Distribution and virulence of Vibrio cholerae belonging to serogroups other than O1 and O139: A nationwide survey

A. K. MUKHOPADHYAY1, P. K. SAHA1, S. GARG1, S. K. BHATTACHARYA1, T. SHIMADA2, T. TAKEDA3, Y. TAKEDA4 AND G. BALAKRISH NAIR1

1National Institute of Cholera and Enteric Diseases, Beliaghata, Calcutta 700 010, India
2Department of Bacteriology, National Institute of Health, Shinjuku-ku, Tokyo 162, Japan
3Department of Infectious Diseases Research, National Children’s Medical Research Center, Setagaya-ku, Tokyo 154, Japan
4International Medical Center of Japan, Shinjuku-ku, Tokyo 162, Japan

(Accepted 2 October 1994)

SUMMARY

The distribution and virulence of Vibrio cholerae serogroups other than O1 and O139 in India before, during and after the advent of O139 serogroup was investigated. A total of 68 strains belonging to 31 different ‘O’ serogroups were identified during the study period. With the exception of 053, there was no spatial or temporal clustering of any particular non-O1 non-O139 serogroup at any given place. Two of the 68 strains examined produced cholera toxin (CT) which could only be partially absorbed with anti-CT immunoglobulin G. Tissue culture assay revealed that some of the non-O1 non-O139 strains produced factors which evoked either a cell rounding or cell elongation response depending upon the medium used. This study indicates that serogroups other than O1 and O139 should also be continuously monitored.

INTRODUCTION

The disease cholera is caused by Vibrio cholerae belonging to two different somatic serogroups, O1 and O139; the latter serogroup being a recent addition [1]. V. cholerae O139 has widely been proclaimed as the eighth pandemic strain of cholera [2]. Since its genesis in late 1992 [3, 4], the origin of the O139 serogroup and its relatedness to the O1 serogroup has been much debated. While the genetic elements relating to cholera toxin and other putative toxins in the virulence cassette and the genes regulating the expression of these toxins of the O139 serogroup resemble that of the O1 Eltor biotype [5], the chemical composition of the lipopolysaccharide of the O139 serogroup [6] as well as the serological reactivity [7] places these organisms as a distinct entity. That O139 serogroup is...
A. Mukhopadhyay and others

not a simple mutant of O1 Eltor, is evident from the fact that the O139 serogroup lacks all the genes required for the synthesis of O1 antigen and for the Ogawa modification [8, 9].

In the span of one year, the O139 serogroup has spread into all cholera endemic areas in India [10, 11] and to several countries in South Asia [12]. With the advent of the O139 serogroup, the non-O1 serogroups of V. cholerae, previously relegated to negligible clinical significance, have acquired importance. The fact that the O139 serogroup, non-O1 serogroup, has so suddenly and explosively emerged as the causative agent of cholera would indicate the possibility of the recurrence of such an event. This study was performed to understand the spatial and temporal distribution of V. cholerae serogroups other than O1 and O139 in India before, during and after the advent of O139 serogroup and to analyse the virulence determinants associated with these strains.

MATERIALS AND METHODS

Source of strains

Being the National Reference Laboratory of Cholera in India, strains of V. cholerae from different parts of the country are submitted to the National Institute of Cholera and Enteric Diseases (NICED) for identification, serogrouping and phage typing. In addition, a constant surveillance to assess variations in serogroups of V. cholerae isolated from hospitalized patients with acute diarrhoea at the Infectious Diseases Hospital (IDH) has been underway at the NICED for the past several years. The data for this report included strains of V. cholerae non-O1 non-O139 isolated or received from March 1992 to December 1993.

Bacteriology and serology

Strains of V. cholerae isolated from patients admitted with acute diarrhoea at the IDH, Calcutta and strains received from different parts of India were isolated and identified using procedures described in detail elsewhere [13, 14]. Strains that did not agglutinate with O1 and O139 antisera were further serogrouped by the somatic O antigen serogrouping scheme of V. cholerae developed at the National Institute of Health, Tokyo, Japan [15].

Detection of cholera toxin-like toxin

Strains were grown in Casamino Acid–Yeast Extract (CAYE) supplemented with 90 μg/ml lincomycin in static condition at 30 °C. The culture supernates of all the V. cholerae non-O1 non-O139 strains were examined for the presence of cholera toxin (CT)-like enterotoxin using a highly sensitive bead-ELISA [16]. Various dilutions of purified CT (Sigma Chemical Co., Mo, USA) and uninoculated medium (negative control) were run concurrently whenever a batch of the culture supernate of the test strains were assayed by the bead-ELISA.

Absorption assay with anti-CT IgG

An absorption assay was performed by bead-ELISA to determine whether CT present in culture supernates of strains yielding a positive result by the CT bead-ELISA could be absorbed with anti-CT IgG. In this assay, culture supernate of the
Vibrio cholerae other than O1 and O139

CT-producing strain was pre-incubated at 37 °C for 1 h with 10 μg of rabbit anti-CT IgG/ml. From earlier experiments it was determined that 10 μg of anti-CT IgG/ml can completely absorb 500 ng of pure CT/ml [17]. Subsequently, the coated beads were introduced into 0.5 ml of the above described incubation and the bead-ELISA was performed as described previously.

Tissue culture assay

All the strains were grown in Trypticase Soy Broth (TSB, Difco) supplemented with 0.6% yeast extract (Difco) and in AKI medium (Bacto peptone 1.5%; yeast extract 0.4%; NaCl 0.5%; NaHCO₃ 0.3%; pH 7.4) in shaking condition for 18 h. Cultures were centrifuged at 6000 r.p.m. for 15 min (Sorvall RT6000B, DuPont, USA) and the supernate was passed through 0.22 μm filter unit (Millex-GS, Millipore, USA), collected in sterile test tubes and kept at 4 °C until used.

CHO and HeLa cells were grown as monolayer in Dulbecco’s Minimum Essential Medium (Nissui Pharmaceutical Co. Ltd., Japan) supplemented with 10% (vol/vol) horse serum (Gibco Laboratories, USA). Cell lines were maintained in tissue-culture flasks (25 cm²) at 37 °C in a humidified CO₂ 5% atmosphere. A confluent monolayer of CHO and HeLa cells grown for 3–4 days was removed from the tissue culture flasks and 200 μl of the cell suspension (6.4 x 10⁵ cells) was added to each of the 96 well plates along with 50 μl of the cell-free culture filtrate and incubated as described above. Cytotonic and cytotoxic changes were recorded at 24 h and 36 h. For controls, wells received the uninoculated culture medium as negative control and pure cholera toxin as positive control.

RESULTS

During the period of study, a total of 68 strains of V. cholerae non-O1 non-O139 were examined. Of these, 36 were isolated from patients with acute diarrhoea admitted to IDH, Calcutta while the remaining 32 strains were received from various parts of India as shown in Table 1.

A total of 31 different O serogroups which represents 20% of the currently recognized 155 ‘O’ serogroups of V. cholerae (18) were identified in this study. Three strains could not be typed while three strains were rough. With the exception of O53, there was no spatial or temporal clustering of any particular non-O1 and non-O139 serogroup at any given place. The eight O53 strains of V. cholerae were received in a single batch of 88 cultures recovered from an outbreak of cholera which occurred in Madurai, South India, in November 1992 during the first O139 cholera epidemic in that city.

Of the 68 strains examined, only 2 of the 3 strains of V. cholerae belonging to the serogroup O74 produced cholera-like toxin when examined by the bead-ELISA. The toxin produced by both the strains could only be partially absorbed with anti-CT IgG in the absorption assay by the bead-ELISA.

Examination of the sterile culture filtrates of the 68 strains grown in two different media namely TSB and AKI yielded interesting results when examined in CHO and HeLa cells (Table 2). Among the strains which evoked a response in CHO and HeLa cells, it was clear that strains grown in TSB more often produced morphological changes of CHO and HeLa cells consistent to that of cell
Table 1. Distribution of various non-01 non-0139 serogroups of V. cholerae at various places in India isolated from March 1992 to December 1993

<table>
<thead>
<tr>
<th>Place</th>
<th>Serogroup (No. of strains)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcutta</td>
<td>O2(3), O5(2), O6(1), O7(1), O10(1), O24(1), O32(2), O34(1),</td>
</tr>
<tr>
<td></td>
<td>O36(1), O37(2), O39(1), O43(1), O45(1), O53(1), O54(3),</td>
</tr>
<tr>
<td></td>
<td>O56(2), O60(1), O69(2), O74(3)*, O134(1), O145(1), Rough(1),</td>
</tr>
<tr>
<td></td>
<td>OUT(3)</td>
</tr>
<tr>
<td>Madras</td>
<td>O7(1), O14(1), O26(1), O69(1), Rough(2)</td>
</tr>
<tr>
<td>Vellore</td>
<td>O37(2)</td>
</tr>
<tr>
<td>Madurai</td>
<td>O45(1), O47(1), O53(8)</td>
</tr>
<tr>
<td>Nagpur</td>
<td>O5(1), O7(2), O8(1), O64(1), O68(1), O104(1)</td>
</tr>
<tr>
<td>Pune</td>
<td>O5(1), O10(1), O27(1)</td>
</tr>
<tr>
<td>Aurangabad</td>
<td>O71(1)</td>
</tr>
<tr>
<td>Warangal</td>
<td>O12(1)</td>
</tr>
<tr>
<td>Jodhpur</td>
<td>O27(2)</td>
</tr>
</tbody>
</table>

* Two of the three strains belonging to serogroup O74 of V. cholerae non-01 non-0139 produced cholera toxin as determined by the Bead-ELISA.

Table 2. Response of CHO and HeLa cells to culture filtrates of V. cholerae non-01 non-0139 examined in the study

<table>
<thead>
<tr>
<th>Morphological change</th>
<th>CHO cells</th>
<th>HeLa cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TSB</td>
<td>AKI</td>
</tr>
<tr>
<td>Unaffected</td>
<td>37</td>
<td>44</td>
</tr>
<tr>
<td>Cytotoxic</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Cell-rounding</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td>Cell elongation</td>
<td>25</td>
<td>2</td>
</tr>
</tbody>
</table>

elongation. In contrast, when strains were grown in AKI medium, a cell rounding response was observed more often in CHO and HeLa cells (Table 2).

DISCUSSION

Strains of V. cholerae belonging to serogroups other than 01 and 0139, broadly classified as non-01 non-0139, can no longer be ignored. A case in point is the sudden emergence of a non-01 serogroup, currently classified as O139 Bengal, which has necessitated the need to continuously monitor the non-01 serogroups of V. cholerae. It may not be prudent to draw a line of distinction between serogroups like O1 and O139 and the other serogroups considering the recent finding that serogroups O22 and O155 possess somatic (O) antigen factors in common with V. cholerae O139 [18].

In this study, there was no temporal clustering of serogroups apart from O53 isolated in Madurai, South India. Tissue culture studies on the culture filtrates of the O53 strains indicated that the strains do not represent a single clone because of their different responses on CHO and HeLa cells. Three classes of strains of non-01 non-0139 could be recognized in this study based on their virulence factors. This included strains which produced a cholera-like toxin, strains which did not produce cholera-like toxin but evoked distinct changes in tissue culture cell lines.
and strains which neither produced a cholera-like toxin or affected CHO and HeLa cells.

The CT gene has recently been found to be associated with a virulence cassette DNA fragment carrying a core region which includes the *cep* (core encoded pilus), *ace* (accessory cholera enterotoxin) and *zot* (zona occludens toxin) genes associated with colonization and pathogenesis of *V. cholerae* [19–21]. Further, it has also been documented that most strains of *V. cholerae* independent of its serogroup carry the *ToxR* gene which encodes a regulatory protein known to coordinately regulate virulence attributes including cholera toxin [22, 23]. The two *O74 V. cholerae* strains which produced CT-like toxin represent strains which may have the potential to flare into epidemics given the right set of circumstances and such strains need to be closely watched.

In this study, the clinical profile of patients from whom the 36 strains of *V. cholerae* non-01 non-0139 were isolated from IDH, Calcutta was indistinguishable from full-blown cholera. Had the serogroup not been identified, it would be difficult for the clinician to distinguish these cases from cholera. Therefore, the non-01 non-0139 serogroups represent an intriguing group of strains which can cause a typical cholera like disease but which do not produce cholera toxin and presumably the other putative toxins associated with serogroups 01 and 0139. Despite deletion of all known putative toxin genes in the live oral attenuated vaccine strain (CVD 110), it was observed that CVD 110 was still capable of evoking residual diarrhoea in human volunteers [24]. Majority of the non-01 non-0139 strains investigated in this study, like the vaccine strain, do not produced cholera toxin and presumably the other toxins associated with the virulence cassette but yet cause a cholera-like disease. These non-01 non-0139 strains represent important strains which would enable us to bridge the gap in our understanding of what causes the residual diarrhoea in strains which do not possess any of the currently recognized virulence factors.

ACKNOWLEDGEMENTS

The award of a Junior Research Fellowship to P. K. Saha from the Council of Scientific and Industrial Research (CSIR), New Delhi, India, is gratefully acknowledged.

REFERENCES


