per claim with respect to the frequency is
equal to 0.51, which confirms the results obtained in the preceding section.

2. EXPERIENCE RATING FOR FREQUENCY AND AVERAGE COST PER CLAIM

2.1 Heterogeneous models

In a bayesian framework, the allowance for a hidden information, relevant for the

rating of risks, can be performed in the following way:

* the starting point is an a priori rating model. If y represents the severity variable(s),
the likelihood of y will be written f,(y/8,,x), where x is the vector of explanatory
variables, and 8, the vector of parameters related to them.

* A heterogeneity component (scalar, or vector) is added to the model, which measu-
res the influence that unobserved variables have on the severity distribution. If u is
this component, a distribution of y conditional on 1 and the explanatory variables is
defined, and we denote its likelihood as fi(y/6,,x,u). In practice, the a priori dis-
tribution is equal to the distribution defined conditionally on u, for some value u°
of u: fu(y/6,x,u’)= f,(y/6,,x)V8,,x,y.If u is a scalar, u® =0 or 1, according
to the fact that u is included additively or multiplicatively in the conditional distri-
bution.

https://doi.org/10.2143/AST.27.1.542066 Published online by Cambridge University Press


https://doi.org/10.2143/AST.27.1.542066

ALLOWANCE FOR COST OF CLAIMS IN BONUS-MALUS SYSTEMS 39

* The credibility estimation of u;, the heterogeneity component for the policyholder
i, leads to a bonus-malus system. It rests on a heterogeneous model, in which u; is
tion being parameterized by 6,. The likelihood o’f"yi in the model with heteroge-
neity is obtained by integrating the conditional likelihood over U;, that is to say:

f(,16,x)=Eg [ f(3;16,,x,U,)},

with 8 =(6,,0,). The heterogeneity component vector on number and cost distribu-
tions will be denoted, for the policyholder i:

U= "\
Uci

where n stands for the numbers and c¢ for the costs. The link between heterogeneous
and bayesian models is made clear in the example that follows.

2.2 Examples of heterogeneous models

2.2.1 Number of claims
With the notations of 1.1, the distributions defined conditionally on u,; are:

N, ~ P(Au,), with U,; ~y(a,a)

in the heterogeneous model. The expectation of U, is equal to one, and its variance is
1/a. On a period, the number of claims distribution is negative binomial in the hetero-
geneous model.

The negative binomial model can be considered as a Poisson model with a random
component, if we write A,U,; = A4;,. If the intercept is the first of & explanatory varia-

bles, and if ¢, is the first vector of the canonical base of Rk, we have:

A, = exp(w;, a +log(U,;)) = exp(w,, (¢ +log(U,; )e))) = exp(w;, &;).

In the last expression of A, the parameter &; = o +1log(U,,)e, is random, and the
formulation is bayesian. But it is less tractable than that of the heterogeneous model,
as well for bonus-malus computations as for statistical inference.

2.2.2 Gamma distributions for costs of claims
The heterogeneous models that follow, which allow us to design bonus-malus systems
for average cost per claim, suppose the independence of heterogeneity components on
the number and costs distributions. The empirical results presented later will make this
assumption plausible.

For the gamma model and with the notations of 1.2.1, the distributions conditional
on u,; are

Gy ~ v(d,byu), with U,; ~¥(3,0)

in the heterogeneous model. The heterogeneity component is included, as the rating
factors, in the scale parameter of the distribution.
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In the heterogeneous model, one can write: C, =D, /(bU,), with
D, ~v(d), U, ~7v(6,8),D,, and U, being independent. The variable C,, follows a
GB2 dlstnbutlon (see Cummins et al. (1990)), and D,, represents the relative severity

of the claim.

2.2.3 Log-normal distributions for costs of claims
With the notations of 1.2.2, the heterogeneous model is

logC,, =z,B+¢&, +U,: U, ~ N(0,07),

iy cr?
where the &, and U, are independent. The variable ¢,, represents the relative se-
verity of the claim.

The heterogeneous model used to design a bonus-malus system for pure premium
will be presented after the empirical results related to the preceding models.

2.3 A sufficient condition for the existence of a bonus-malus system derived
from a bayesian model

Experience rating with a bayesian model is possible only if there exists enough hete-
rogeneity on the data. Considering for instance the negative binomial model without
covariates, the estimated variance of the heterogeneity component is equal to zero if
the variance of the number of claims is lower than their mean (see Pinquet et al.
(1992)). In that case, a priori and a posteriori tariff structures do not differ, and the
bayesian model fails.

A sufficient condition for the existence of a bonus-malus system derived from a
bayesian model is provided here: it will be applied later on to the models for number
and cost of claims.

Let us start from a heterogeneous model, as defined in 2.1. The heterogeneity com-
ponent is supposed to be scalar, and its distribution is parameterized by the variance
0. The parameters of the model are 6 = (6,,6°) and we shall write 6° = (élo ,0), élo
being the maximum likelihood estimator of 8, in the a priori rating model.

If the right-derivative, with respect to o2, of the log-likelihood is positive in
6°, 62 will be positive in the heterogeneous model. The existence of a bonus-malus
system is hence related to the sign of a lagrangian, which is part of the score test for
nullity of o’ (see Rao (1948), Silvey (1959)). With the notations of 2.1, and denoting
the lagrangian as £, one can prove:

ZIng(y,/BI,O' X)) - Zlogfo(y,/el,x) Lo? +0(0' ), with
=—2(res

2
res, = (%logf*(y, /910, x,,u))uzu0 38, = —(-;—uflogﬁ(y, /910, x,,u)Ju:uo.
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See Pinquet (1996b) for a proof, and references to a recent literature. The term res, is

a residual, which is related to those encountered in the likelihood equations for num-
bers and costs. The condition for existence of a bonus-malus system is

L>0<:>Zres12>2s,.

. . . ! . i .
It can be interpreted as an overdispersion condition on residuals.

2.4 Prediction with heterogeneous models and bonus-malus systems

Let us suppose a policyholder observed on T periods: Y7 = (y,,...,yr) is the sequence
of severity variables, and Xy =(x;,...,x;) that of the covariates. The sequences X7
and ¥ take the place of x, and y, in the preceding sections. The date of forecast T

must be explicited here, and the individual index can be suppressed, since the policy-
holder can be considered separately. Besides, belonging to the working sample is not
mandatory for this policyholder.

We want to predict a risk for the period T+/, by means of a heterogeneous model.
For the period ¢, this risk R, is the expectation of a function of Y, (y, is the outcome
of ¥,). For instance, Y, is the sequence of both number and costs of claims in period ¢,
and R,, the pure premium, is the expectation of the total cost.

We now include a heterogeneity component u, as defined in 2.1. The distribution of
Y, conditional on u depends on 8,, x, and u. This applies to R,, and we can write
R, = hy (x,) g(u), for the three types of risk dealt with later (frequency of claims,
average cost per claim, pure premium), g being a real-valued function.

A predictor for the risk in period T+/ can be written as hBI (X741) g(TIB, with g(T;; a
credibility estimator of g(u), defined from:

AT+

8 (u)=arg min &y, (V) ~a)’ £.077/6,. X7, V)];

T
£0r 0,60 =T £06: 6.5,

t=1

The expectation is taken with respect to U, and one obtains:

ATl Ey [g(U) £ (Y7 /6, X7, U]
() = Eplg(U)/ Xy Y] = —2
glu B[g( )/ T T] Eez[ﬁ(YT/elyXT’U)]

’

the expectation of g(U) for the posterior distribution of U. Replacing 6, and 6, by
their estimations in the heterogeneous model, we obtain the a posteriori premium

A N AL

computed for period T+/. It can be written as
E;[g(U)/Xy5eer X135 Y1500 V7]
E; [g(U)]
2

(1, e B, 80
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The first term is an a priori premium, based on the rating factors of the current period.
The second one is a bonus-malus coefficient: it appears as the ratio of two expecta-
tions of the same variable, computed for prior and posterior distributions. Owing to the
equality: Eg[ Eg(g(U)/X7.,Y7)1= Eylg(U)] = Eg2 [g(U)], the rating is balanced.

2.5 Bonus-malus for frequency of claims

2.5.1 Theoretical results

With the notations of 2.2.1 and 2.4, we write: y, =n;x,=w; 6, =0;
R, =E(N,)=Au;hy (x,)=2A; gu)y=u; Xp=W,...wr); ¥y =(n,...,ny). The pos-
terior distribution of U is a y(a+zfn,,a+2t/l,) (see Dionne et al. (1989, 1992)).

Hence:

T
a+y n
AT+l _ t=1

EglU/wy,..owping, ipl=u " = ——— (1)

.
a+ 2/1,
=1

Replacing A, by 4, =exp(w,&) and a by a in equation (1) leads to the bonus-malus
coefficient. There will be a frequency-bonus if the estimator of 4’ —1 is negative, or
if the number-residual zt(n, —A,) is negative.

Considering in equation (1) that N, follows a Poisson distribution, with a parame-
ter Au, '™ converges towards u when T goes to +co. The heterogeneity on number
distributions, which is not explained by the rating factors, is hence revealed comple-
tely with time. It may be interesting to investigate the distribution of bonus-malus
coefficients on a portfolio of policyholders, as well as its time evolution (see section
2.5.2 for empirical results).

We explicit now the condition for existence of a bonus-malus system for frequen-
cies. On the working sample, and with the notations in 2.2.1, one can write

log £,(3,/8)x,4)= Y[, (log A, +logu)=A,u~log(n,)]
t

with A, = exp(w &0), @ being the estimator of @ in the a priori rating model. With
1t pW, g p g

the notations of 2.3, and with «° =1, we obtain:
res, = z(n” —/llt);s, = Znn; L>0e Z‘nresl2 > an,
t t i {

where nres, = Zt(n,, —i”) is the number-residual for policyholder i, and n, = zt n,

is the number of claims reported by this policyholder on all periods. This condition
means that, considering the total number of claims, its variance is superior to its mean,
the variance being calculated conditionally on the explanatory variables. This empiri-
cal overdispersion condition can be related to the theoretical overdispersion of the
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negative binomial model: if N, ~ P(AU;), U, ~ y(a,a)(with a=1/c?), one gets:
V(N,)= 24, + 20 > A, = E(N,).

A score test for nullity of ¢ can be performed from the Lagrange multiplier
L=/ 2)2ﬁ(nres,2 —n;). The previous remarks allow us to reject the nullity of o’ if

L is large enough. If the number of policyholders goes to infinity, Eb= L/ VL)
converges towards a N(0,1) distribution. One can prove that V(L) =1/ 2Zi i?, with
;=Y Ay 1f u_, is the quantile at the level 1€ of a N(0,1) distribution, the null

hypothesis 6* =0 will be rejected at the level € if £~ > U_g.
Besides, the lagrangian provides an estimator of the parameters. Starting from a’

0
and 02 = 0 in the algorithm of the likelihood maximisation, one gets at the following

step
z nresi2 -n 2[(”1' - i,-)z - ni]
! — ! . (2)

Vo YR S

N 1 . . . .
The estimators &' and 62 can be shown to be consistent for the negative binomial
model (see Pinquet (1996b) for demonstrations).

0 5! L

=46 =

a

2.5.2 Empirical results
From the sample described in 1.3, we obtain

N nres? =Y (n,— A)" =3709.24; Y n; =n=3493,
! ‘ i

and experience rating is possible for frequencies. Without explanatory variables (apart
from total duration of observation for each policyholder), one obtains:
Zﬁnrps,-2 =3746.25. The sum of square of residuals decreases when explanatory

variables are added, and the condition for existence of a bonus-malus system is more
restrictive when they are present. This is logical because they are a cause of heteroge-
neity on a priori distributions.

Besides, Ziiz =389.48, and the estimator of ¢* given in (2) is

S nres? -3,
i

o L ,. 216.24
P _

= = = = =(.555.
V(L) z A2 389.48

As a comparison, the maximum likelihood estimation for the negative binomial model
is 62 =0.576. The score test for nullity of ¢ is based on the statistic
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;ms’g R

L L i — —

= \/Q(L) = \/22/1,2 T 77896

s

and the null hypothesis is rejected. Examples of bonus-malus coefficients derived
from the credibility formula are developped in actuarial and econometric literature
(see Lemaire (1985), Dionne et al. (1989,1992)).

Evolution throughout time of bonus-malus coefficients, as well as a posteriori pre-
miums related to them, will be investigated for the risks related to frequency and
average cost per claim. We consider here a simulated portfolio, derived from the wor-
king sample. In this portfolio, the characteristics of each policyholder in the sample
are those of the first period, and we suppose that they remain unchanged. If this as-
sumption does not hold individually, it is however plausible on the whole population.
Investigating the distribution of bonus-malus coefficients in the heterogeneous model,
one can measure their dispersion on the portfolio by estimating their coefficient of
variation after T years (see Pinquet (1996a)). Considering the frequencies, with the
tariff structure obtained in 1.4.1 and 62 = 0.576, we obtain:

TABLE 1
REVELATION THROUGHOUT TIME OF HETEROGENEITY RELATED TO NUMBER DISTRIBUTIONS

Coefficients of variation (frequency of claims)
a priori premium: 0.372

T=1 T=5 T=10 T=20 T=+oo
bonus-malus coefficient 0.144 0.300 0.392 0.494 0.759
a posteriori premium 0411 0.515 0.590 0.673 0.891

The coefficient of variation is a measure of the relative dispersion of bonus-malus
coefficients and premiums. Apart from the a priori premium, the elements of the pre-
ceding table are an estimation of the expectation in the heterogeneous model. After
nine years, the relative dispersion of the bonus-malus coefficients exceeds that of the a
priori premium. This means that, after nine years, the heterogeneity revealed by the
observation of policyholders becomes more important than that explained by the rating
factors.

2.6 Bonus-malus for average cost per claim (gamma distributions)

2.6.1 Theoretical results
With the notations in 2.2.2 and 2.4, we can write: y, =(c;)jo

R, = E(C;;) =d[(bu); 6, = (B, d);hg (x,)=d/b,; g(u) =1/u. The bonus-malus coeffi-

cient on average cost per claim for period T+1 is derived from the credibility estimator

n X =2
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of 1/u. Since the a priori distribution of U is a ¥(8,8), with a density proportional to

fsu)= exp(~du)u®~!, one gets:

d(Xn)+6-1
F5) % f2(Y7 /6, X u) = exp((B + 3 b wu :
tj

times a coefficient independent of u. The posterior distribution of U is therefore a

y(6+ d(z n), 6+ Zb,cu), and:
t 1j

5+thct,-
i =E [i /x Y ]——————””
Lol s-14ad 0y

¢

We have Eq (1/U)= 6 /(6 ~1) (we suppose 6 > 1, a necessary condition for 1/U to

have a finite expectation). Omitting the period index, and writing S; for the set of
claims reported by the policyholder during the first T’ periods, the bonus-malus coeffi-

cient is:
Eé[—l-/XT, Yr] i+ X (¢ /Ey(Cy)
U — jES£ R (3)
£ [L} 1+,
0, U

where we wrote: n=(6-1)/d, Eg(C;)=Ey (dI(b;U)) = (d/bj)(5/(6 —1)). The
rating structure derived from (3) is obviously balanced. Writing Eé(Cj)zéj, and

cresy = ZjeS, (1-(c j- /¢ I )) the cost-residual for the policyholder, there will be a

cost-bonus if the cost-residual is positive. The bonus is then equal to

A+ Y c; /e

jes, cresy

A+lSy] A+ls;]

The time evolution of the distribution of bonus-malus coefficients is investigated in
2.6.2. Considering the simulated portfolio defined in 2.5.2, the heterogeneity unex-
plained by the rating factors is revealed more slowly for cost than for number distri-
butions. This is not surprising, as far as no claim means no information on the cost
distribution — if there is no correlation between the two heterogeneity components —
whereas no claim generates frequency-bonus.

Let us apply to this model the condition allowing experience rating. For the wor-
king sample, we denote S; as the set of claims reported by the policyholder over the

7; periods. One can write

logf*(y,-/élo,xi,u)= Z(&O logu—l;gciju)+z,-,
JES,

where z; does not depend on u. With the notations of 2.3 and with u’ = 1, we obtain:
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nn A A 1 1

res; = Z(do —b,;)c,-j s, =nd >0 —Etcresi2 >

‘ n* d
J€S, i

The total number of claims over the sample is n, and cres; is the cost-residual for

the policyholder i. This residual is equal to 0 without claims, and otherwise:

_ A0y _ ~0 _ 50,70 - .
cres; = Zjesl (I=(c; /¢y = zjeS, cres;; , where ¢; =d" /b; is the estimator for the

expectation of C,. Now, we have: E(1-(C;/E(C))) =V(C))/E*(Cy)=
CV(Cy)=1/d, if C; ~y(d.b,
tem is hence related to the square of coefficients of variation.

). The condition for existence of a bonus-malus sys-

2.6.2 Empirical results
Considering the working sample, one obtains:

lZcresi2 = 1.092;% =0.821,
n“ d

and experience rating for average cost of claims is possible. For the sample of policy-
holders that reported claims, the maximum likelihood estimators for the GB2 model
are:

8=3.620,d=1.807;7=(8—-1)/d =145.

The bonus (negative in case of malus) related to average cost per claim is equal to
cresy / (ﬁ + [ST|). It remains equal to zero as long as there are no claims. After the first

claim, if we consider the cases where the ratio actual cost-predicted cost is equal,
either to 0.5 or to 2, the related cost-residuals are equal to 0.5 and -1 respectively. The
multiplicative coefficient 1/(1+1) being equal to 0.408, we obtain a cost-bonus of
20.4% in the first case, and a cost-malus of 40.8% in the second case. This coefficient
is independent of the period during which the claim occurs.

The distributions of bonus-malus coefficients and a posteriori premiums can be in-
vestigated on the simulated portfolio defined in 2.5.2. With the tariff structures obtai-

ned in 1.4.1 and 1.4.2 and & =3.62, we obtain (see Pinquet (1996a)):

TABLE 2
REVELATION THROUGHOUT TIME OF HETEROGENEITY RELATED TO COST DISTRIBUTIONS

Coefficients of variation (expected cost per claim)
a priori premium: 0.401

T=1 T=5 T=10 T=20 T=4oo
bonus-malus coefficient 0.128 0.268 0.356 0.453 0.786
a posteriori premium 0.427 0.504 0.568 0.648 0.937

The relative dispersion of the bonus-malus coefficients exceeds the dispersion of the a
priori premium after fourteen years. Unexplained heterogeneity on cost distributions is
revealed more slowly than it was for numbers.
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2.7 Bonus-malus for average cost per claim (log-normal distributions)

2.7.1 Theoretical results

With the notations in 2.2.2 and 2.4, we write: y, =(l0gc,); . % =%
logC; ~ N(z,B+u,0°) = R, = E(C,)) = exp(z,B+u+(0” /2)); 6, =(B,0°);

he, (x,)=exp(z,ﬂ+(0'2 /2)); g(u) =exp(u). The bonus-malus coefficient is derived
from the credibility estimator of exp(u). Now

1 &j (u iler ~ By (TLCT)]Z

1
3 X fo(Yr [0, , X u) =exp| ——| —+
jaf,(u) S [0 K1) P 2[0'[2J o’ tnT+(0'2/O'%)

. . . . T
times a coefficient independent from u. We wrote tn; =Zt:]n,, ter =2jeST logc;,
Eq (TLCy) = zjeS Ey (logC,); Spis the set of claims reported by the policyholder
7 -

during the T periods (|ST| = tnT), and the period index is omitted. Hence, the posterior

distribution of U is

lc, — E, (TLC
U/(XT,YT)~N[tCT 9, (TLCy) 1 ]

my +(0*163) " (1/65)+(tnp 1 67%)
The bonus-malus coefficient for period 7+1 is equal to

BepW)/ K. vi) N leresy —(iny 6 12)
E; [exp(U)] (6%16%)+m;

’

writing lcresy = zjeS, lcres;, lcres; =logc; - Eél (log C;).

The condition for existence of a bonus-malus sytem is easily interpretable with the
log-normal model. We have
: A (Icres;; —u)?
lOg f*(y,-/e,o ,xi,u) = ‘—z——‘jTO‘——
2 ¢?

JES,

plus terms that do not depend on u, with Icres; = log(c,-j)—zijﬁo. With 4 =0 (see

2.3), the existence condition is:

(Zlcres,j )2 2

jes, n 1 9
Z R~ e~ z ZZcresij -n o%[>0.
o?) o2 (o?)

T i\ jes,

2

. .. . ~0 L0 . . .
Now, in the a priori rating model: no? = 2 ,lcres,} , with 02 the maximum likeli-
Ly

hood estimator of &2, Experience rating is possible if
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2
2. . . .
Z, (Z]eSz lcres,]) - Zw Icres,, is positive, that is to say if

z ZIcresU Icres, > 0.

t/n, 22 j.keS,, 12k

This condition means that, for claims related to policyholders having reported several
of them, cost-residuals have rather the same sign. If the first claim has a cost greater
than its prediction, it will be the same on average for the following ones.

One can prove that, if £ is the lagrangian with respect to 0'6, we have

an(”l -1 2 zlcresu lcres,
‘7(L) —_t N /0_\21_ L _ i1/n,22 jkeS,, j#k
T =0, =% = ,
25?)? o) S nn,-1)

1

1
and that GG is an consistent estimator of 0'% (see Pinquet (1996a)). It appears to be
the average, for the policyholders having reported several claims, of the product of
residuals associated to couples of different claims.

2.7.2 Empirical results

From the working sample, we obtain Zl/n - z lcres, lcres, =100.80, and

J.keS,  jxk
experience rating is possible. Hence
Z 2 leres, Icres,,
~~.1
100.80
0'[2] _ 1/n, 22,keS,, g2k —

=0.171.
N on(n,—1) 590

The nullity of 62 is tested for with &- = £/3/V(£)= 2.86. The critical value for a
one-sided test at a level of 5% is 1.645, and the null hypothesis is rejected. The maxi-
mum likelihood estimators of o and o in the heterogeneous model are:

~

6% =0.172; 6% =0.855.

Bonus-malus coefficients can be computed from the examples considered with the
gamma distributions (one claim, and a ratio actual cost-expected cost equal to 0.5 or
2). The residual associated to a claim is the logarithm of the latter ratio. In the first
case, the bonus-malus coefficient is equal to

f— 3 2 - -

(62163)+mm Pl 0855/0.172)+1

and is associated to a cost-bonus of 12.2%. In the second case, the bonus-malus coef-
ficient is equal to 1.107, and implies a cost-malus of 10.7%. These results can be com-
pared with 20.4% and 40.8%, the boni and mali derived from the gamma distributions,
although the ratios actual cost-expected cost are different in the two models. They

https://doi.org/10.2143/AST.27.1.542066 Published online by Cambridge University Press


https://doi.org/10.2143/AST.27.1.542066

ALLOWANCE FOR COST OF CLAIMS IN BONUS-MALUS SYSTEMS 49

must be different, since the cost-residuals in the gamma and log-normal models are
equal to 1-(c, /¢,5™™) and log(c, / 6U1°g_"""”“1) respectively, whereas they fulfill

the same orthogonality relations with respect to the covariates.

Considering the simulated portfolio defined in 2.5.2, the heterogeneity on cost
distributions that is unexplained by the a priori rating model is more important for
gamma than for log-normal distributions. This can be seen by comparing the limits of
the coefficients of variation for the bonus-malus coefficients, as we did in sections
2.5.2 and 2.6.2. For the GB2 model, this limit is the coefficient of variation

of 1/U,U~y(3,3) (see Pinquet (1996a)). With 3:3.62, it is equal to

~

1/+/ 6 —2 =0.786. Considering the log-normal model, the limit is the coefficient of
variation of exp (U), U ~ N(0,67,).
With 67 =0.172, it is equal to ,/exp(6)—1 = 0.433.

This result can be related to a comparison between the two a priori rating models.
If Fp . is the continuous distribution function of Y, (here equal to the cost of
)

the claim j, or its logarithm) ¢, =F9I » (¥)) is uniformly distributed on [0,1].
v
Computing the residuals ¢, e, = Fé(, . (Y,), and rearranging e, in the increasing
1 %y

order, by ey S S€yy, we derive the Komolgorov-Smirnov statistic
KS = «/;maxlsjs,, I(j/n)—e ). We obtain K§=2.83 (resp. KS=1.04) for the gamma

(resp. log-normal) distribution family. The latter family seems to fit the data better
than the gamma family, and will be retained for the bonus-malus system on pure
premium.

The two last results can be related to each other: there is more unexplained hetero-
geneity for gamma than for log-normal distributions, and the latter provide a better fit
to the data. This fact raises a question: is apparent heterogeneity only explained by
hidden information, or can it be also explained by the fact that the model does not
make the best use of observable information?

3. BONUS-MALUS FOR PURE PREMIUM

3.1 The heterogeneous model

From the preceding results, we shall retain log-normal rather than gamma distributions
for costs. Besides, they are better integrated in a heterogeneous model with a joint
distribution for the two heterogeneity components related to the number and cost dis-
tributions. We retain here a bivariate normal distribution. The parameters of the rela-
ted heterogeneous model can be estimated consistently, although the likelihood is not
analytically tractable.

A way to derive consistent estimators for heterogeneous models is proposed in Pin-
quet (1996b). It is based on the properties of extremal estimators, the maximum likeli-
hood estimator being of this type. The estimators of the parameters of the a priori
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rating model have a limit if the actual distributions include heterogeneity, and this
limit is tractable in the model investigated here. Consistent estimators are then obtai-
ned from a method of moments using the scores with respect to the variances and the
covariances of the heterogeneity components.

The heterogeneous model is hence composed of Poisson distributions on numbers,
log-normal distributions on costs, and of bivariate normal distributions for the two
heterogeneity components. The notations are the following:
¢ The distributions conditional on u,, and u_, the heterogeneity components for

number and cost distributions of the policyholder i, are

N, ~ P(4, exp(u,,));logC,, = z,B+¢, +u,, with

A, =exp(w,0), &, ~N©0,6°),1=1,...T; j=1,...,n,.

* In the heterogeneous model, U,, and U, follow a bivariate normal distribution
with a null expectation and a variance equal to

V= Vnn VHL
v, v |

cn (49

The parameters of the model are

o Von
6] = ﬁ ;62 = V(n
ot \%

o

Bonus-malus coefficients are computed in the heterogeneous model from the ex-
pression given in section 2.4

E5[g(U)! X, 7] E; [g(U)f;(Yr/él,Xr,U)]
E, s B, (g E; [ .05 /6. 4. 0]

(4)

We can write:

* g(u,,u.)=exp(u,) for frequency

* g(u,,u.)=exp(u,) for average cost per claim

o g(u,,u )=exp(u, +u,) for pure premium,

because the expectations of N,,C, and TC, are respectively proportional to exp(u, ),
exp(u, ) and exp(u, +u,), if computed conditionally on u, and u« . The mathematical

expectations that lead to the bonus-malus coefficients (see equation (4)) can be esti-
mated if we can write U = o, (S), where the distribution of S is independent from 6,:

it is enough to simulate outcomes of S. Such an expression can be obtained by writing
the Choleski decomposition of the variances-covariances matrix, i.e.

Vv Vv 0 2
V — nn hc — T’; T - q)nn :> V - (Pnn (pgngou’l 2 .
an ‘/CL‘ go (p (p (Ptn (pLL (pnn (ptn ¢nn + (p((
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One can write for the policyholder i

u, S,
U=y =TpS:8.=| " .S, ~ NO. b,

and we have U, = f, (S,), ¢ being related to V, hence to 8, . The likelihood used in

the bonus-malus expression (see equation (4)) is obtained as the product of the likeli-
hoods related to numbers and costs. With the notations of 2.4, we have

log fu(Y;/0,,47,U) =
(loge —zﬂ—U()2 ]
—(Zl,]exp(Un)+[zn,]Un—z y 26’2 , with
! ' 1)
XT =(xl""vx7’);xf :(W’pzt);y]” :(yl""’yT);yr z(nt’(cz])]:[y n, )’

plus terms that do not depend on the heterogeneity components. Replacing 8, by é],
we obtain

(Y / él , X7, U) = exp(Vy) X terms independent from U, with

~ 2 —
=~ Y &, |exp(U,) +ngU, - inpUc — 20 Jeresy (5)
; 20

A bonus-malus coefficient for a policyholder and for the period T+1 depends then on:
2 A, , which is proportional to the frequency premium of the policyholder on all
H

periods. This premium is equal to
E(TN,) = Z/l E[exp(U,l) [Zﬂ. ]exp (p"" = (Z i,j
t

* n,, the number of claims reported by the policyholder during the T periods.
¢ lcres;, the sum of residuals on the logarithm of costs of claims reported by the
policyholder: it represents their relative severity.
From equation (4), bonus-malus coefficients on frequency, expected cost per claim,
and pure premium are respectively equal to

ElexpU,+V;)]  ElexplU.+Vpl  ElexpU, +U, V)l
Elexp(U,)] E[exp(V;)]” Elexp(U, )] Elexp(Vp)] Elexp(U, +U, )] E[exp(Vy)]

The coefficients are estimated by simulations of outcomes of S, and S, . For instance,
we infer that the estimated covariance

C/o\v[ exp(U,) exp(Vr) ]
E[exp(U,)]" Elexp(V;)]
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is a frequency-malus. The existence of boni and mali for the different risks can be
interpreted through the sign of estimated covariances.
The a posteriori premium is obtained by the expression given in section 2.4

é[g(U)/XT’YT]

#133 = (g Coro By s |
6,

The first term is the a priori premium. It is an estimation of

(@ + 9" + 02 ]
: ,

Az €xp(zr, B)Elexp(U, + U, )l = exp[w”la tzraB+

because U, +U,. =(¢,, +9,)S, +¢.S..
. 2 2
Bes]des’ ((pnn + (P(‘n) + ¢C(, = Vnn + 2‘/("1 + ‘/CC'
We should have consistent estimators for the parameters, in order to derive bonus-

malus coefficients. A method to obtain such estimators was quoted in the introduction.

When applied to the preceding model, it leads to the following results.
N A0 . . .. .
We write &°, B°, 52 the estimators of the parameters in the a priori rating model, and

A=Y explw @0 tle, = ) log(e, )i Eg (TLC)= Y iz fitle, = Ey (TLC)= Y B’

The variances and covariances of the two heterogeneity components are consis-
tently estimated by:

S, -4) -n, Z(n — A )te, —1lc,)
Vi =10g(14 V),V == i Vi = ,

Zl‘; [2;{2J(1+ ,m

A 0
E |:(tlc, —tlcl)2 -n, o it
52

> i A+
; (6)

Consistent estimators of ¢,,, ¢, and ¢, are given by the solutions of the equation

The estimators of ¢ are used in the computation of bonus-malus coefficients: remem-
ber that U, =TS, (S, ~ N(0,1,)), and that the coefficients are estimated through si-

mulations of outcomes of S,. As for the parameters of the a priori rating model, they
are consistently estimated by:

~

~ ~ ~ N ~0 A

~ g VY
azao__;,!Len,l;ﬂzﬂo_v(‘ne(,l;o-z=62 _V((' (7)
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The intercepts are supposed to be the first of the &, and k, explanatory variables for
the number and cost distributions, and e, ; (resp. e, ) are the first vectors of the ca-

nonical base of R*" (resp. R ).

3.2 Empirical results
The numerical results 2, (n, -~ i, ) —n, =216.24, zt if =389.48, already used for

bonus-malus on frequencies, lead to:

Z(nl _it)z -n
v = =0.555

n zi,z

In this paper, two distribution families are considered for the heterogeneity component
related to numbers. We first took into account the gamma, and now the log-normal
family (writing the heterogeneity component in a multiplicative way).

Considering an insurance contract without claims, we can compare the boni derived

~

V= log(147,,) = 04422 ,,, =V, = 0.665.

from the two models. The sum Zt i, being the cumulated frequency premium in the

negative binomial model, the bonus for the policyholder is equal to
N D YR 1)
aty Ao a+y A 1+(‘7;n2ti,)
For the log-normal family, the bonus can be written as

3 C/o\v( exp(U,) exp(Vr)
Elexp(U,)]" Elexp(Vy)]

Aa=1/V0).

j; Un = (PnnSn; VT = _Zt )’t exp(Un),

with S, ~ N(0,1). With the values of \7,:” and ¢@,, computed precendently, one ob-
tains for example:

TABLE 3
COMPARISON OF FREQUENCY-BONUS COEFFICIENTS FOR TWQ DISTRIBUTIONS ON THE
HFTEROGENLITY COMPONENT (CONTRACTS WITHOUT CLAIMS REPORTED)

frequency premium 0.05 0.1 0.2 0.5 1 2
bonus (%, gamma distributions) 217 53 10 217 357 526

bonus (%, log-normal distributions) 26 51 94 193 303 436

The boni derived from log-normal distributions on the heterogeneity component are
lower than those derived from the gamma distributions. The difference is all the more
important since the frequency premium is high.
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Let us estimate the covariance between the two heterogeneity components:

3 (n, - A,)(tle, ~dlc,)
S (n,—A,) (tle, —tic,)=7.96 =V, = - =0.013.

[Zi?]m%)

One can think of relating a positive or negative sign of the covariance to the fact that
the average cost per claim increases or decreases with the number of claims reported
by the policyholder. To see this, suppose that the duration of observation is the same
for all the policyholders, and that the intercept is the only explanatory variable for
number and cost distributions. We would then have

~

A, =7, tic, =nlogc= Z(n, —i,)(tlc, —tic,) = Z(n, —ﬁ)nl(]ogc' —Tgc)-—-

Z(n, —1Dn,(log c - logc), because an(log ¢ - loge)=0.

t/n 22 1

We wrote logc' for the logarithms of costs of claims reported by the policyholder i,

computed on average. The estimator of the covariance would be positive if the average
of the logarithms of costs of claims related to the policyholders that reported several of
them was superior to the global mean.

On the working sample, the number of claims reported by the policyholder had lit-
tle influence on the average cost.

The preceding results justify the allowance for a non constant number of periods
related to the observation of policyholders. To see this, we remark that the more seve-
re is a claim, the greater is the probability to change the vehicule afterwards. Hence,
there is less severity on average for several claims reported on the same car. If policy-
holders were not kept in the sample after changing cars, a negative bias would appear
in the estimation of the correlation coefficient between the heterogeneity components.
Now, keeping the policyholder in the sample as long as possible leads us to consider a
non constant number of periods.

When computing bonus-malus coefficients for average cost per claim, we used (see

2.7.2)
A 0
Z [(llcl —I‘lC,)2 —-n, 8\2 }: 2 Zlcres,/lcres,k = 100.80.

! i/n, 22 j,keS,,j#k

A bonus-malus system for average cost per claim can be considered if the observation
of the ratio actual cost-expected cost for a claim brings information for the following
claims. If the last expression is positive, the cost residuals of claims related to policy-
holders having reported several of them have rather the same sign. The relative se-
verity of a claim is associated to the sign of the residual, and it may be interesting to
compare the sign of residuals for claims related to policyholders having reported two
of them.
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Considering the working sample, we obtain

number of policyholders negative residual positive residual
having reported two claims (second claim) (second claim)
negative residual

(first claim) 74 46

positive residual

(first claim) 36 70

The sign of the residual does not change for 64% of policyholders having reported two

claims.
From equation (6), we infer
~ ~0
Z (tle, ~tic,)* —n, o2 R
v, =— ~ V2 =0.166,and 7, =—7V—‘—"A—=0.048.
‘/CCVI’[”

in? A+,

The correlation coefficient between the heterogeneity components is positive, but
close to zero. Hence

5 Aos ~ O a2 A2 A
Vcn = (pnn(pm = q)(n = 0020’ Vcc - (pcn + (pcc = (Pcc =0.407.
The boni for average cost per claim and pure premium for the contracts without claims
can be computed, and results can be compared to those obtained for frequency. From
the expressions

o [ exp(U,)  exp(Vr) ],_C/o\v [ exp(U, +U,)  exp(Vy) ]
Elexp(U)]" Elexp(Vy)] )’ Elexp(U, +U.)]" Elexp(Vy)]

we obtain

TABLE 4
BON! FOR AVERAGE COST PER CLAIM AND PURE PREMIUM (CONTRACTS WITHOUT CLAIM REPORTED)

frequency premium 0.05 0.1 0.2 0.5 1 2
average cost per claim bonus (%) 01 01 02 05 09 15
pure premium bonus (%) 27 53 97 199 312 44.7

Because of the positive correlation between the two heterogeneity components, a cost-
bonus appears in the absence of claims, but it is very low.
We now compute bonus-malus coefficients for policyholders that reported one

claim. They are a function of the cost-residual Icres; =log(c;) — 2,8 (¢, is the cost of
the claim, and z; represents the policyholder’s characteristics when the claim occu-
red), and of the frequency premium. From equations (5) and (7), we have
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We recall that the bonus-malus coefficients on frequency, expected cost per claim and
pure premium are respectively equal to

ElexpU,+V;)]  ElexpU,+V;)]  Elexp(U, +U, +V;)]
Elexp(U,)] Elexp(V;)] " Elexp(U,)] Elexp(Vy)l” Elexp(U, + U Elexp(Vy)]

We obtain for example (the bonus-malus coefficients are given in percentage)

TABLE 5
BONUS-MALUS COEFFICIENTS (POLICYHOLDERS HAVING REPORTED ONE CLAIM)

frequency coefficient frequency premium

lcresy 0.05 0.1 0.2 0.5 1 2

-1 147 4 1421 1331 1139 945 734
-05 148 4 143 1338 [145 95 737
0 1493 1437 1346 115 953 74
03 1501 144 6 1353 1156 9517 743
1 151 1456 136 116 1 962 746
average cost per claim coefficient frequency premium

icresy 0.05 0.1 0.2 0.5 1 2

-1 848 847 84 6 843 84 835
05 92 919 917 914 91 905
0 997 99 6 995 991 98 7 981
05 1081 108 107 8 1075 107 106 4
1 1171 117 1169 1165 116 1154
pure premium coefficient frequency premium

lcresy 0.05 0.1 0.2 0.5 1 2

-1 1246 120 1122 956 789 609
-05 136 1 131 1223 104 2 86 663
0 148 4 1427 1333 1135 935 722
05 161 8 1557 1454 1237 10§ 9 785
1 176 6 170 1584 1347 111 854

Because of the positive correlation between the two heterogeneity components, the
frequency coefficients increase with the cost-residual, which is related to the severity
of the claim. In the same way, the coefficients related to average cost per claim decre-
ase with the frequency premium, but these variations are very low. Because of the
correlation, the coefficients related to pure premium are not equal to the product of the

https://doi.org/10.2143/AST.27.1.542066 Published online by Cambridge University Press


https://doi.org/10.2143/AST.27.1.542066

ALLOWANCE FOR COST OF CLAIMS IN BONUS-MALUS SYSTEMS 57

coefficients for frequency and expected cost per claim. Here also, differences are very
low.

4. CONCLUDING REMARKS

We recall the main results obtained in this paper.

» The unexplained heterogeneity with respect to the cost distributions depends
strongly on the choice of the distribution family.

» Besides, it is revealed more slowly throughout time than for number distributions.

¢ On the working sample, the correlation between the heterogeneity components on
the number and cost distributions is very low.

In the long run, it would be desirable to relax the assumption of invariance of the hete-

rogeneity components with respect to time. Because of this invariance, the age of

claims has no influence on the bonus-malus coefficients. Now, the fact that an ancient

claim has the same influence on the coefficients that a recent one is questionable. The

allowance for an innovation at each period for the heterogeneity components would

raise new problems, and would make it necessary to observe policyholders on many

periods.
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