An Expansion for $x^{n}+y^{n}$.

By A. Waterson.
In this note an expansion is found for the expression $x^{n}+y^{n}$ in terms of $x+y$ and of $x y$. Two illustrative applications are appended.

Theorem. If n be a positive integer, and x and y be any two numbers, then

$$
x^{n}+y^{n}=\sum_{r=0}^{N}(-)^{r} \frac{n}{n-r}\binom{n-r}{r}(x+y)^{n-2 r}(x y)^{r}
$$

where $N=\frac{n}{2}$ if n is even, and $N=\frac{n-1}{2}$ if n is odd.
Proof. Suppose the theorem to be true for two successive values of n, say $k-1$ and k.

$$
\begin{aligned}
& \therefore x^{k}+y^{k}=(x+y)^{k}-\frac{k}{k-1}\binom{k-1}{1}(x+y)^{k-2}(x y)+. . \\
& +(-) \frac{k}{k-r}\binom{k-r}{r}(x+y)^{k-2 r}(x y)^{r}+\ldots \\
& x^{k-1}+y^{k-1}=(x+y)^{k-1}-\frac{k-1}{k-2}\binom{k-2}{1}(x+y)^{k-3}(x y)+\ldots \\
& +(-1)^{r-1} \frac{k-1}{k-r}\binom{k-r}{r-1}(x+y)^{k-2 r+1}(x y)^{r-1}+\ldots \\
& \text { But } x^{k+1}+y^{k+1}=\left(x^{k}+y^{k}\right)(x+y)-\left(x^{k-1}+y^{k-1}\right) x y \\
& =\left[(x+y)^{k}-\frac{k}{k-1}\binom{k-1}{1}(x+y)^{k-2}(x y)+. .\right](x+y) \\
& -\left[(x+y)^{k-1}-\frac{k-1}{k-2}\binom{k-2}{1}(x+y)^{k-3}(x y)+. .\right] x y .
\end{aligned}
$$

The coefficient of $(x+y)^{k-2 r+1}(x y)^{r}$ is therefore

$$
\begin{aligned}
&(-)^{r} \frac{k}{k-r}\binom{k-r}{r}-(-)^{r-1} k-1 \\
& k-r \\
&=(-)^{r}\left[\frac{k}{k-r}\binom{k-r}{r-r}+\frac{k}{k-r}\binom{k-r}{r-1}-\frac{1}{k-r}\binom{k-r}{r-1}\right] \\
&=(-)^{r}\left[\frac{k}{k-r}\binom{k-r+1}{r}-\frac{1}{k-r}\binom{k-r}{r-1}\right] \\
&=(-)^{r}\left[\frac{k}{k-r}-\frac{r}{(k-r)(k-r+1)}\right]\binom{k-r+1}{r} \\
&=(-)^{r} \frac{k+1}{k+1-r}\binom{k+1-r}{r},
\end{aligned}
$$

which is exactly what it would be using the theorem.
But the theorem is true for $n=1$ and $n=2$, so it is true for $n=3$, and hence similarly for all positive integral values of n.

Applications. (i) Expansion for $2 \cos n \theta$ in terms of $2 \cos \theta$. Let $x=\cos \theta+i \sin \theta, y=\cos \theta-i \sin \theta ;$ then $x+y=2 \cos \theta$ and $x y=1$. Also $\quad x^{n}=\cos n \theta+i \sin n \theta ; \quad y^{n}=\cos n \theta-i \sin n \theta$ so that $x^{n}+y^{n}=2 \cos n \theta$. Substituting these in the theorem, we obtain

$$
2 \cos n \theta=\sum_{r=0}^{N}(-)^{r} \frac{n}{n-r}\binom{n-r}{r}(2 \cos \theta)^{n-2 r}
$$

(ii) To find the equation whose roots are the n-th powers of those of $a x^{2}+b x+c=0$. Let the roots of the given equation be a and β. Then the required equation is $x^{2}-\left(\alpha^{n}+\beta^{n}\right) x+(\alpha \beta)^{n}=0$

$$
\text { i.e. } \quad x^{2}-\left[\sum_{r=0}^{N}(-)^{r} \frac{n}{n-r}\binom{n-r}{r}(\alpha+\beta)^{n-2 r}(\alpha \beta)^{r}\right] x+(\alpha \beta)^{n}=0
$$

or, since $\alpha+\beta=-b / a$ and $\alpha \beta=c / a$,

$$
a^{n} x^{2}-\left[\sum_{r=0}^{N}(-)^{n-r} \frac{n}{n-r}\binom{n-r}{r} a^{r} b^{n-2 r} c^{r}\right] x+c^{n}=0
$$

124 Halbeath Road,

Dunfermline.

Dirichlet's Integrals.

By L. J. Mordell, F.R.S.
The integrals referred to here are those given by the following Theorem:

$$
\text { Let } I=\iiint f(x+y+z) x^{l-1} y^{m-1} z^{n-1} d x d y d z
$$

where the integration is extended over

$$
x \geqq 0, y \geqq 0, z \geqq 0, \quad a \leqq x+y+z \leqq b
$$

and $l>0, m>0, n>0, \quad 0 \leqq a \leqq b<\infty$.

$$
\text { Let } J=\frac{\Gamma(l) \Gamma(m) \Gamma(n)}{\Gamma(l+m+n)} \int_{a}^{b} t^{l+m+n-1} f(t) d t
$$

Then $I=J$ when either,

