Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T07:40:45.368Z Has data issue: false hasContentIssue false

Low Loss Dielectrics in Ba[(Mg1/3Ta2/3)1−xTix]O3 and Ba[(Mg1−xZnx)1/3Ta2/3]O3 Systems

Published online by Cambridge University Press:  03 March 2011

Kuzhichalil Peethambaran Surendran
Affiliation:
Ceramic Technology Division, Regional Research Laboratory, Trivandrum 695 019, India
Mailadil Thomas Sebastian
Affiliation:
Ceramic Technology Division, Regional Research Laboratory, Trivandrum 695 019, India
Get access

Abstract

The microwave dielectric properties of ceramics based on Ba[(Mg1/3Ta2/3)1−xTix]O3 (BMT-BT) and Ba[(Mg1−xZnx)1/3Ta2/3]O3 (BMT-BZT) were investigated as a function of composition x. In BMT-BT solid solution, the dielectric properties deteriorated with increasing concentration of Ti substitution at the B-site of BMT. A correlation was established between the quality factors of the solid solution phases and their tolerance factor. In BMT-BZT solid solution, where both the end compounds are ordered perovskites, the unit cell expands with increasing mole fraction of the Zn in Mg site of BMT while the dielectric constant increases monotonously from 24.8 (for BMT) to 29.7 (BZT). In BMT-BZT solid solution, the quality factor reaches a maximum (Qu·f = 109,900 GHz) for 60 mol/ of BZT.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sebastian, M.T. and McN, N. Alford: List of microwave dielectric materials and their properties. (South Bank University, London, U.K.) http://www.lsbu.ac.uk/dielectric-materials/.Google Scholar
2Takahashi, T., Wu, E.J., Ven, A.V.D. and Ceder, G.: First-principles investigation of B-site ordering in Ba(MgxTa1−x)O3 microwave dielectrics with the complex perovskite structure. Jpn. J. Appl. Phys. 39, 1241 (2000).CrossRefGoogle Scholar
3Wang, J.T. and Tang, F.: Effect of Ta-doping on dielectric properties of yPbMg1/3(Nb(1−x)Tax)2/3O3–(1 − y)PbTiO3 Mater. Chem. Phys. 75, 86 (2002).Google Scholar
4Kim, J-S. and Kim, N-K.: Lead magnesium tantalate–lead titanate perovskite ceramic system: Preparation and characterization. Mater. Res. Bull. 35, 2479 (2000).Google Scholar
5Chai, L., Akbas, M.A. and Davies, P.K. Formation and characterisation of 1:1 ordered phases in AM4+O3-A(B2+1/3Ta5+2/3)O3 [A= Ba, Sr; B2+= Mg, Zn; M4+= Ti, Sn, Zr, Ce] perovskites, in Solid-State Chemistry of Inorganic Materials , edited by Davies, P.K., Jacobson, A.J., Torardi, C.C., and Vanderah, T.A. (Mater. Res. Soc. Proc. 453, Pittsburgh, PA, 1997), p. 443.Google Scholar
6Chae, M-C., Lim, S-M., Kim, N-K. and Park, B-O.: Perovskite formation and dielectric properties of Pb[(Mg1/3Ta2/3)0.8 (Zn1/3Ta2/3)0.2]O3 ceramics with Nb substitution for Ta. Mater. Res. Bull. 36, 2443 (2001).Google Scholar
7Lim, S-M. and Kim, N-K.: Crystallographic and dielectric aspects of Pb[(Mg,Zn)1/3Ta2/3]O3 system with 40 at.% Nb substitution. Mater. Res. Bull. 37, 59 (2002).Google Scholar
8Zhang, Y.C., Wang, J., Yue, Z.X., Gui, Z.L. and Li, L.T.: Effects of Mg2+ substitution on microstructure and microwave dielectric properties of (Zn1−xMgx)Nb2O6 ceramics Ceram. Int. 30, 87 (2004).CrossRefGoogle Scholar
9Yoshida, A., Ogawa, H., Kan, A., Ishihara, S. and Higashida, Y.: Influence of Zn and Ni substitutions for Mg on dielectric properties of (Mg4−xMx)(Nb2−ySby)O9 (M= Zn and Ni) solid solutions J. Eur. Ceram. Soc. 24, 1765 (2004).CrossRefGoogle Scholar
10Nomura, S.: Ceramics for microwave dielectric resonators. Ferroelectrics 49, 61 (1983).CrossRefGoogle Scholar
11Vincent, H., Perrier, C., L’Heritier, P. and Labeyrier, M.: Crystallographic study, by Rietveld’s method, of barium–magnesium–tantalum oxides based ceramics for use as dielectric resonator. X-ray dilatometry at low temperature. Mater. Res. Bull. 28, 951 (1993).CrossRefGoogle Scholar
12Jacobson, A.J., Collins, B.M. and Fender, B.E.F.: A powder neutron and x-ray diffraction determination of the structure of Ba3Ta2ZnO9: An investigation of perovskite phases in the system Ba–Ta–Zn–O and the preparation of Ba2TaCdO5.5 and Ba2CeInO5.5. Acta Crystallogr. B32, 1083 (1976).Google Scholar
13Ohuchi, H., Okajima, M. and Ito, H. Effect of sintering on the dielectric properties of Ba(Zn1/3Ta2/3)O3–Ba(Mg1/3Ta2/3)O3 ceramics, inProc. Electroceramics V, Vol. 1, edited by Baptista, J.L., Labrincha, J.A., and Vilarinho, P.M.L.S. (Aveiro, Portugal, 1996), pp. 549552.Google Scholar
14Thirumal, M., Jawahar, I.N., Surendran, K.P., Mohanan, P. and Ganguly, A.K.: Synthesis and microwave dielectric properties of Sr3Zn1−xMgxNb2O9 phases. Mater. Res. Bull. 37, 2321 (2002).CrossRefGoogle Scholar
15Hakki, B.W. and Coleman, P.D.: A dielectric resonator method of measuring inductive capacities in the millimeter range. IRE Trans. Microw. Theory Tech. MTT-8, 402 (1960).Google Scholar
16Courtney, W.E.: Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators. IEEE Trans. Microwave Theory Tech. MTT 18, 476 (1970).Google Scholar
17Krupka, J., Derzakowski, K., Riddle, B. and Baker-Jarvis, J.: A dielectric resonator for measurements of complex permittivity of low loss dielectric materials as function of temperature. Meas. Sci. Technol. 9, 1751 (1998).Google Scholar
18Penn, S.J. and Alford, N. McN Reduction of dielectric loss by attention to processing and microstructure, EPSRC Final Report (EEIE, South Bank University, London, U.K., 2000).Google Scholar
20Janaswamy, S., Murthy, G.S., Dias, E.D. and Murthy, V.R.K.: Structural analysis of Ba(Mg1/3(Ta,Nb)2/3)O3 ceramics. Mater. Lett. 55, 414 (2002).CrossRefGoogle Scholar
21Lufaso, M.W.: Crystal structures, modeling, and dielectric property relationships of 2:1 ordered Ba3MM′2O9 (M = Mg, Ni, Zn; M′ = Nb, Ta) perovskites. Chem. Mater. 16, 2148 (2004).Google Scholar
22Chai, L., Akbas, M.A., Davies, P.K. and Parise, J.B.: Cation ordering transformations in Ba(Mg1/3Ta2/3)O3–BaZrO3 perovskite solid solutions. Mater. Res. Bull. 32, 1261 (1997).Google Scholar
23Chai, L. and Davies, P.K.: Effect of M4+ (Ce, Sn, Ti) B-site substitutions on the cation ordering in Ba(Mg1/3Ta2/3)O3. Mater. Res. Bull. 33, 1283 (1998).Google Scholar
24Hamano, T., Towner, D.J. and Wessels, B.W.: Relative dielectric constant of epitaxial BaTiO3 thin films in the GHz frequency range. Appl. Phys. Lett. 83, 5274 (2003).Google Scholar
25Mollá, J., González, M., Vila, R. and Ibarra, A.: Effect of humidity on microwave dielectric losses of porous alumina. J. Appl. Phys. 85, 1727 (1999).CrossRefGoogle Scholar
26Pokkuluri, S.K. Effect of admixtures, chlorides, and moisture on dielectric properties of Portland cement concrete in the low microwave frequency range. M.S. Thesis, Virginia Polytechnic Institute, Blacksburg, VA (1998).Google Scholar
27And, E.ronescu, Folea, A., and Rahaianu, A.: Dielectric ceramics based on (1 − x)BaTiO3xBaMg0.33M0.67O3, in Proc. 4th International Conference on Electronic Ceramics Application, Electroceramics–IV, edited by Waser, R. (Verlag der Augustinus Buchhandl, Aachen, Germany, 1994), p. 73.Google Scholar
28Choi, C.H., Nahm, S. and Song, Y.W.: Effect of TiO2 and SnO2 on the microwave dielectric properties of Ba(Mg1/3Ta2/3)O3 ceramics. J. Kor. Phys. Soc. 35, S410 (1999).Google Scholar
29Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A32, 751 (1976).Google Scholar
30Takahashi, T.: First-principles investigation of the phase stability for Ba(B1/32+B2/35+)O3 microwave dielectrics with the complex perovskite structure. Jpn. J. Appl. Phys. 39, 5637 (2000).CrossRefGoogle Scholar
31Nomura, S., Toyama, K. and Kaneta, K.: Ba(Mg1/3Ta2/3)O3 ceramics with temperature-stable high-dielectric constant and low microwave loss. Jpn. J. Appl. Phys. 21, L624 (1982).CrossRefGoogle Scholar
32Kawashima, S., Nishida, M., Ueda, I., Ouchi, H., and Hayakawa, S.: Ba(Zn1/3Ta2/3)O3 ceramics with low dielectric loss at microwave frequencies, Proc. of the 1st Meeting on Ferroelectric Materials and Their Applications, edited by Omato, O. and Kunada, A., (Keihin Printing Co. Ltd., Kyoto, Japan, 1977), p. 293.Google Scholar
33Galasso, F.S.: Structure, Properties and Preparation of Perovskite type Compounds (Pergamon Press, Oxford, U.K., 1969).Google Scholar
34Shimada, T.: Far-infrared reflection and microwave properties of Ba([Mg1−xZnx]1/3,Ta2/3)O3 ceramics. J. Eur. Ceram. Soc. 24, 1799 (2004).Google Scholar